Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = polysaccharide depolymerase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2497 KiB  
Article
Characterization and Therapeutic Potential of Three Depolymerases Against K54 Capsular-Type Klebsiella pneumoniae
by Yanjun Lu, Chengju Fang, Li Xiang, Ming Yin, Lvxin Qian, Yi Yan, Luhua Zhang and Ying Li
Microorganisms 2025, 13(7), 1544; https://doi.org/10.3390/microorganisms13071544 - 30 Jun 2025
Viewed by 288
Abstract
Carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKp), a pathogen causing severe nosocomial infections and high mortality rates, is increasingly becoming a serious global public health threat. Capsular polysaccharide (CPS), a major virulence factor of hvKp, can be enzymatically degraded by bacteriophage-derived depolymerases. However, to our [...] Read more.
Carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKp), a pathogen causing severe nosocomial infections and high mortality rates, is increasingly becoming a serious global public health threat. Capsular polysaccharide (CPS), a major virulence factor of hvKp, can be enzymatically degraded by bacteriophage-derived depolymerases. However, to our knowledge, depolymerases targeting K. pneumoniae K54-type strains have rarely been identified. Here, we identified and characterized three novel capsule depolymerases, Dep_C, Dep_Y, and Dep_Z, derived from three different K. pneumoniae phages, which retained robust activity across a broad pH range (pH 3.0–12.0) and demonstrated thermal stability up to 50 °C. These depolymerases could efficiently digest the CPS of K. pneumoniae K54-serotype strains, significantly inhibit biofilm formation, and remove their mature biofilms. Although no bactericidal activity was detected, these depolymerases rendered host bacteria susceptible to serum complement-mediated killing. We further demonstrate that Dep_C, Dep_Y, and Dep_Z can effectively and significantly prolong the survival time of mice in a pneumonia model infected with K54-type K. pneumoniae and reduce the colonization and virulence of the bacteria in the mice. These findings indicate that depolymerases Dep_C, Dep_Y, and Dep_Z could increase bacterial susceptibility to host immune responses of hvKp to the host through their degradation effect on the CPS. In conclusion, our study demonstrates that the three capsule depolymerases are promising antivirulent agents to combat CR-hvKp infections. Full article
Show Figures

Figure 1

13 pages, 3295 KiB  
Article
Structure of K102 Capsular Polysaccharide from Acinetobacter baumannii KZ-1102 and Its Cleavage by Phage Cato Depolymerase
by Anastasia A. Kasimova, Nikolay P. Arbatsky, Ekaterina A. Gornostal, Mikhail M. Shneider, Eugene A. Sheck, Alexander S. Shashkov, Andrey A. Shelenkov, Yulia V. Mikhailova, Ilya S. Azizov, Mikhail V. Edelstein, Andrey V. Perepelov, Anna M. Shpirt, Konstantin A. Miroshnikov, Anastasia V. Popova and Yuriy A. Knirel
Int. J. Mol. Sci. 2025, 26(10), 4727; https://doi.org/10.3390/ijms26104727 - 15 May 2025
Viewed by 528
Abstract
Acinetobacter baumannii is a significant nosocomial pathogen characterized by the ability to produce a wide variety of capsular polysaccharides (CPSs). The structures of a K102-type CPS isolated from A. baumannii KZ-1102 and its Smith degradation product were determined by sugar analysis, 1D and [...] Read more.
Acinetobacter baumannii is a significant nosocomial pathogen characterized by the ability to produce a wide variety of capsular polysaccharides (CPSs). The structures of a K102-type CPS isolated from A. baumannii KZ-1102 and its Smith degradation product were determined by sugar analysis, 1D and 2D 1H NMR spectroscopy, and 13C NMR spectroscopy. The K102 CPS biosynthesis gene cluster (KL102) contains genes for common sugar synthesis, K unit processing, capsule export, glycosyl transfer, initiating sugar phosphate transfer, and genes that encode d-GlcpNAc/d-GalpNAc dehydrogenase and phosphoglycerol transferase. The CPS is composed of a pentasaccharide repeating unit (K unit) consisting of a tetrasaccharide backbone including one α-d-Galp, three α-d-GlcpNAc residues, and one residue of a β-d-Glcp as a side chain. The tailspike depolymerase of the specific Obolenskvirus phage Cato was found to cleave the α-d-GlcpNAc-(1→6)-α-d-GlcpNAc linkage in the K102 CPS to give the monomer and dimer of the K repeating unit, which were characterized by high-resolution electrospray ionization mass spectrometry as well as 1H and 13C NMR spectroscopy. Full article
(This article belongs to the Collection State-of-the-Art Macromolecules in Russia)
Show Figures

