Lytic Capsule-Specific Acinetobacter Bacteriophages Encoding Polysaccharide-Degrading Enzymes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection and Database Construction
2.2. Protein Structure Modeling
2.3. Functional Annotation
2.4. Identification of K Locus Sequences in Acinetobacter Genome Assemblies
3. Results
3.1. General Characterization of Genomic Data on Acinetobacter Phages
3.2. Cluster and Phylogenetic Analyses of Acinetobacter Phages
3.3. Determination of Groups of Lytic Acinetobacter Phages Carrying Tailspikes with Polysaccharide-Degrading Activities
3.4. Specificity of TSP-Carrying Acinetobacter Phages
3.4.1. Specificity of Phages Belonging to the Subfamily Beijerinckvirinae (Cluster 2) for Different Acinetobacter K Types
3.4.2. Specificity of the Lytic Drulisvirus Phage vB_AbaA_LLY (Cluster 3)
3.4.3. Specificity of Lytic Ackermannviridae phages (Cluster 6) toward Different Acinetobacter K Types
3.4.4. Specificity of Obolenskvirus Phages (Cluster 8) for Different Acinetobacter K Types
3.4.5. Specificity of the Lytic Phapecoctavirus Phage vB_AbaM_ABPW7 (Cluster 10)
3.4.6. Specificity of the Lytic Vequintavirinae Phage ABPH49 (Cluster 12)
3.4.7. Specificity of Lytic Unclassified Caudoviricetes Phages (Clusters 13 and 14) with Myovirus Morphology for Different Acinetobacter K Types
3.4.8. Specificity of Lytic Unclassified Caudoviricetes phages (Clusters 20 and 22) with Siphovirus Morphology
3.4.9. Phylogenetic Analysis of the CPS-Recognizing/Degrading Parts of All TSPs with Established or Predicted K Specificity
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peleg, A.Y.; Seifert, H.; Paterson, D.L. Acinetobacter baumannii: Emergence of a successful pathogen. Clin. Microbiol. Rev. 2008, 21, 538–582. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.; Park, W. Acinetobacter species as model microorganisms in environmental microbiology: Current state and perspectives. Appl. Microbiol. Biotechnol. 2015, 99, 2533–2548. [Google Scholar] [CrossRef] [PubMed]
- Novović, K.; Jovčić, B. Colistin resistance in Acinetobacter baumannii: Molecular mechanisms and epidemiology. Antibiotics 2023, 12, 516. [Google Scholar] [CrossRef]
- Denissen, J.; Reyneke, B.; Waso-Reyneke, M.; Havenga, B.; Barnard, T.; Khan, S.; Khan, W. Prevalence of ESKAPE pathogens in the environment: Antibiotic resistance status, community-acquired infection and risk to human health. Int. J. Hyg. Environ. Health 2022, 244, 114006. [Google Scholar] [CrossRef] [PubMed]
- Santajit, S.; Indrawattana, N. Mechanisms of antimicrobial resistance in ESKAPE pathogens. BioMed Res. Int. 2016, 2016, 2475067. [Google Scholar] [CrossRef] [PubMed]
- Chusri, S.; Chongsuvivatwong, V.; Rivera, J.I.; Silpapojakul, K.; Singkhamanan, K.; McNeil, E.; Doi, Y. Clinical outcomes of hospital-acquired infection with Acinetobacter nosocomialis and Acinetobacter pittii. Antimicrob. Agents Chemother. 2014, 58, 4172–4179. [Google Scholar] [CrossRef] [PubMed]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Bertozzi Silva, J.; Storms, Z.; Sauvageau, D. Host receptors for bacteriophage adsorption. FEMS Microbiol. Lett. 2016, 363, fnw002. [Google Scholar] [CrossRef]
- Dunne, M.; Prokhorov, N.S.; Loessner, M.J.; Leiman, P.G. Reprogramming bacteriophage host range: Design principles and strategies for engineering receptor binding proteins. Curr. Opin. Biotechnol. 2021, 68, 272–281. [Google Scholar] [CrossRef]
- Taslem Mourosi, J.; Awe, A.; Guo, W.; Batra, H.; Ganesh, H.; Wu, X.; Zhu, J. Understanding bacteriophage tail fiber interaction with host surface receptor: The key “blueprint” for reprogramming phage host range. Int. J. Mol. Sci. 2022, 23, 12146. [Google Scholar] [CrossRef]
