Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = polysialic acid (polySia)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 8441 KiB  
Article
Blockade of Sialylation with Decrease in Polysialic Acid Levels Counteracts Transforming Growth Factor β1-Induced Skin Fibroblast-to-Myofibroblast Transition
by Bianca Saveria Fioretto, Irene Rosa, Alessia Tani, Elena Andreucci, Eloisa Romano, Eleonora Sgambati and Mirko Manetti
Cells 2024, 13(12), 1067; https://doi.org/10.3390/cells13121067 - 19 Jun 2024
Cited by 3 | Viewed by 1725
Abstract
Aberrant sialylation with overexpression of the homopolymeric glycan polysialic acid (polySia) was recently reported in fibroblasts from fibrotic skin lesions. Yet, whether such a rise in polySia levels or sialylation in general may be functionally implicated in profibrotic activation of fibroblasts and their [...] Read more.
Aberrant sialylation with overexpression of the homopolymeric glycan polysialic acid (polySia) was recently reported in fibroblasts from fibrotic skin lesions. Yet, whether such a rise in polySia levels or sialylation in general may be functionally implicated in profibrotic activation of fibroblasts and their transition to myofibroblasts remains unknown. Therefore, we herein explored whether inhibition of sialylation could interfere with the process of skin fibroblast-to-myofibroblast transition induced by the master profibrotic mediator transforming growth factor β1 (TGFβ1). Adult human skin fibroblasts were pretreated with the competitive pan-sialyltransferase inhibitor 3-Fax-peracetyl-Neu5Ac (3-Fax) before stimulation with recombinant human TGFβ1, and then analyzed for polySia expression, cell viability, proliferation, migratory ability, and acquisition of myofibroblast-like morphofunctional features. Skin fibroblast stimulation with TGFβ1 resulted in overexpression of polySia, which was effectively blunted by 3-Fax pre-administration. Pretreatment with 3-Fax efficiently lessened TGFβ1-induced skin fibroblast proliferation, migration, changes in cell morphology, and phenotypic and functional differentiation into myofibroblasts, as testified by a significant reduction in FAP, ACTA2, COL1A1, COL1A2, and FN1 gene expression, and α-smooth muscle actin, N-cadherin, COL1A1, and FN-EDA protein levels, as well as a reduced contractile capability. Moreover, skin fibroblasts pre-administered with 3-Fax displayed a significant decrease in Smad3-dependent canonical TGFβ1 signaling. Collectively, our in vitro findings demonstrate for the first time that aberrant sialylation with increased polySia levels has a functional role in skin fibroblast-to-myofibroblast transition and suggest that competitive sialyltransferase inhibition might offer new therapeutic opportunities against skin fibrosis. Full article
(This article belongs to the Special Issue Fibrosis in Chronic Inflammatory Diseases)
Show Figures

Figure 1

19 pages, 4281 KiB  
Article
NMR Studies of the Interactions between Sialyllactoses and the Polysialytransferase Domain for Polysialylation Inhibition
by Bo Lu, Si-Ming Liao, Shi-Jie Liang, Jian-Xiu Li, Xue-Hui Liu, Ri-Bo Huang and Guo-Ping Zhou
Curr. Issues Mol. Biol. 2024, 46(6), 5682-5700; https://doi.org/10.3390/cimb46060340 - 7 Jun 2024
Viewed by 1763
Abstract
It is known that sialyllactose (SL) in mammalians is a major source of sialic acid (Sia), which can further form cytidine monophosphate sialic acid (CMP-Sia), and the final product is polysialic acid (polySia) using polysialyltransferases (polySTs) on the neural cell adhesion molecule (NCAM). [...] Read more.
It is known that sialyllactose (SL) in mammalians is a major source of sialic acid (Sia), which can further form cytidine monophosphate sialic acid (CMP-Sia), and the final product is polysialic acid (polySia) using polysialyltransferases (polySTs) on the neural cell adhesion molecule (NCAM). This process is called NCAM polysialylation. The overexpression of polysialylation is strongly related to cancer cell migration, invasion, and metastasis. In order to inhibit the overexpression of polysialylation, in this study, SL was selected as an inhibitor to test whether polysialylation could be inhibited. Our results suggest that the interactions between the polysialyltransferase domain (PSTD) in polyST and CMP-Siaand the PSTD and polySia could be inhibited when the 3′-sialyllactose (3′-SL) or 6′-sialyllactose (6′-SL) concentration is about 0.5 mM or 6′-SL and 3 mM, respectively. The results also show that SLs (particularly for 3′-SL) are the ideal inhibitors compared with another two inhibitors, low-molecular-weight heparin (LMWH) and cytidine monophosphate (CMP), because 3’-SL can not only be used to inhibit NCAM polysialylation, but is also one of the best supplements for infant formula and the gut health system. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