Figure 1

12 pages, 2080 KiB  
Article
Immunomodulatory Effect of Phage Depolymerase Dep_kpv74 with Therapeutic Potential Against K2-Hypervirulent Klebsiella pneumoniae
by Nikolay V. Volozhantsev, Maria A. Makarova, Alena S. Kartseva, Marina V. Silkina, Valentina M. Krasilnikova, Egor A. Denisenko, Alexander I. Borzilov and Victoria V. Firstova
Antibiotics 2025, 14(1), 44; https://doi.org/10.3390/antibiotics14010044 - 7 Jan 2025
Viewed by 1129
Abstract
Background: The emergence of multidrug-resistant hypervirulent Klebsiella pneumoniae (hvKp) has made it difficult to treat and control infections caused by this bacterium. Previously, the therapeutic effectiveness of phage-encoded depolymerase Dep_kpv74 in a mouse model of K. pneumoniae-induced thigh soft tissue infection was [...] Read more.
Background: The emergence of multidrug-resistant hypervirulent Klebsiella pneumoniae (hvKp) has made it difficult to treat and control infections caused by this bacterium. Previously, the therapeutic effectiveness of phage-encoded depolymerase Dep_kpv74 in a mouse model of K. pneumoniae-induced thigh soft tissue infection was reported. In this study, the effect of Dep_kpv74 on blood parameters in mice, the proliferation and subpopulation composition of spleen lymphocytes, and the activity and stability of the enzyme at different pH and temperatures were further explored. Results: The stability tests showed that Dep_kpv74 remained active in the temperature range from 8 °C to 55 °C. The optimal pH value for maintaining the activity of Dep_kpv74 ranged from 5.0 to 9.0. The depolymerase was detected in the blood, spleen, and lungs of mice 10 min after intraperitoneal administration, reaching maximum activity values after 1–3 h and maintaining activity a day after administration. The introduction of Dep_kpv74 at the therapeutic dose (10 μg/mouse) or at a 10-fold higher dose did not lead to reliable changes in bloodstream cell content compared with the reference values of intact mice. The biochemical results of the studies indicated that Dep_kpv74 did not exert any toxic effects on liver and kidney functions. The results of the analysis of lymphocyte proliferative activity demonstrated that Dep_kpv74 depolymerase has a mild immunomodulatory effect. Conclusions: Thus, the results of this study provide one more confirmation that depolymerase Dep_kpv74 is a potential candidate for the treatment of infections caused by hvKp expressing K2 capsular polysaccharides. Full article
Show Figures

Figure 1

53 pages, 8319 KiB  
Article
Lytic Capsule-Specific Acinetobacter Bacteriophages Encoding Polysaccharide-Degrading Enzymes
by Peter V. Evseev, Anastasia S. Sukhova, Nikolay A. Tkachenko, Yuriy P. Skryabin and Anastasia V. Popova
Viruses 2024, 16(5), 771; https://doi.org/10.3390/v16050771 - 13 May 2024
Cited by 7 | Viewed by 2591
Abstract
The genus Acinetobacter comprises both environmental and clinically relevant species associated with hospital-acquired infections. Among them, Acinetobacter baumannii is a critical priority bacterial pathogen, for which the research and development of new strategies for antimicrobial treatment are urgently needed. Acinetobacter spp. produce a [...] Read more.
The genus Acinetobacter comprises both environmental and clinically relevant species associated with hospital-acquired infections. Among them, Acinetobacter baumannii is a critical priority bacterial pathogen, for which the research and development of new strategies for antimicrobial treatment are urgently needed. Acinetobacter spp. produce a variety of structurally diverse capsular polysaccharides (CPSs), which surround the bacterial cells with a thick protective layer. These surface structures are primary receptors for capsule-specific bacteriophages, that is, phages carrying tailspikes with CPS-depolymerizing/modifying activities. Phage tailspike proteins (TSPs) exhibit hydrolase, lyase, or esterase activities toward the corresponding CPSs of a certain structure. In this study, the data on all lytic capsule-specific phages infecting Acinetobacter spp. with genomes deposited in the NCBI GenBank database by January 2024 were summarized. Among the 149 identified TSPs encoded in the genomes of 143 phages, the capsular specificity (K specificity) of 46 proteins has been experimentally determined or predicted previously. The specificity of 63 TSPs toward CPSs, produced by various Acinetobacter K types, was predicted in this study using a bioinformatic analysis. A comprehensive phylogenetic analysis confirmed the prediction and revealed the possibility of the genetic exchange of gene regions corresponding to the CPS-recognizing/degrading parts of different TSPs between morphologically and taxonomically distant groups of capsule-specific Acinetobacter phages. Full article
(This article belongs to the Section Bacterial Viruses)
Show Figures