- Plattner, M.; Shneider, M.M.; Arbatsky, N.P.; Shashkov, A.S.; Chizhov, A.O.; Nazarov, S.; Prokhorov, N.S.; Taylor, N.M.I.; Buth, S.A.; Gambino, M.; et al. Structure and function of the branched receptor-binding complex of bacteriophage CBA120. J. Mol. Biol. 2019, 431, 3718–3739. [Google Scholar] [CrossRef] [PubMed]
- Müller, J.J.; Barbirz, S.; Heinle, K.; Freiberg, A.; Seckler, R.; Heinemann, U. An Intersubunit active site between supercoiled parallel beta helices in the trimeric tailspike endorhamnosidase of Shigella flexneri phage Sf6. Structure 2008, 16, 766–775. [Google Scholar] [CrossRef] [PubMed]
- Latka, A.; Leiman, P.G.; Drulis-Kawa, Z.; Briers, Y. Modeling the architecture of depolymerase-containing receptor binding proteins in Klebsiella phages. Front. Microbiol. 2019, 10, 2649. [Google Scholar] [CrossRef] [PubMed]
- Russo, T.A.; Luke, N.R.; Beanan, J.M.; Olson, R.; Sauberan, S.L.; MacDonald, U.; Schultz, L.W.; Umland, T.C.; Campagnari, A.A. The K1 capsular polysaccharide of Acinetobacter baumannii strain 307-0294 is a major virulence factor. Infect. Immun. 2010, 78, 3993–4000. [Google Scholar] [CrossRef]
- Harding, C.M.; Hennon, S.W.; Feldman, M.F. Uncovering the mechanisms of Acinetobacter baumannii virulence. Nat. Rev. Microbiol. 2018, 16, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.K.; Adams, F.G.; Brown, M.H. Diversity and function of capsular polysaccharide in Acinetobacter baumannii. Front. Microbiol. 2019, 9, 3301. [Google Scholar] [CrossRef] [PubMed]
- Shashkov, A.S.; Kenyon, J.J.; Arbatsky, N.P.; Shneider, M.M.; Popova, A.V.; Miroshnikov, K.A.; Volozhantsev, N.V.; Knirel, Y.A. Structures of three different neutral polysaccharides of Acinetobacter baumannii, NIPH190, NIPH201, and NIPH615, assigned to K30, K45, and K48 capsule types, respectively, based on capsule biosynthesis gene clusters. Carbohydr. Res. 2015, 417, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Shashkov, A.S.; Kenyon, J.J.; Senchenkova, S.N.; Shneider, M.M.; Popova, A.V.; Arbatsky, N.P.; Miroshnikov, K.A.; Volozhantsev, N.V.; Hall, R.M.; Knirel, Y.A. Acinetobacter baumannii K27 and K44 capsular polysaccharides have the same K unit but different structures due to the presence of distinct wzy genes in otherwise closely related K gene clusters. Glycobiology 2016, 26, 501–508. [Google Scholar] [CrossRef]
- Arbatsky, N.P.; Kasimova, A.A.; Shashkov, A.S.; Shneider, M.M.; Popova, A.V.; Shagin, D.A.; Shelenkov, A.A.; Mikhailova, Y.V.; Yanushevich, Y.G.; Hall, R.M.; et al. Involvement of a phage-encoded wzy protein in the polymerization of K127 units to form the capsular polysaccharide of Acinetobacter baumannii isolate 36-1454. Microbiol. Spectr. 2022, 10, e0150321. [Google Scholar] [CrossRef]
- Kasimova, A.A.; Shashkov, A.S.; Shneider, M.M.; Sheck, E.A.; Mikhailova, Y.V.; Shelenkov, A.A.; Popova, A.V.; Knirel, Y.A.; Kenyon, J.J. The Acinetobacter baumannii K239 capsular polysaccharide includes heptasaccharide units that are structurally related to K86 but joined by different linkages formed by different wzy polymerases. Int. J. Biol. Macromol. 2024, 262, 130045. [Google Scholar] [CrossRef]
- Kenyon, J.J.; Hall, R.M. Variation in the complex carbohydrate biosynthesis loci of Acinetobacter baumannii genomes. PLoS ONE 2013, 8, e62160. [Google Scholar] [CrossRef] [PubMed]
- Cahill, S.M.; Hall, R.M.; Kenyon, J.J. An update to the database for Acinetobacter baumannii capsular polysaccharide locus typing extends the extensive and diverse repertoire of genes found at and outside the K locus. Microb. Genom. 2022, 8, mgen000878. [Google Scholar] [CrossRef] [PubMed]
- Kasimova, A.A.; Kolganova, A.S.; Shashkov, A.S.; Shneider, M.M.; Mikhailova, Y.V.; Shelenkov, A.A.; Popova, A.V.; Knirel, Y.A.; Perepelov, A.V.; Kenyon, J.J. Structure of the K141 capsular polysaccharide produced by Acinetobacter baumannii isolate KZ1106 that carries KL141 at the chromosomal K locus. Carbohydr. Res. 2024, 538, 109097. [Google Scholar] [CrossRef] [PubMed]