16 pages, 2842 KiB  
Article
The Bifunctional Effects of Lactoferrin (LFcinB11) in Inhibiting Neural Cell Adhesive Molecule (NCAM) Polysialylation and the Release of Neutrophil Extracellular Traps (NETs)
by Bo Lu, Si-Ming Liao, Shi-Jie Liang, Li-Xin Peng, Jian-Xiu Li, Xue-Hui Liu, Ri-Bo Huang and Guo-Ping Zhou
Int. J. Mol. Sci. 2024, 25(9), 4641; https://doi.org/10.3390/ijms25094641 - 24 Apr 2024
Cited by 1 | Viewed by 1723
Abstract
The expression of polysialic acid (polySia) on the neuronal cell adhesion molecule (NCAM) is called NCAM-polysialylation, which is strongly related to the migration and invasion of tumor cells and aggressive clinical status. Thus, it is important to select a proper drug to block [...] Read more.
The expression of polysialic acid (polySia) on the neuronal cell adhesion molecule (NCAM) is called NCAM-polysialylation, which is strongly related to the migration and invasion of tumor cells and aggressive clinical status. Thus, it is important to select a proper drug to block tumor cell migration during clinical treatment. In this study, we proposed that lactoferrin (LFcinB11) may be a better candidate for inhibiting NCAM polysialylation when compared with CMP and low-molecular-weight heparin (LMWH), which were determined based on our NMR studies. Furthermore, neutrophil extracellular traps (NETs) represent the most dramatic stage in the cell death process, and the release of NETs is related to the pathogenesis of autoimmune and inflammatory disorders, with proposed involvement in glomerulonephritis, chronic lung disease, sepsis, and vascular disorders. In this study, the molecular mechanisms involved in the inhibition of NET release using LFcinB11 as an inhibitor were also determined. Based on these results, LFcinB11 is proposed as being a bifunctional inhibitor for inhibiting both NCAM polysialylation and the release of NETs. Full article
(This article belongs to the Special Issue Mechanisms of Small Molecule Inhibitors Targeting Cancer)
Show Figures

Figure 1

21 pages, 5377 KiB  
Article
Comprehensive Ocular and Systemic Safety Evaluation of Polysialic Acid-Decorated Immune Modulating Therapeutic Nanoparticles (PolySia-NPs) to Support Entry into First-in-Human Clinical Trials
by Anitha Krishnan, David G. Callanan, Victor G. Sendra, Amit Lad, Sunny Christian, Ravinder Earla, Ali Khanehzar, Andrew J. Tolentino, Valory Anne Sarmiento Vailoces, Michelle K. Greene, Christopher J. Scott, Derek Y. Kunimoto, Tarek S. Hassan, Mohamed A. Genead and Michael J. Tolentino
Pharmaceuticals 2024, 17(4), 481; https://doi.org/10.3390/ph17040481 - 9 Apr 2024
Cited by 5 | Viewed by 1969
Abstract
An inflammation-resolving polysialic acid-decorated PLGA nanoparticle (PolySia-NP) has been developed to treat geographic atrophy/age-related macular degeneration and other conditions caused by macrophage and complement over-activation. While PolySia-NPs have demonstrated pre-clinical efficacy, this study evaluated its systemic and intraocular safety. PolySia-NPs were evaluated in [...] Read more.
An inflammation-resolving polysialic acid-decorated PLGA nanoparticle (PolySia-NP) has been developed to treat geographic atrophy/age-related macular degeneration and other conditions caused by macrophage and complement over-activation. While PolySia-NPs have demonstrated pre-clinical efficacy, this study evaluated its systemic and intraocular safety. PolySia-NPs were evaluated in vitro for mutagenic activity using Salmonella strains and E. coli, with and without metabolic activation; cytotoxicity was evaluated based on its interference with normal mitosis. PolySia-NPs were administered intravenously in CD-1 mice and Sprague Dawley rats and assessed for survival and toxicity. Intravitreal (IVT) administration in Dutch Belted rabbits and non-human primates was assessed for ocular or systemic toxicity. In vitro results indicate that PolySia-NPs did not induce mutagenicity or cytotoxicity. Intravenous administration did not show clastogenic activity, effects on survival, or toxicity. A single intravitreal (IVT) injection and two elevated repeat IVT doses of PolySia-NPs separated by 7 days in rabbits showed no signs of systemic or ocular toxicity. A single IVT inoculation of PolySia-NPs in non-human primates demonstrated no adverse clinical or ophthalmological effects. The demonstration of systemic and ocular safety of PolySia-NPs supports its advancement into human clinical trials as a promising therapeutic approach for systemic and retinal degenerative diseases caused by chronic immune activation. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Figure 1