Figure 1

25 pages, 19743 KiB  
Article
New Obolenskvirus Phages Brutus and Scipio: Biology, Evolution, and Phage-Host Interaction
by Peter V. Evseev, Mikhail M. Shneider, Lyubov V. Kolupaeva, Anastasia A. Kasimova, Olga Y. Timoshina, Andrey V. Perepelov, Anna M. Shpirt, Andrey A. Shelenkov, Yulia V. Mikhailova, Natalia E. Suzina, Yuriy A. Knirel, Konstantin A. Miroshnikov and Anastasia V. Popova
Int. J. Mol. Sci. 2024, 25(4), 2074; https://doi.org/10.3390/ijms25042074 - 8 Feb 2024
Cited by 5 | Viewed by 2364
Abstract
Two novel virulent phages of the genus Obolenskvirus infecting Acinetobacter baumannii, a significant nosocomial pathogen, have been isolated and studied. Phages Brutus and Scipio were able to infect A. baumannii strains belonging to the K116 and K82 capsular types, respectively. The biological [...] Read more.
Two novel virulent phages of the genus Obolenskvirus infecting Acinetobacter baumannii, a significant nosocomial pathogen, have been isolated and studied. Phages Brutus and Scipio were able to infect A. baumannii strains belonging to the K116 and K82 capsular types, respectively. The biological properties and genomic organization of the phages were characterized. Comparative genomic, phylogenetic, and pangenomic analyses were performed to investigate the relationship of Brutus and Scipio to other bacterial viruses and to trace the possible origin and evolutionary history of these phages and other representatives of the genus Obolenskvirus. The investigation of enzymatic activity of the tailspike depolymerase encoded in the genome of phage Scipio, the first reported virus infecting A. baumannii of the K82 capsular type, was performed. The study of new representatives of the genus Obolenskvirus and mechanisms of action of depolymerases encoded in their genomes expands knowledge about the diversity of viruses within this taxonomic group and strategies of Obolenskvirus–host bacteria interaction. Full article
(This article belongs to the Special Issue Bacteriophage—Molecular Studies 5.0)
Show Figures