- Roshini, J.; Patro, L.P.P.; Sundaresan, S.; Rathinavelan, T. Structural diversity among Acinetobacter baumannii K-antigens and its implication in the in silico serotyping. Front. Microbiol. 2023, 14, 1191542. [Google Scholar] [CrossRef] [PubMed]
- Popova, A.V.; Lavysh, D.G.; Klimuk, E.I.; Edelstein, M.V.; Bogun, A.G.; Shneider, M.M.; Goncharov, A.E.; Leonov, S.V.; Severinov, K.V. Novel Fri1-like viruses infecting Acinetobacter baumannii-vB_AbaP_AS11 and vB_AbaP_AS12-characterization, comparative genomic analysis, and host-recognition strategy. Viruses 2017, 9, 188. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, H.; Costa, A.R.; Konstantinidis, N.; Ferreira, A.; Akturk, E.; Sillankorva, S.; Nemec, A.; Shneider, M.; Dötsch, A.; Azeredo, J. Ability of phages to infect Acinetobacter calcoaceticus-Acinetobacter baumannii complex species through acquisition of different pectate lyase depolymerase domains: Specific genomic pattern variation of phages. Environ. Microbiol. 2017, 19, 5060–5077. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.-M.; Tu, I.-F.; Yang, F.-L.; Ko, T.-P.; Liao, J.-H.; Lin, N.-T.; Wu, C.-Y.; Ren, C.-T.; Wang, A.H.-J.; Chang, C.-M.; et al. Structural basis for fragmenting the exopolysaccharide of Acinetobacter baumannii by bacteriophage ΦAB6 tailspike protein. Sci. Rep. 2017, 7, 42711. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, H.; Costa, A.R.; Ferreira, A.; Konstantinides, N.; Santos, S.B.; Boon, M.; Noben, J.-P.; Lavigne, R.; Azeredo, J. Functional analysis and antivirulence properties of a new depolymerase from a myovirus that infects Acinetobacter baumannii capsule K45. J. Virol. 2019, 93, e01163–18. [Google Scholar] [CrossRef] [PubMed]
- Gordillo Altamirano, F.; Forsyth, J.H.; Patwa, R.; Kostoulias, X.; Trim, M.; Subedi, D.; Archer, S.K.; Morris, F.C.; Oliveira, C.; Kielty, L.; et al. Bacteriophage-resistant Acinetobacter baumannii are resensitized to antimicrobials. Nat. Microbiol. 2021, 6, 157–161. [Google Scholar] [CrossRef]
- Timoshina, O.Y.; Shneider, M.M.; Evseev, P.V.; Shchurova, A.S.; Shelenkov, A.A.; Mikhaylova, Y.V.; Sokolova, O.S.; Kasimova, A.A.; Arbatsky, N.P.; Dmitrenok, A.S.; et al. Novel Acinetobacter baumannii bacteriophage Aristophanes encoding structural polysaccharide deacetylase. Viruses 2021, 13, 1688. [Google Scholar] [CrossRef]
- Popova, A.V.; Shneider, M.M.; Arbatsky, N.P.; Kasimova, A.A.; Senchenkova, S.N.; Shashkov, A.S.; Dmitrenok, A.S.; Chizhov, A.O.; Mikhailova, Y.V.; Shagin, D.A.; et al. Specific interaction of novel friunavirus phages encoding tailspike depolymerases with corresponding Acinetobacter baumannii capsular types. J. Virol. 2021, 95, e01714–e01720. [Google Scholar] [CrossRef]
- Liu, M.; Hernandez-Morales, A.; Clark, J.; Le, T.; Biswas, B.; Bishop-Lilly, K.A.; Henry, M.; Quinones, J.; Voegtly, L.J.; Cer, R.Z.; et al. Comparative genomics of Acinetobacter baumannii and therapeutic bacteriophages from a patient undergoing phage therapy. Nat. Commun. 2022, 13, 3776. [Google Scholar] [CrossRef] [PubMed]
- Shchurova, A.S.; Shneider, M.M.; Arbatsky, N.P.; Shashkov, A.S.; Chizhov, A.O.; Skryabin, Y.P.; Mikhaylova, Y.V.; Sokolova, O.S.; Shelenkov, A.A.; Miroshnikov, K.A.; et al. Novel Acinetobacter baumannii myovirus TaPaz encoding two tailspike depolymerases: Characterization and host-recognition strategy. Viruses 2021, 13, 978. [Google Scholar] [CrossRef] [PubMed]
- Timoshina, O.Y.; Kasimova, A.A.; Shneider, M.M.; Matyuta, I.O.; Nikolaeva, A.Y.; Evseev, P.V.; Arbatsky, N.P.; Shashkov, A.S.; Chizhov, A.O.; Shelenkov, A.A.; et al. Friunavirus phage-encoded depolymerases specific to different capsular types of Acinetobacter baumannii. Int. J. Mol. Sci. 2023, 24, 9100. [Google Scholar] [CrossRef]