2 pages, 172 KiB  
Abstract
Regulation of Extrasynaptic Glutamatergic Signaling by Polysialylated NCAM in Health and Disease
by Alexander Dityatev
Biol. Life Sci. Forum 2023, 21(1), 30; https://doi.org/10.3390/blsf2023021030 - 3 Apr 2023
Viewed by 1226
Abstract
The neural cell adhesion molecule NCAM is known to mediate cell–to–cell and cell–to–extracellular matrix (ECM) adhesion via homophilic and heterophilic interactions. During brain development, NCAM and the associated glycan, polysialic acid (polySia), play important roles in cell migration proliferation, neurite outgrowth and fasciculation, [...] Read more.
The neural cell adhesion molecule NCAM is known to mediate cell–to–cell and cell–to–extracellular matrix (ECM) adhesion via homophilic and heterophilic interactions. During brain development, NCAM and the associated glycan, polysialic acid (polySia), play important roles in cell migration proliferation, neurite outgrowth and fasciculation, and synaptogenesis. In the adult rodent brain, NCAM regulates synaptic plasticity, learning, and memory. Dysregulated cortical expression of NCAM and polySia has been reported in Alzheimer’s disease and schizophrenia. Our data demonstrate i) the importance of polySia–NCAM in the balancing of signaling through synaptic/extrasynaptic NMDA receptors and ii) the therapeutic value of short defined-length polySia fragments to restrain GluN2B-mediated signaling in several animal models of neurological and psychiatric diseases. Full article
12 pages, 2371 KiB  
Article
Milk Polysialic Acid Levels Rapidly Decrease in Line with the N-Acetylneuraminic Acid Concentrations during Early Lactation in Dairy Cows
by Julia Hinterseher, Juliane Günther, Kristina Zlatina, Lisa Isernhagen, Torsten Viergutz, Elisa Wirthgen, Andreas Hoeflich, Andreas Vernunft and Sebastian Peter Galuska
Biology 2023, 12(1), 5; https://doi.org/10.3390/biology12010005 - 20 Dec 2022
Cited by 4 | Viewed by 2280
Abstract
Sialylated milk oligosaccharides and glycoconjugates have several positive effects on the mucosal barrier, the gut microbiome, and an effective immune system. For this reason, they are important biomolecules for mammary gland health and optimal development of offspring. In milk, the major sialic acid, [...] Read more.
Sialylated milk oligosaccharides and glycoconjugates have several positive effects on the mucosal barrier, the gut microbiome, and an effective immune system. For this reason, they are important biomolecules for mammary gland health and optimal development of offspring. In milk, the major sialic acid, N-acetylneuraminic acid (Neu5Ac), can be attached as monosialyl-residues or as polymers. To investigate the sialylation processes during lactation of German Holstein cows, we analyzed udder tissue in addition to milk at different time points of lactation. The analysis of the milk samples revealed that both the levels of Neu5Ac and its polymer, polysialic acid (polySia), rapidly decreased during the first three days of lactation, and a high interindividual variance was observed. In mature milk, however, the sialylation status remains relatively constant. The results indicate that mammary gland epithelial cells are one source for milk polySia, since immunohistochemistry of udder tissue exhibited strong polySia staining in these cells. Furthermore, both polysialyltransferases, ST8SiaII and ST8SiaIV, are expressed. Based on known functions of monosialyl residues and polySia, we discuss the potential impact of these biomolecules and the consequences of the heterogeneous sialylation status of milk in relation to udder health and offspring health. Full article
Show Figures