Figure 1

18 pages, 20759 KiB  
Article
Alginate Gel Encapsulated with Enzybiotics Cocktail Is Effective against Multispecies Biofilms
by Daria V. Vasina, Nataliia P. Antonova, Elena V. Shidlovskaya, Nadezhda A. Kuznetsova, Alexander V. Grishin, Elizaveta A. Akoulina, Ekaterina A. Trusova, Anastasiya M. Lendel, Elena P. Mazunina, Sofia R. Kozlova, Andrei A. Dudun, Anton P. Bonartsev, Vladimir G. Lunin and Vladimir A. Gushchin
Gels 2024, 10(1), 60; https://doi.org/10.3390/gels10010060 - 14 Jan 2024
Cited by 4 | Viewed by 2749
Abstract
The development of new and effective antibacterials for pharmaceutical or cosmetic skin care that have a low potential for the emergence and expansion of bacterial resistance is of high demand in scientific and applied research. Great hopes are placed on alternative agents such [...] Read more.
The development of new and effective antibacterials for pharmaceutical or cosmetic skin care that have a low potential for the emergence and expansion of bacterial resistance is of high demand in scientific and applied research. Great hopes are placed on alternative agents such as bactericidal peptidoglycan hydrolases, depolymerases, etc. Enzybiotic-based preparations are being studied for the treatment of various infections and, among others, can be used as topical formulations and dressings with protein-polysaccharide complexes. Here, we investigate the antibiofilm properties of a novel enzybiotic cocktail of phage endolysin LysSi3 and bacteriocin lysostaphin, formulated in the alginate gel matrix and its ability to control the opportunistic skin-colonizing bacteria Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae, as well as mixed-species biofilms. Our results propose that the application of SiL-gel affects different components of biofilm extracellular polymeric substances, disrupts the matrix, and eliminates the bacteria embedded in it. This composition is highly effective against biofilms composed of Gram-negative and Gram-positive species and does not possess significant cytotoxic effects. Our data form the basis for the development of antibacterial skin care products with a gentle but effective mode of action. Full article
(This article belongs to the Special Issue Gel Role in the World of the Cosmetic Research)
Show Figures

Graphical abstract

9 pages, 1380 KiB  
Protocol
A Method for Rapid Polyethyleneimine-Based Purification of Bacteriophage-Expressed Proteins from Diluted Crude Lysates, Exemplified by Thermostable TP-84 Depolymerase
by Beata Łubkowska, Edyta Czajkowska, Ireneusz Sobolewski, Natalia Krawczun, Agnieszka Żylicz-Stachula and Piotr M. Skowron
Microorganisms 2023, 11(9), 2340; https://doi.org/10.3390/microorganisms11092340 - 19 Sep 2023
Viewed by 2807
Abstract
Purification of bacteriophage-expressed proteins poses methodological difficulties associated with the need to process entire culture medium volume upon bacteriophage-induced bacterial cell lysis. We have used novel capsule glycosylase-depolymerase (TP84_26 GD) from bacteriophage TP-84, infecting thermophilic Geobacillus stearothermophilus bacteria, as a representative enzyme to [...] Read more.
Purification of bacteriophage-expressed proteins poses methodological difficulties associated with the need to process entire culture medium volume upon bacteriophage-induced bacterial cell lysis. We have used novel capsule glycosylase-depolymerase (TP84_26 GD) from bacteriophage TP-84, infecting thermophilic Geobacillus stearothermophilus bacteria, as a representative enzyme to develop a method for rapid concentration and purification of the enzyme present in diluted crude host cell lysate. A novel variant of the polyethyleneimine (PEI)-based purification method was devised that offers a fast and effective approach for handling PEI-facilitated purification of bacteriophage-expressed native proteins. Due to the very basic nature of PEI, the method is suitable for proteins interacting with nucleic acids or acidic proteins, where either mixed PEI-DNA or RNA–protein complexes or PEI–acidic protein complexes are reversibly precipitated. (i) The method is of general use, applicable with minor modifications to a variety of bacteriophage cell lysates and proteins. (ii) In the example application, TP84_26 GD was highly purified (over 50%) in a single PEI step; subsequent chromatography yielded a homogeneous enzyme. (iii) The enzyme’s properties were examined, revealing the presence of three distinct forms of the TP84_26 GD. These forms included soluble, unbound proteins found in host cell lysate, as well as an integrated form within the TP-84 virion. Full article
(This article belongs to the Special Issue Bacteriophages of Thermophilic Bacteria)
Show Figures