- Pires, D.P.; Oliveira, H.; Melo, L.D.R.; Sillankorva, S.; Azeredo, J. Bacteriophage-encoded depolymerases: Their diversity and biotechnological applications. Appl. Microbiol. Biotechnol. 2016, 100, 2141–2151. [Google Scholar] [CrossRef] [PubMed]
- Latka, A.; Maciejewska, B.; Majkowska-Skrobek, G.; Briers, Y.; Drulis-Kawa, Z. Bacteriophage-encoded virion-associated enzymes to overcome the carbohydrate barriers during the infection process. Appl. Microbiol. Biotechnol. 2017, 101, 3103–3119. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef] [PubMed]
- AlQuraishi, M. AlphaFold at CASP13. Bioinformatics 2019, 35, 4862–4865. [Google Scholar] [CrossRef] [PubMed]
- Evans, R.; O’Neill, M.; Pritzel, A.; Antropova, N.; Senior, A.; Green, T.; Žídek, A.; Bates, R.; Blackwell, S.; Yim, J.; et al. Protein Complex Prediction with AlphaFold-Multimer. bioRxiv 2021. [Google Scholar] [CrossRef]
- Delcher, A.L.; Bratke, K.A.; Powers, E.C.; Salzberg, S.L. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 2007, 23, 673–679. [Google Scholar] [CrossRef]
- Zimmermann, L.; Stephens, A.; Nam, S.-Z.; Rau, D.; Kübler, J.; Lozajic, M.; Gabler, F.; Söding, J.; Lupas, A.N.; Alva, V. A completely reimplemented MPI Bioinformatics Toolkit with a new HHpred server at its core. J. Mol. Biol. 2018, 430, 2237–2243. [Google Scholar] [CrossRef] [PubMed]
- Holm, L. Dali server: Structural unification of protein families. Nucleic Acids Res. 2022, 50, W210–W215. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.-T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef] [PubMed]
- Holm, L.; Kääriäinen, S.; Rosenström, P.; Schenkel, A. Searching protein structure databases with DaliLite v.3. Bioinformatics 2008, 24, 2780–2781. [Google Scholar] [CrossRef] [PubMed]
- Moraru, C.; Varsani, A.; Kropinski, A.M. VIRIDIC—A novel tool to calculate the intergenomic similarities of prokaryote-infecting viruses. Viruses 2020, 12, 1268. [Google Scholar] [CrossRef] [PubMed]
- Wyres, K.L.; Cahill, S.M.; Holt, K.E.; Hall, R.M.; Kenyon, J.J. Identification of Acinetobacter baumannii loci for capsular polsaccharide (KL) and lipooligosaccharide outer core (OCL) synthesis in genome assemblies using curated reference databases compatible with Kaptive. Microb. Genom. 2020, 6, e000339. [Google Scholar] [CrossRef] [PubMed]
- Leinonen, R.; Sugawara, H.; Shumway, M. International Nucleotide Sequence Database Collaboration. The sequence read archive. Nucleic Acids Res. 2011, 39, D19–D21. [Google Scholar] [CrossRef]
- Prjibelski, A.; Antipov, D.; Meleshko, D.; Lapidus, A.; Korobeynikov, A. Using SPAdes de novo assembler. Curr. Protoc. Bioinforma. 2020, 70, e102. [Google Scholar] [CrossRef]
- Wick, R.R.; Judd, L.M.; Gorrie, C.L.; Holt, K.E. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 2017, 13, e1005595. [Google Scholar] [CrossRef] [PubMed]
- Turner, D.; Kropinski, A.M.; Adriaenssens, E.M. A roadmap for genome-based phage taxonomy. Viruses 2021, 13, 506. [Google Scholar] [CrossRef] [PubMed]
- Margulieux, K.R.; Bird, J.T.; Kevorkian, R.T.; Ellison, D.W.; Nikolich, M.P.; Mzhavia, N.; Filippov, A.A. Complete genome sequence of the broad host range Acinetobacter baumannii phage EAb13. Microbiol. Resour. Announc. 2023, 12, e00341-23. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Dai, J.; Guo, M.; Li, J.; Zhou, X.; Li, F.; Gao, Y.; Qu, H.; Lu, H.; Jin, J.; et al. Pre-optimized phage therapy on secondary Acinetobacter baumannii infection in four critical COVID-19 patients. Emerg. Microbes Infect. 2021, 10, 612–618. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Chen, K.; Jiang, Z.; Liu, Z.; Wang, S.; Ying, Y.; Zhang, J.; Yuan, S.; Huang, Z.; Gao, R.; et al. Evaluation of the impact of repeated intravenous phage doses on mammalian host-phage interactions. J. Virol. 2024, 98, e0135923. [Google Scholar] [CrossRef] [PubMed]