Figure 1

10 pages, 2627 KiB  
Article
The Graphical Studies of the Major Molecular Interactions for Neural Cell Adhesion Molecule (NCAM) Polysialylation by Incorporating Wenxiang Diagram into NMR Spectroscopy
by Guo-Ping Zhou and Ri-Bo Huang
Int. J. Mol. Sci. 2022, 23(23), 15128; https://doi.org/10.3390/ijms232315128 - 1 Dec 2022
Cited by 3 | Viewed by 1640
Abstract
Polysialylation is a process of polysialic acid (polySia) addition to neural cell adhesion molecule (NCAM), which is associated with tumor cell migration and progression in many metastatic cancers and neurocognition. Polysialylation can be catalyzed by two highly homologous mammalian polysialyltransferases (polySTs), ST8Sia II [...] Read more.
Polysialylation is a process of polysialic acid (polySia) addition to neural cell adhesion molecule (NCAM), which is associated with tumor cell migration and progression in many metastatic cancers and neurocognition. Polysialylation can be catalyzed by two highly homologous mammalian polysialyltransferases (polySTs), ST8Sia II (STX) and ST8Sia IV (PST). It has been proposed that two polybasic domains, polybasic region (PBR) and polysialyltransferase domain (PSTD) in polySTs, are possible binding sites for the intermolecular interactions of polyST–NCAM and polyST–polySia, respectively, as well as the intramolecular interaction of PSTD–PBR. In this study, Chou’s wenxiang diagrams of the PSTD and PBR are used to determine the key amino acids of these intermolecular and intramolecular interactions, and thus it may be helpful for the identification of the crucial amino acids in the polyST and for the understanding of the molecular mechanism of NCAM polysialylation by incorporating the wenxiang diagram and molecular modeling into NMR spectroscopy. Full article
(This article belongs to the Collection Computational Studies of Biomolecules)
Show Figures

Figure 1

10 pages, 5292 KiB  
Article
No Impact of PolySia-NCAM Expression on Treatment Response in Neuroendocrine Neoplasms of the Lung
by Daniel Gagiannis, Anna Scheil, Sarah Gagiannis, Carsten Hackenbroch, Ruediger Horstkorte and Konrad Steinestel
Cancers 2022, 14(18), 4376; https://doi.org/10.3390/cancers14184376 - 8 Sep 2022
Cited by 2 | Viewed by 1849
Abstract
Background: Polysialic acids (abbr. polySia) are found on numerous tumors, including neuroendocrine lung tumors. They have previously been shown to impact metastatic potential, as they can influence the signaling and adhesion properties of neuronal cell adhesion molecules (abbr. NCAM) and other cell adhesion [...] Read more.
Background: Polysialic acids (abbr. polySia) are found on numerous tumors, including neuroendocrine lung tumors. They have previously been shown to impact metastatic potential, as they can influence the signaling and adhesion properties of neuronal cell adhesion molecules (abbr. NCAM) and other cell adhesion molecules. Therefore, the aim of this small pilot study was to analyze whether there was a correlation between polySia-NCAM expression and specific clinical or histopathologic characteristics, and if polySia-NCAM expression had an impact on treatment response, disease progression and prognosis of lung neuroendocrine neoplasms. Methods: This work was based on an analysis of 28 digitized patient records and corresponding patient samples. The response to therapy was radiologically determined at the time of diagnosis and at certain intervals during therapy following the current RECIST1.1 and volumetric sphere calculation. To analyze whether polySia-NCAM expression had prognostic relevance, polySia-NCAM-positive and -negative cases were compared in a Kaplan-Meier survival analysis. Findings: A majority of 78.6% lung neuroendocrine neoplasms showed a strong staining signal for polySia-NCAM. There was a significant correlation between expression and histopathological grade (p = 0.0140), since carcinoids were less likely polySia-NCAM-positive compared to small cell lung carcinoma (abbr. SCLC) and large cell neuroendocrine carcinomas of the lung (abbr. LCNEC). There was no significant association between polySia-NCAM expression and clinical characteristics (age: p = 0.3405; gender: p = 0.6730; smoking history: p = 0.1145; ECOG: p = 0.1756, UICC8 stage: p = 0.1182) or radiologically determined disease progression, regardless of the criteria used to categorize response (RECIST 1.1: p = 0.0759; sphere: p = 0.0580). Furthermore, polySia-NCAM expression did not affect progression-free survival (p = 0.4198) or overall survival (p = 0.6918). Interpretation: PolySia-NCAM expression was more common in high-grade compared to low-grade neuroendocrine neoplasms of the lung; however, this small pilot study failed to show an association between polySia-NCAM expression and response to therapy. Full article
(This article belongs to the Special Issue Advances in Lung Cancer Therapy)
Show Figures