Figure 1

31 pages, 1816 KiB  
Review
New Strategies to Kill Metabolically-Dormant Cells Directly Bypassing the Need for Active Cellular Processes
by Karolina Stojowska-Swędrzyńska, Dorota Kuczyńska-Wiśnik and Ewa Laskowska
Antibiotics 2023, 12(6), 1044; https://doi.org/10.3390/antibiotics12061044 - 12 Jun 2023
Cited by 18 | Viewed by 3818
Abstract
Antibiotic therapy failure is often caused by the presence of persister cells, which are metabolically-dormant bacteria capable of surviving exposure to antimicrobials. Under favorable conditions, persisters can resume growth leading to recurrent infections. Moreover, several studies have indicated that persisters may promote the [...] Read more.
Antibiotic therapy failure is often caused by the presence of persister cells, which are metabolically-dormant bacteria capable of surviving exposure to antimicrobials. Under favorable conditions, persisters can resume growth leading to recurrent infections. Moreover, several studies have indicated that persisters may promote the evolution of antimicrobial resistance and facilitate the selection of specific resistant mutants; therefore, in light of the increasing numbers of multidrug-resistant infections worldwide, developing efficient strategies against dormant cells is of paramount importance. In this review, we present and discuss the efficacy of various agents whose antimicrobial activity is independent of the metabolic status of the bacteria as they target cell envelope structures. Since the biofilm-environment is favorable for the formation of dormant subpopulations, anti-persister strategies should also include agents that destroy the biofilm matrix or inhibit biofilm development. This article reviews examples of selected cell wall hydrolases, polysaccharide depolymerases and antimicrobial peptides. Their combination with standard antibiotics seems to be the most promising approach in combating persistent infections. Full article
Show Figures

Figure 1

25 pages, 6917 KiB  
Article
Friunavirus Phage-Encoded Depolymerases Specific to Different Capsular Types of Acinetobacter baumannii
by Olga Y. Timoshina, Anastasia A. Kasimova, Mikhail M. Shneider, Ilya O. Matyuta, Alena Y. Nikolaeva, Peter V. Evseev, Nikolay P. Arbatsky, Alexander S. Shashkov, Alexander O. Chizhov, Andrey A. Shelenkov, Yulia V. Mikhaylova, Pavel V. Slukin, Nikolay V. Volozhantsev, Konstantin M. Boyko, Yuriy A. Knirel, Konstantin A. Miroshnikov and Anastasia V. Popova
Int. J. Mol. Sci. 2023, 24(10), 9100; https://doi.org/10.3390/ijms24109100 - 22 May 2023
Cited by 13 | Viewed by 2960
Abstract
Acinetobacter baumannii is a critical priority nosocomial pathogen that produces a variety of capsular polysaccharides (CPSs), the primary receptors for specific depolymerase-carrying phages. In this study, the tailspike depolymerases (TSDs) encoded in genomes of six novel Friunaviruses, APK09, APK14, APK16, APK86, APK127v, APK128, [...] Read more.
Acinetobacter baumannii is a critical priority nosocomial pathogen that produces a variety of capsular polysaccharides (CPSs), the primary receptors for specific depolymerase-carrying phages. In this study, the tailspike depolymerases (TSDs) encoded in genomes of six novel Friunaviruses, APK09, APK14, APK16, APK86, APK127v, APK128, and one previously described Friunavirus phage, APK37.1, were characterized. For all TSDs, the mechanism of specific cleavage of corresponding A. baumannii capsular polysaccharides (CPSs) was established. The structures of oligosaccharide fragments derived from K9, K14, K16, K37/K3-v1, K86, K127, and K128 CPSs degradation by the recombinant depolymerases have been determined. The crystal structures of three of the studied TSDs were obtained. A significant reduction in mortality of Galleria mellonella larvae infected with A. baumannii of K9 capsular type was shown in the example of recombinant TSD APK09_gp48. The data obtained will provide a better understanding of the interaction of phage–bacterial host systems and will contribute to the formation of principles of rational usage of lytic phages and phage-derived enzymes as antibacterial agents. Full article
(This article belongs to the Special Issue Bacteriophage: Molecular Ecology and Pharmacology)
Show Figures