- Nir-Paz, R.; Gelman, D.; Khouri, A.; Sisson, B.M.; Fackler, J.; Alkalay-Oren, S.; Khalifa, L.; Rimon, A.; Yerushalmy, O.; Bader, R.; et al. Successful treatment of antibiotic-resistant, poly-microbial bone infection with bacteriophages and antibiotics combination. Clin. Infect. Dis. 2019, 69, 2015–2018. [Google Scholar] [CrossRef]
- Huang, G.; Le, S.; Peng, Y.; Zhao, Y.; Yin, S.; Zhang, L.; Yao, X.; Tan, Y.; Li, M.; Hu, F. Characterization and genome sequencing of phage Abp1, a new phiKMV-like virus infecting multidrug-resistant Acinetobacter baumannii. Curr. Microbiol. 2013, 66, 535–543. [Google Scholar] [CrossRef]
- Bagińska, N.; Harhala, M.A.; Cieślik, M.; Orwat, F.; Weber-Dąbrowska, B.; Dąbrowska, K.; Górski, A.; Jończyk-Matysiak, E. Biological properties of 12 newly isolated Acinetobacter baumannii-specific bacteriophages. Viruses 2023, 15, 231. [Google Scholar] [CrossRef]
- Kolsi, A.; Haukka, K.; Dougnon, V.; Agbankpè, A.J.; Fabiyi, K.; Virta, M.; Skurnik, M.; Kantele, A.; Kiljunen, S. Isolation and characterization of three novel Acinetobacter baumannii phages from beninese hospital wastewater. Arch. Virol. 2023, 168, 228. [Google Scholar] [CrossRef]
- Liu, Y.; Mi, Z.; Mi, L.; Huang, Y.; Li, P.; Liu, H.; Yuan, X.; Niu, W.; Jiang, N.; Bai, C.; et al. Identification and characterization of capsule depolymerase Dpo48 from Acinetobacter baumannii phage IME200. PeerJ 2019, 7, e6173. [Google Scholar] [CrossRef]
- Luo, J.; Xie, L.; Yang, M.; Liu, M.; Li, Q.; Wang, P.; Fan, J.; Jin, J.; Luo, C. Synergistic antibacterial effect of phage pB3074 in combination with antibiotics targeting cell wall against multidrug-resistant Acinetobacter baumannii in vitro and ex vivo. Microbiol. Spectr. 2023, 11, e0034123. [Google Scholar] [CrossRef]
- Mumm, I.P.; Wood, T.L.; Chamakura, K.R.; Kuty Everett, G.F. Complete genome of Acinetobacter baumannii podophage Petty. Genome Announc. 2013, 1, e00850–13. [Google Scholar] [CrossRef]
- Hernandez-Morales, A.C.; Lessor, L.L.; Wood, T.L.; Migl, D.; Mijalis, E.M.; Cahill, J.; Russell, W.K.; Young, R.F.; Gill, J.J. Genomic and biochemical characterization of Acinetobacter podophage Petty reveals a novel lysis mechanism and tail-associated depolymerase activity. J. Virol. 2018, 92, e01064–17. [Google Scholar] [CrossRef] [PubMed]
- Hua, Y.; Luo, T.; Yang, Y.; Dong, D.; Wang, R.; Wang, Y.; Xu, M.; Guo, X.; Hu, F.; He, P. Phage therapy as a promising new treatment for lung infection caused by carbapenem-resistant Acinetobacter baumannii in mice. Front. Microbiol. 2018, 8, 2659. [Google Scholar] [CrossRef]
- He, P.; Cao, F.; Qu, Q.; Geng, H.; Yang, X.; Xu, T.; Wang, R.; Jia, X.; Lu, M.; Zeng, P.; et al. Host range expansion of Acinetobacter phage vB_Ab4_Hep4 driven by a spontaneous tail tubular mutation. Front. Cell. Infect. Microbiol. 2024, 14, 1301089. [Google Scholar] [CrossRef] [PubMed]
- Essoh, C.; Vernadet, J.-P.; Vergnaud, G.; Coulibaly, A.; Kakou-N’Douba, A.; N’Guetta, A.S.-P.; Resch, G.; Pourcel, C. Complete genome sequences of five Acinetobacter baumannii phages from Abidjan, Côte d’Ivoire. Microbiol. Resour. Announc. 2019, 8, e01358–18. [Google Scholar] [CrossRef] [PubMed]
- Wintachai, P.; Surachat, K.; Singkhamanan, K. Isolation and characterization of a novel Autographiviridae phage and its combined effect with tigecycline in controlling multidrug-resistant Acinetobacter baumannii-associated skin and soft tissue infections. Viruses 2022, 14, 194. [Google Scholar] [CrossRef]