Figure 1

11 pages, 3310 KiB  
Article
Comprehensive Analysis of Oligo/Polysialylglycoconjugates in Cancer Cell Lines
by Masaya Hane, Ken Kitajima and Chihiro Sato
Int. J. Mol. Sci. 2022, 23(10), 5569; https://doi.org/10.3390/ijms23105569 - 16 May 2022
Cited by 4 | Viewed by 2348
Abstract
In cancer cells, cell-surface sialylation is altered, including a change in oligo/polysialic acid (oligo/polySia) structures. Since they are unique and rarely expressed in normal cells, oligo/polySia structures may serve as promising novel biomarkers and targets for therapies. For the diagnosis and treatment of [...] Read more.
In cancer cells, cell-surface sialylation is altered, including a change in oligo/polysialic acid (oligo/polySia) structures. Since they are unique and rarely expressed in normal cells, oligo/polySia structures may serve as promising novel biomarkers and targets for therapies. For the diagnosis and treatment of the disease, a precise understanding of the oligo/polySia structures in cancer cells is necessary. In this study, flow cytometric analysis and gene expression datasets were obtained from sixteen different cancer cell lines. These datasets demonstrated the ability to predict glycan structures and their sialylation status. Our results also revealed that sialylation patterns are unique to each cancer cell line. Thus, we can suggest promising combinations of antibody and cancer cell for glycan prediction. However, the precise prediction of minor glycans need to be further explored. Full article
(This article belongs to the Special Issue Glycobiology-Based Drug Development)
Show Figures

Figure 1

12 pages, 3942 KiB  
Article
The Loss of Polysialic Acid Impairs the Contractile Phenotype of Peritubular Smooth Muscle Cells in the Postnatal Testis
by Nadim E. Hachem, Luisa Humpfle, Peter Simon, Miriam Kaese, Birgit Weinhold, Juliane Günther, Sebastian P. Galuska and Ralf Middendorff
Cells 2021, 10(6), 1347; https://doi.org/10.3390/cells10061347 - 29 May 2021
Cited by 3 | Viewed by 3644
Abstract
In the testis, the germinal epithelium of seminiferous tubules is surrounded by contractile peritubular cells, which are involved in sperm transport. Interestingly, in postnatal testis, polysialic acid (polySia), which is also an essential player for the development of the brain, was observed around [...] Read more.
In the testis, the germinal epithelium of seminiferous tubules is surrounded by contractile peritubular cells, which are involved in sperm transport. Interestingly, in postnatal testis, polysialic acid (polySia), which is also an essential player for the development of the brain, was observed around the tubules. Western blotting revealed a massive decrease of polySia from postnatal day 1 towards puberty, together with a fundamental reduction of the net-like intertubular polySia. Using polysialyltransferase knockout mice, we investigated the consequences of the loss of polySia in the postnatal testis. Compared to postnatal wild-type animals, polySia knockouts showed slightly reduced smooth muscle actin (SMA) immunostaining of peritubular smooth muscle cells (SMCs), while calponin, marking more differentiated SMCs, dramatically decreased. In contrast, testicular SMA and calponin immunostaining remained unchanged in vascular SMCs in all genotypes. In addition, the cGMP-dependent protein kinase PKG I, a key enzyme of SMC relaxation, was nearly undetectable in the peritubular SMCs. Cell proliferation in the peritubular layer increased significantly in the knockouts, as shown by proliferating cell nuclear anti (PCNA) staining. Taken together, in postnatal testis, the absence of polySia resulted in an impaired differentiation of peritubular, but not vascular, SMCs to a more synthetic phenotype. Thus, polySia might influence the maintenance of a differentiated phenotype of non-vascular SMCs. Full article
(This article belongs to the Special Issue Sugars on Cell Surfaces and Their Biological Purposes)
Show Figures