Figure 1

26 pages, 8879 KiB  
Article
Characterization of a Lytic Bacteriophage and Demonstration of Its Combined Lytic Effect with a K2 Depolymerase on the Hypervirulent Klebsiella pneumoniae Strain 52145
by Botond Zsombor Pertics, Tamás Kovács and György Schneider
Microorganisms 2023, 11(3), 669; https://doi.org/10.3390/microorganisms11030669 - 6 Mar 2023
Cited by 11 | Viewed by 3790
Abstract
Klebsiella pneumoniae is a nosocomial pathogen. Among its virulence factors is the capsule with a prominent role in defense and biofilm formation. Bacteriophages (phages) can evoke the lysis of bacterial cells. Due to the mode of action of their polysaccharide depolymerase enzymes, phages [...] Read more.
Klebsiella pneumoniae is a nosocomial pathogen. Among its virulence factors is the capsule with a prominent role in defense and biofilm formation. Bacteriophages (phages) can evoke the lysis of bacterial cells. Due to the mode of action of their polysaccharide depolymerase enzymes, phages are typically specific for one bacterial strain and its capsule type. In this study, we characterized a bacteriophage against the capsule-defective mutant of the nosocomial K. pneumoniae 52145 strain, which lacks K2 capsule. The phage showed a relatively narrow host range but evoked lysis on a few strains with capsular serotypes K33, K21, and K24. Phylogenetic analysis showed that the newly isolated Klebsiella phage 731 belongs to the Webervirus genus in the Drexlerviridae family; it has a 31.084 MDa double-stranded, linear DNA with a length of 50,306 base pairs and a G + C content of 50.9%. Out of the 79 open reading frames (ORFs), we performed the identification of orf22, coding for a trimeric tail fiber protein with putative capsule depolymerase activity, along with the mapping of other putative depolymerases of phage 731 and homologous phages. Efficacy of a previously described recombinant K2 depolymerase (B1dep) was tested by co-spotting phage 731 on K. pneumoniae strains, and it was demonstrated that the B1dep-phage 731 combination allows the lysis of the wild type 52145 strain, originally resistant to the phage 731. With phage 731, we showed that B1dep is a promising candidate for use as a possible antimicrobial agent, as it renders the virulent strain defenseless against other phages. Phage 731 alone is also important due to its efficacy on K. pneumoniae strains possessing epidemiologically important serotypes. Full article
(This article belongs to the Special Issue Understanding Phage Particles 2.0)
Show Figures

Figure 1

14 pages, 2131 KiB  
Article
Isolation and Characterization of the First Zobellviridae Family Bacteriophage Infecting Klebsiella pneumoniae
by Roman B. Gorodnichev, Maria A. Kornienko, Maja V. Malakhova, Dmitry A. Bespiatykh, Valentin A. Manuvera, Oksana V. Selezneva, Vladimir A. Veselovsky, Dmitry V. Bagrov, Marina V. Zaychikova, Veronika A. Osnach, Anna V. Shabalina, Oleg V. Goloshchapov, Julia A. Bespyatykh, Anna S. Dolgova and Egor A. Shitikov
Int. J. Mol. Sci. 2023, 24(4), 4038; https://doi.org/10.3390/ijms24044038 - 17 Feb 2023
Cited by 5 | Viewed by 4119
Abstract
In order to address the upcoming crisis in the treatment of Klebsiella pneumoniae infections, caused by an increasing proportion of resistant isolates, new approaches to antimicrobial therapy must be developed. One approach would be to use (bacterio)phages and/or phage derivatives for therapy. In [...] Read more.
In order to address the upcoming crisis in the treatment of Klebsiella pneumoniae infections, caused by an increasing proportion of resistant isolates, new approaches to antimicrobial therapy must be developed. One approach would be to use (bacterio)phages and/or phage derivatives for therapy. In this study, we present a description of the first K. pneumoniae phage from the Zobellviridae family. The vB_KpnP_Klyazma podovirus, which forms translucent halos around the plaques, was isolated from river water. The phage genome is composed of 82 open reading frames, which are divided into two clusters located on opposite strands. Phylogenetic analysis revealed that the phage belongs to the Zobellviridae family, although its identity with the closest member of this family was not higher than 5%. The bacteriophage demonstrated lytic activity against all (n = 11) K. pneumoniae strains with the KL20 capsule type, but only the host strain was lysed effectively. The receptor-binding protein of the phage was identified as a polysaccharide depolymerase with a pectate lyase domain. The recombinant depolymerase protein showed concentration-dependent activity against all strains with the KL20 capsule type. The ability of a recombinant depolymerase to cleave bacterial capsular polysaccharides regardless of a phage’s ability to successfully infect a particular strain holds promise for the possibility of using depolymerases in antimicrobial therapy, even though they only make bacteria sensitive to environmental factors, rather than killing them directly. Full article
(This article belongs to the Special Issue Advances in the Study of Phage–Host Interactions)
Show Figures