- Merabishvili, M.; Vandenheuvel, D.; Kropinski, A.M.; Mast, J.; De Vos, D.; Verbeken, G.; Noben, J.-P.; Lavigne, R.; Vaneechoutte, M.; Pirnay, J.-P. Characterization of newly isolated lytic bacteriophages active against Acinetobacter baumannii. PloS ONE 2014, 9, e104853. [Google Scholar] [CrossRef]
- Grygorcewicz, B.; Gliźniewicz, M.; Rakoczy, R.; Augustyniak, A.; Konopacki, M.; Jabłońska, J.; Serwin, N.; Cecerska-Heryć, E.; Kordas, M.; Mańkowska, K.; et al. PhageScore-based analysis of Acinetobacter baumannii infecting phages antibiotic interaction in liquid medium. Arch. Microbiol. 2022, 204, 421. [Google Scholar] [CrossRef]
- Kasimova, A.; Arbatsky, N.; Timoshina, O.; Shneider, M.; Shashkov, A.; Chizhov, A.; Popova, A.; Hall, R.; Kenyon, J.; Knirel, Y. The K26 capsular polysaccharide from Acinetobacter baumannii KZ-1098: Structure and cleavage by a specific phage depolymerase. Int. J. Biol. Macromol. 2021, 191, 182–191. [Google Scholar] [CrossRef]
- Popova, A.V.; Shneider, M.M.; Myakinina, V.P.; Bannov, V.A.; Edelstein, M.V.; Rubalskii, E.O.; Aleshkin, A.V.; Fursova, N.K.; Volozhantsev, N.V. Characterization of myophage AM24 infecting Acinetobacter baumannii of the K9 capsular type. Arch. Virol. 2019, 164, 1493–1497. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Li, X.; Wang, L.; Li, G.; Cong, C.; Li, R.; Cui, H.; Murtaza, B.; Xu, Y. The endolysin of the Acinetobacter baumannii phage vB_AbaP_D2 shows broad antibacterial activity. Microb. Biotechnol. 2021, 14, 403–418. [Google Scholar] [CrossRef]
- Wu, M.; Hu, K.; Xie, Y.; Liu, Y.; Mu, D.; Guo, H.; Zhang, Z.; Zhang, Y.; Chang, D.; Shi, Y. A novel phage PD-6A3, and its endolysin Ply6A3, with extended lytic activity against Acinetobacter baumannii. Front. Microbiol. 2019, 9, 3302. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Guo, X.; Shi, Y.; Tang, J.; Chen, B.; Liu, F.; Fan, H.; Yan, Y.; Xu, Y. Characterization of bacteriophage vB_AbaP_PD-AB9 infecting Acinetobacter baumannii with broad host range. Chin. J. Lab. Med. 2016, 296–300. [Google Scholar]
- Abdelkader, K.; Gutiérrez, D.; Grimon, D.; Ruas-Madiedo, P.; Lood, C.; Lavigne, R.; Safaan, A.; Khairalla, A.S.; Gaber, Y.; Dishisha, T.; et al. Lysin LysMK34 of Acinetobacter baumannii bacteriophage PMK34 has a turgor pressure-dependent intrinsic antibacterial activity and reverts colistin resistance. Appl. Environ. Microbiol. 2020, 86, e01311–e01320. [Google Scholar] [CrossRef]
- Wintachai, P.; Phaonakrop, N.; Roytrakul, S.; Naknaen, A.; Pomwised, R.; Voravuthikunchai, S.P.; Surachat, K.; Smith, D.R. Enhanced antibacterial effect of a novel Friunavirus phage vWU2001 in combination with colistin against carbapenem-resistant Acinetobacter baumannii. Sci. Rep. 2022, 12, 2633. [Google Scholar] [CrossRef]
- Domingues, R.; Barbosa, A.; Santos, S.B.; Pires, D.P.; Save, J.; Resch, G.; Azeredo, J.; Oliveira, H. Unpuzzling Friunavirus-host interactions one piece at a time: Phage recognizes Acinetobacter pittii via a new K38 capsule depolymerase. Antibiotics 2021, 10, 1304. [Google Scholar] [CrossRef]
- Gomes, M.; Domingues, R.; Turner, D.; Oliveira, H. Genomic analysis of two novel bacteriophages infecting Acinetobacter beijerinckii and halotolerans species. Viruses 2023, 15, 643. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Luo, M.; Xi, H.; Zhao, Y.; Le, S.; Chen, L.-K.; Tan, D.; Guan, Y.; Wang, T.; Han, W.; et al. The characteristics and genome analysis of vB_ApiP_XC38, a novel phage infecting Acinetobacter pittii. Virus Genes 2020, 56, 498–507. [Google Scholar] [CrossRef]
- Ji, J.-W.; Wang, R.; Luo, T.-T.; Xu, M.-S.; Guo, X.-K.; Hu, F.-P.; Li, M.; He, P. Characterization and genome sequencing of SH-Ab 15599, a novel bacteriophage targeting carbapenem-resistant Acinetobacter baumannii. J. Shanghai Jiaotong Univ. Med. Sci. 2018, 38, 1283. [Google Scholar] [CrossRef]