Figure 1

22 pages, 4826 KiB  
Article
Comparative Studies of Polysialic Acids Derived from Five Different Vertebrate Brains
by Yi Yang, Ryo Murai, Yuka Takahashi, Airi Mori, Masaya Hane, Ken Kitajima and Chihiro Sato
Int. J. Mol. Sci. 2020, 21(22), 8593; https://doi.org/10.3390/ijms21228593 - 14 Nov 2020
Cited by 7 | Viewed by 2619
Abstract
Polysialic acid (polySia/PSA) is a linear homopolymer of sialic acid (Sia) that primarily modifies the neural cell adhesion molecule (NCAM) in mammalian brains. PolySia-NCAM not only displays an anti-adhesive function due to the hydration effect, but also possesses a molecule-retaining function via a [...] Read more.
Polysialic acid (polySia/PSA) is a linear homopolymer of sialic acid (Sia) that primarily modifies the neural cell adhesion molecule (NCAM) in mammalian brains. PolySia-NCAM not only displays an anti-adhesive function due to the hydration effect, but also possesses a molecule-retaining function via a direct binding to neurologically active molecules. The quality and quantity of polySia determine the function of polySia-NCAM and are considered to be profoundly related to the maintenance of normal brain functions. In this study, to compare the structures of polySia-NCAM in brains of five different vertebrates (mammals, birds, reptiles, amphibians, and fish), we adopted newly developed combinational methods for the analyses. The results revealed that the structural features of polySia considerably varied among different species. Interestingly, mice, as a mammal, possess eminently distinct types of polySia, in both quality and quantity, compared with those possessed by other animals. Thus, the mouse polySia is of larger quantities, of longer and more diverse chain lengths, and of a larger molecular size with higher negative charge, compared with polySia of other species. These properties might enable more advanced brain function. Additionally, it is suggested that the polySia/Sia ratio, which likely reflects the complexity of brain function, can be used as a new promising index to evaluate the intelligence of different vertebrate brains. Full article
(This article belongs to the Special Issue Function and Expression of Neural Glycans)
Show Figures

Figure 1

15 pages, 4469 KiB  
Article
Characterization of the Polysialylation Status in Ovaries of the Salmonid Fish Coregonus maraena and the Percid Fish Sander lucioperca
by Marzia Tindara Venuto, Joan Martorell-Ribera, Ralf Bochert, Anne Harduin-Lepers, Alexander Rebl and Sebastian Peter Galuska
Cells 2020, 9(11), 2391; https://doi.org/10.3390/cells9112391 - 31 Oct 2020
Cited by 6 | Viewed by 3028
Abstract
In vertebrates, the carbohydrate polymer polysialic acid (polySia) is especially well known for its essential role during neuronal development, regulating the migration and proliferation of neural precursor cells, for instance. Nevertheless, sialic acid polymers seem to be regulatory elements in other physiological systems, [...] Read more.
In vertebrates, the carbohydrate polymer polysialic acid (polySia) is especially well known for its essential role during neuronal development, regulating the migration and proliferation of neural precursor cells, for instance. Nevertheless, sialic acid polymers seem to be regulatory elements in other physiological systems, such as the reproductive tract. Interestingly, trout fish eggs have polySia, but we know little of its cellular distribution and role during oogenesis. Therefore, we localized α2,8-linked N-acetylneuraminic acid polymers in the ovaries of Coregonus maraena by immunohistochemistry and found that prevalent clusters of oogonia showed polySia signals on their surfaces. Remarkably, the genome of this salmonid fish contains two st8sia2 genes and one st8sia4 gene, that is, three polysialyltransferases. The expression analysis revealed that for st8sia2-r2, 60 times more mRNA was present than st8sia2-r1 and st8sia4. To compare polysialylation status regarding various polySiaT configurations, we performed a comparable analysis in Sander lucioperca. The genome of this perciform fish contains only one st8sia2 and no st8sia4 gene. Here, too, clusters of oogonia showed polysialylated cell surfaces, and we detected high mRNA values for st8sia2. These results suggest that in teleosts, polySia is involved in the cellular processes of oogonia during oogenesis. Full article
(This article belongs to the Special Issue Sugars on Cell Surfaces and Their Biological Purposes)
Show Figures