Figure 1

13 pages, 1753 KiB  
Review
Phage-Derived Depolymerase: Its Possible Role for Secondary Bacterial Infections in COVID-19 Patients
by Amina Nazir, Jiaoyang Song, Yibao Chen and Yuqing Liu
Microorganisms 2023, 11(2), 424; https://doi.org/10.3390/microorganisms11020424 - 7 Feb 2023
Cited by 10 | Viewed by 3368
Abstract
As of 29 July 2022, there had been a cumulative 572,239,451 confirmed cases of COVID-19 worldwide, including 6,390,401 fatalities. COVID-19 patients with severe symptoms are usually treated with a combination of virus- and drug-induced immuno-suppression medicines. Critical clinical complications of the respiratory system [...] Read more.
As of 29 July 2022, there had been a cumulative 572,239,451 confirmed cases of COVID-19 worldwide, including 6,390,401 fatalities. COVID-19 patients with severe symptoms are usually treated with a combination of virus- and drug-induced immuno-suppression medicines. Critical clinical complications of the respiratory system due to secondary bacterial infections (SBIs) could be the reason for the high mortality rate in COVID-19 patients. Unfortunately, antimicrobial resistance is increasing daily, and only a few options are available in our antimicrobial armory. Hence, alternative therapeutic options such as enzymes derived from bacteriophages can be considered for treating SBIs in COVID-19 patients. In particular, phage-derived depolymerases have high antivirulent potency that can efficiently degrade bacterial capsular polysaccharides, lipopolysaccharides, and exopolysaccharides. They have emerged as a promising class of new antibiotics and their therapeutic role for bacterial infections is already confirmed in animal models. This review provides an overview of the rising incidence of SBIs among COVID-19 patients. We present a practicable novel workflow for phage-derived depolymerases that can easily be adapted for treating SBIs in COVID-19 patients. Full article
(This article belongs to the Special Issue SARS-CoV-2/COVID-19: Infection Models, Therapeutics and Vaccines)
Show Figures

Figure 1

18 pages, 5500 KiB  
Article
Isolation and Characterization of Two Novel Siphoviruses Novomoskovsk and Bolokhovo, Encoding Polysaccharide Depolymerases Active against Bacillus pumilus
by Anna V. Skorynina, Olga N. Koposova, Olesya A. Kazantseva, Emma G. Piligrimova, Natalya A. Ryabova and Andrey M. Shadrin
Int. J. Mol. Sci. 2022, 23(21), 12988; https://doi.org/10.3390/ijms232112988 - 26 Oct 2022
Cited by 7 | Viewed by 2539
Abstract
This study describes two novel bacteriophages infecting members of the Bacillus pumilus group. Even though members of the group are not recognized as pathogenic, several strains belonging to the group have been reported to cause infectious diseases in plants, animals and humans. Bacillus [...] Read more.
This study describes two novel bacteriophages infecting members of the Bacillus pumilus group. Even though members of the group are not recognized as pathogenic, several strains belonging to the group have been reported to cause infectious diseases in plants, animals and humans. Bacillus pumilus group species are highly resistant to ultraviolet radiation and capable of forming biofilms, which complicates their eradication. Bacteriophages Novomoskovsk and Bolokhovo were isolated from soil samples. Genome sequencing and phylogenetic analysis revealed that the phages represent two new species of the genus Andromedavirus (class Caudoviricetes). The phages remained stable in a wide range of temperatures and pH values. A host range test showed that the phages specifically infect various strains of B. pumilus. The phages form clear plaques surrounded by halos. Both phages Novomoskovsk and Bolokhovo encode proteins with pectin lyase domains—Putative depolymerases. Obtained in a purified recombinant form, the proteins produced lysis zones on the lawn of a B. pumilus strain. This suggests that Novomoskovsk and Bolokhovo may be effective for the eradication of B. pumilus biofilms. Full article
(This article belongs to the Special Issue Bacteriophage Biology: From Genomics to Therapy)
Show Figures