- Buttimer, C.; O’Sullivan, L.; Elbreki, M.; Neve, H.; McAuliffe, O.; Ross, R.P.; Hill, C.; O’Mahony, J.; Coffey, A. Genome sequence of jumbo phage vB_AbaM_ME3 of Acinetobacter baumanni. Genome Announc. 2016, 4, e00431–16. [Google Scholar] [CrossRef] [PubMed]
- Vu, T.N.; Clark, J.R.; Jang, E.; D’Souza, R.; Nguyen, L.P.; Pinto, N.A.; Yoo, S.; Abadie, R.; Maresso, A.W.; Yong, D. Appelmans protocol—A directed in vitro evolution enables induction and recombination of prophages with expanded host range. Virus Res. 2024, 339, 199272. [Google Scholar] [CrossRef]
- Yang, H.; Liang, L.; Lin, S.; Jia, S. Isolation and characterization of a virulent bacteriophage AB1 of Acinetobacter baumannii. BMC Microbiol. 2010, 10, 131. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Liu, X.; Shi, Y.; Yin, S.; Shen, W.; Chen, J.; Chen, Y.; Chen, Y.; You, B.; Gong, Y.; et al. Characterization and genome annotation of a newly detected bacteriophage infecting multidrug-resistant Acinetobacter baumannii. Arch. Virol. 2019, 164, 1527–1533. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Tan, J.; Hao, Y.; Wang, Q.; Yan, X.; Wang, D.; Tuo, L.; Wei, Z.; Huang, G. Isolation and characterization of a novel myophage Abp9 against pandrug resistant Acinetobacater baumannii. Front. Microbiol. 2020, 11, 506068. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Huang, S.; Jiang, L.; Tan, J.; Yan, X.; Gou, C.; Chen, X.; Xiang, L.; Wang, D.; Huang, G.; et al. Characterisation and sequencing of the novel phage Abp95, which is effective against multi-genotypes of carbapenem-resistant Acinetobacter baumannii. Sci. Rep. 2023, 13, 188. [Google Scholar] [CrossRef] [PubMed]
- Popova, A.V.; Zhilenkov, E.L.; Myakinina, V.P.; Krasilnikova, V.M.; Volozhantsev, N.V. Isolation and characterization of wide host range lytic bacteriophage AP22 infecting Acinetobacter baumannii. FEMS Microbiol. Lett. 2012, 332, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Evseev, P.V.; Shneider, M.M.; Kolupaeva, L.V.; Kasimova, A.A.; Timoshina, O.Y.; Perepelov, A.V.; Shpirt, A.M.; Shelenkov, A.A.; Mikhailova, Y.V.; Suzina, N.E.; et al. New Obolenskvirus phages Brutus and Scipio: Biology, evolution, and phage-host interaction. Int. J. Mol. Sci. 2024, 25, 2074. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Han, K.; Chen, L.; Luo, S.; Fan, H.; Tong, Y. Biological characterization and genomic analysis of Acinetobacter baumannii phage BUCT628. Arch. Virol. 2022, 167, 1471–1474. [Google Scholar] [CrossRef]
- Han, K.; Zhu, Y.; Li, F.; Li, M.; An, X.; Song, L.; Fan, H.; Tong, Y. Genomic analysis of Acinetobacter phage BUCT629, a newly isolated member of the genus Obolenskvirus. Arch. Virol. 2022, 167, 1197–1199. [Google Scholar] [CrossRef]
- Evseev, P.; Gornostal, E.; Shneider, M.; Mikhaylova, Y.; Shelenkov, A.; Popova, A.; Miroshnikov, K. A novel Acinetobacter phage Cato: Lytic myovirus containing tailspike depolymerase. In Proceedings of the 2022 Ural-Siberian Conference on Computational Technologies in Cognitive Science, Genomics and Biomedicine (CSGB), Novosibirsk, Russia, 7–8 July 2022; pp. 110–114. [Google Scholar]
- Kim, J.H.; Oh, C.; Choresca, C.H.; Shin, S.P.; Han, J.E.; Jun, J.W.; Heo, S.-J.; Kang, D.-H.; Park, S.C. Complete genome sequence of bacteriophage phiAC-1 infecting Acinetobacter soli strain KZ-1. J. Virol. 2012, 86, 13131–13132. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Su, J.; Luo, D.; Liang, B.; Liu, S.; Zeng, H. Isolation and genome-wide analysis of the novel Acinetobacter baumannii bacteriophage vB_AbaM_AB3P2. Arch. Virol. 2024, 169, 66. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Li, P.; Zhu, Y.; Huang, Y.; Gao, M.; Yuan, X.; Niu, W.; Liu, H.; Fan, H.; Qin, Y.; et al. Identification of a novel Acinetobacter baumannii phage-derived depolymerase and its therapeutic application in mice. Front. Microbiol. 2020, 11, 1407. [Google Scholar] [CrossRef] [PubMed]