Figure 1

20 pages, 4747 KiB  
Article
Combinational Analyses with Multiple Methods Reveal the Existence of Several Forms of Polysialylated Neural Cell Adhesion Molecule in Mouse Developing Brains
by Airi Mori, Yi Yang, Yuka Takahashi, Masaya Hane, Ken Kitajima and Chihiro Sato
Int. J. Mol. Sci. 2020, 21(16), 5892; https://doi.org/10.3390/ijms21165892 - 16 Aug 2020
Cited by 9 | Viewed by 3176
Abstract
Polysialic acid (polySia/PSA) is an anionic glycan polymer of sialic acid, and it mostly modifies the neural cell adhesion molecule (NCAM) in mammalian brains. Quality and quantity of the polySia of the polySia–NCAM is spatio-temporally regulated in normal brain development and functions, and [...] Read more.
Polysialic acid (polySia/PSA) is an anionic glycan polymer of sialic acid, and it mostly modifies the neural cell adhesion molecule (NCAM) in mammalian brains. Quality and quantity of the polySia of the polySia–NCAM is spatio-temporally regulated in normal brain development and functions, and their impairments are reported to be related to diseases, such as psychiatric disorders and cancers. Therefore, precise understanding of the state of polySia–NCAM structure would lead to the diagnosis of diseases for which their suitable evaluation methods are necessary. In this study, to develop these evaluation methods, structures of polySia–NCAM from mouse brains at six different developmental stages were analyzed by several conventional and newly developed methods. Integrated results of these experiments clearly demonstrated the existence of different types of polySia–NCAMs in developing brains. In addition, combinational analyses were shown to be useful for precise understanding of the quantity and quality of polySia, which can provide criteria for the diagnosis of diseases. Full article
(This article belongs to the Special Issue Function and Expression of Neural Glycans)
Show Figures

Graphical abstract

15 pages, 10151 KiB  
Article
Molecular Interactions of the Polysialytransferase Domain (PSTD) in ST8Sia IV with CMP-Sialic Acid and Polysialic Acid Required for Polysialylation of the Neural Cell Adhesion Molecule Proteins: An NMR Study
by Si-Ming Liao, Bo Lu, Xue-Hui Liu, Zhi-Long Lu, Shi-Jie Liang, Dong Chen, Frederic A. Troy, Ri-Bo Huang and Guo-Ping Zhou
Int. J. Mol. Sci. 2020, 21(5), 1590; https://doi.org/10.3390/ijms21051590 - 26 Feb 2020
Cited by 10 | Viewed by 3882
Abstract
Polysialic acid (polySia) is an unusual glycan that posttranslational modifies neural cell adhesion molecule (NCAM) proteins in mammalian cells. The up-regulated expression of polySia-NCAM is associated with tumor progression in many metastatic human cancers and in neurocognitive processes. Two members of the ST8Sia [...] Read more.
Polysialic acid (polySia) is an unusual glycan that posttranslational modifies neural cell adhesion molecule (NCAM) proteins in mammalian cells. The up-regulated expression of polySia-NCAM is associated with tumor progression in many metastatic human cancers and in neurocognitive processes. Two members of the ST8Sia family of α2,8-polysialyltransferases (polySTs), ST8Sia II (STX) and ST8Sia IV (PST) both catalyze synthesis of polySia when activated cytidine monophosphate(CMP)-Sialic acid (CMP-Sia) is translocate into the lumen of the Golgi apparatus. Two key polybasic domains in the polySTs, the polybasic region (PBR) and the polysialyltransferase domain (PSTD) areessential forpolysialylation of the NCAM proteins. However, the precise molecular details to describe the interactions required for polysialylation remain unknown. In this study, we hypothesize that PSTD interacts with both CMP-Sia and polySia to catalyze polysialylation of the NCAM proteins. To test this hypothesis, we synthesized a 35-amino acid-PSTD peptide derived from the ST8Sia IV gene sequence and used it to study its interaction with CMP-Sia, and polySia. Our results showed for the PSTD-CMP-Sia interaction, the largest chemical-shift perturbations (CSP) were in amino acid residues V251 to A254 in the short H1 helix, located near the N-terminus of PSTD. However, larger CSP values for the PSTD-polySia interaction were observed in amino acid residues R259 to T270 in the long H2 helix. These differences suggest that CMP-Sia preferentially binds to the domain between the short H1 helix and the longer H2 helix. In contrast, polySia was principally bound to the long H2 helix of PSTD. For the PSTD-polySia interaction, a significant decrease in peak intensity was observed in the 20 amino acid residues located between the N-and C-termini of the long H2 helix in PSTD, suggesting a slower motion in these residues when polySia bound to PSTD. Specific features of the interactions between PSTD-CMP-Sia, and PSTD-polySia were further confirmed by comparing their 800 MHz-derived HSQC spectra with that of PSTD-Sia, PSTD-TriSia (DP 3) and PSTD-polySia. Based on the interactions between PSTD-CMP-Sia, PSTD-polySia, PBR-NCAM and PSTD-PBR, these findingsprovide a greater understanding of the molecular mechanisms underlying polySia-NCAM polysialylation, and thus provides a new perspective for translational pharmacological applications and development by targeting the two polysialyltransferases. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