Figure 1

20 pages, 4594 KiB  
Article
Characterization of Novel Bacteriophage vB_KpnP_ZX1 and Its Depolymerases with Therapeutic Potential for K57 Klebsiella pneumoniae Infection
by Ping Li, Wenjie Ma, Jiayin Shen and Xin Zhou
Pharmaceutics 2022, 14(9), 1916; https://doi.org/10.3390/pharmaceutics14091916 - 10 Sep 2022
Cited by 23 | Viewed by 3247
Abstract
A novel temperate phage vB_KpnP_ZX1 was isolated from hospital sewage samples using the clinically derived K57-type Klebsiella pneumoniae as a host. Phage vB_KpnP_ZX1, encoding three lysogen genes, the repressor, anti-repressor, and integrase, is the fourth phage of the genus Uetakevirus, family Podoviridae [...] Read more.
A novel temperate phage vB_KpnP_ZX1 was isolated from hospital sewage samples using the clinically derived K57-type Klebsiella pneumoniae as a host. Phage vB_KpnP_ZX1, encoding three lysogen genes, the repressor, anti-repressor, and integrase, is the fourth phage of the genus Uetakevirus, family Podoviridae, ever discovered. Phage vB_KpnP_ZX1 did not show ideal bactericidal effect on K. pneumoniae 111-2, but TEM showed that the depolymerase Dep_ZX1 encoded on the short tail fiber protein has efficient capsule degradation activity. In vitro antibacterial results show that purified recombinant Dep_ZX1 can significantly prevent the formation of biofilm, degrade the formed biofilm, and improve the sensitivity of the bacteria in the biofilm to the antibiotics kanamycin, gentamicin, and streptomycin. Furthermore, the results of animal experiments show that 50 µg Dep_ZX1 can protect all K. pneumoniae 111-2-infected mice from death, whereas the control mice infected with the same dose of K. pneumoniae 111-2 all died. The degradation activity of Dep_ZX1 on capsular polysaccharide makes the bacteria weaken their resistance to immune cells, such as complement-mediated serum killing and phagocytosis, which are the key factors for its therapeutic action. In conclusion, Dep_ZX1 is a promising anti-virulence agent for the K57-type K. pneumoniae infection or biofilm diseases. Full article
Show Figures

Figure 1

18 pages, 4127 KiB  
Article
Capsule-Targeting Depolymerases Derived from Acinetobacter baumannii Prophage Regions
by Alena Y. Drobiazko, Anastasia A. Kasimova, Peter V. Evseev, Mikhail M. Shneider, Evgeniy I. Klimuk, Alexander S. Shashkov, Andrei S. Dmitrenok, Alexander O. Chizhov, Pavel V. Slukin, Yuriy P. Skryabin, Nikolay V. Volozhantsev, Konstantin A. Miroshnikov, Yuriy A. Knirel and Anastasia V. Popova
Int. J. Mol. Sci. 2022, 23(9), 4971; https://doi.org/10.3390/ijms23094971 - 29 Apr 2022
Cited by 17 | Viewed by 3493
Abstract
In this study, several different depolymerases encoded in the prophage regions of Acinetobacter baumannii genomes have been bioinformatically predicted and recombinantly produced. The identified depolymerases possessed multi-domain structures and were identical or closely homologous to various proteins encoded in other A. baumannii genomes. [...] Read more.
In this study, several different depolymerases encoded in the prophage regions of Acinetobacter baumannii genomes have been bioinformatically predicted and recombinantly produced. The identified depolymerases possessed multi-domain structures and were identical or closely homologous to various proteins encoded in other A. baumannii genomes. This means that prophage-derived depolymerases are widespread, and different bacterial genomes can be the source of proteins with polysaccharide-degrading activities. For two depolymerases, the specificity to capsular polysaccharides (CPSs) of A. baumannii belonging to K1 and K92 capsular types (K types) was determined. The data obtained showed that the prophage-derived depolymerases were glycosidases that cleaved the A. baumannii CPSs by the hydrolytic mechanism to yield monomers and oligomers of the K units. The recombinant proteins with established enzymatic activity significantly reduced the mortality of Galleria mellonella larvae infected with A. baumannii of K1 and K92 capsular types. Therefore, these enzymes can be considered as suitable candidates for the development of new antibacterials against corresponding A. baumannii K types. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

Back to TopTop