15 pages, 1403 KiB  
Article
Determination of the Structural Integrity and Stability of Polysialic Acid during Alkaline and Thermal Treatment
by Bastian Bartling, Johanna S. Rehfeld, Daniel Boßmann, Ingo de Vries, Jörg Fohrer, Frank Lammers, Thomas Scheper and Sascha Beutel
Molecules 2020, 25(1), 165; https://doi.org/10.3390/molecules25010165 - 31 Dec 2019
Cited by 2 | Viewed by 3704
Abstract
Polysialic acid (polySia) is a linear homopolymer of varying chain lengths that exists mostly on the outer cell membrane surface of certain bacteria, such as Escherichia coli (E. coli) K1. PolySia, with an average degree of polymerization of 20 (polySia avDP20), [...] Read more.
Polysialic acid (polySia) is a linear homopolymer of varying chain lengths that exists mostly on the outer cell membrane surface of certain bacteria, such as Escherichia coli (E. coli) K1. PolySia, with an average degree of polymerization of 20 (polySia avDP20), possesses material properties that can be used for therapeutic applications to treat inflammatory neurodegenerative diseases. The fermentation of E. coli K1 enables the large-scale production of endogenous long-chain polySia (DP ≈ 130) (LC polySia), from which polySia avDP20 can be manufactured using thermal hydrolysis. To ensure adequate biopharmaceutical quality of the product, the removal of byproducts and contaminants, such as endotoxins, is essential. Recent studies have revealed that the long-term incubation in alkaline sodium hydroxide (NaOH) solutions reduces the endotoxin content down to 3 EU (endotoxin units) per mg, which is in the range of pharmaceutical applications. In this study, we analyzed interferences in the intramolecular structure of polySia caused by harsh NaOH treatment or thermal hydrolysis. Nuclear magnetic resonance (NMR) spectroscopy revealed that neither the incubation in an alkaline solution nor the thermal hydrolysis induced any chemical modification. In addition, HPLC analysis with a preceding 1,2-diamino-4,5-methylenedioxybenzene (DMB) derivatization demonstrated that the alkaline treatment did not induce any hydrolytic effects to reduce the maximum polymer length and that the controlled thermal hydrolysis reduced the maximum chain length effectively, while cost-effective incubation in alkaline solutions had no adverse effects on LC polySia. Therefore, both methods guarantee the production of high-purity, low-molecular-weight polySia without alterations in the structure, which is a prerequisite for the submission of a marketing authorization application as a medicinal product. However, a specific synthesis of low-molecular-weight polySia with defined chain lengths is only possible to a limited extent. Full article
Show Figures

Figure 1

Back to TopTop