- Turner, D.; Ackermann, H.-W.; Kropinski, A.M.; Lavigne, R.; Sutton, J.M.; Reynolds, D.M. Comparative analysis of 37 Acinetobacter bacteriophages. Viruses 2018, 10, 5. [Google Scholar] [CrossRef] [PubMed]
- Wintachai, P.; Voravuthikunchai, S.P. Characterization of novel lytic Myoviridae phage infecting multidrug-resistant Acinetobacter baumannii and synergistic antimicrobial efficacy between phage and sacha inchi oil. Pharmaceuticals 2022, 15, 291. [Google Scholar] [CrossRef]
- Zhou, W.; Feng, Y.; Zong, Z. Two new lytic bacteriophages of the Myoviridae family against carbapenem-resistant Acinetobacter baumannii. Front. Microbiol. 2018, 9, 850. [Google Scholar] [CrossRef] [PubMed]
- Jeon, J.; D’Souza, R.; Pinto, N.; Ryu, C.-M.; Park, J.; Yong, D.; Lee, K. Characterization and complete genome sequence analysis of two myoviral bacteriophages infecting clinical carbapenem-resistant Acinetobacter baumannii isolates. J. Appl. Microbiol. 2016, 121, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-N.; Tseng, T.-T.; Lin, J.-W.; Fu, Y.-C.; Weng, S.-F.; Tseng, Y.-H. Lytic myophage Abp53 encodes several proteins similar to those encoded by host Acinetobacter baumannii and phage phiKO2. Appl. Environ. Microbiol. 2011, 77, 6755–6762. [Google Scholar] [CrossRef] [PubMed]
- Wintachai, P.; Surachat, K.; Chaimaha, G.; Septama, A.W.; Smith, D.R. Isolation and characterization of a Phapecoctavirus infecting multidrug-resistant Acinetobacter baumannii in A549 alveolar epithelial cells. Viruses 2022, 14, 2561. [Google Scholar] [CrossRef] [PubMed]
- Petrov, V.M.; Nolan, J.M.; Bertrand, C.; Levy, D.; Desplats, C.; Krisch, H.M.; Karam, J.D. Plasticity of the gene functions for DNA replication in the T4-like phages. J. Mol. Biol. 2006, 361, 46–68. [Google Scholar] [CrossRef]
- Premetis, G.E.; Stathi, A.; Papageorgiou, A.C.; Labrou, N.E. Characterization of a glycoside hydrolase endolysin from Acinetobacter baumannii phage AbTZA1 with high antibacterial potency and novel structural features. FEBS J. 2023, 290, 2146–2164. [Google Scholar] [CrossRef] [PubMed]
- Petrov, V.M.; Ratnayaka, S.; Nolan, J.M.; Miller, E.S.; Karam, J.D. Genomes of the T4-related bacteriophages as windows on microbial genome evolution. Virol. J. 2010, 7, 292. [Google Scholar] [CrossRef] [PubMed]
- Peters, D.L.; Davis, C.M.; Harris, G.; Zhou, H.; Rather, P.N.; Hrapovic, S.; Lam, E.; Dennis, J.J.; Chen, W. Characterization of virulent T4-like Acinetobacter baumannii bacteriophages DLP1 and DLP2. Viruses 2023, 15, 739. [Google Scholar] [CrossRef] [PubMed]
- Styles, K.M.; Thummeepak, R.; Leungtongkam, U.; Smith, S.E.; Christie, G.S.; Millard, A.; Moat, J.; Dowson, C.G.; Wellington, E.M.H.; Sitthisak, S.; et al. Investigating bacteriophages targeting the opportunistic pathogen Acinetobacter baumannii. Antibiotics 2020, 9, 200. [Google Scholar] [CrossRef]
- Sitthisak, S.; Manrueang, S.; Khongfak, S.; Leungtongkam, U.; Thummeepak, R.; Thanwisai, A.; Burton, N.; Dhanoa, G.K.; Tsapras, P.; Sagona, A.P. Antibacterial activity of vB_AbaM_PhT2 phage hydrophobic amino acid fusion endolysin, combined with colistin against Acinetobacter baumannii. Sci. Rep. 2023, 13, 7470. [Google Scholar] [CrossRef]
- Pulkkinen, E.; Wicklund, A.; Oduor, J.M.O.; Skurnik, M.; Kiljunen, S. Characterization of vB_ApiM_fHyAci03, a novel lytic bacteriophage that infects clinical Acinetobacter strains. Arch Virol. 2019, 164, 2197–2199. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Li, Z.-J.; Wang, S.-W.; Wang, S.-M.; Chen, S.-J.; Huang, D.-H.; Zhang, G.; Li, Y.-H.; Wang, X.-T.; Wang, J.; et al. Genome organisation of the Acinetobacter lytic phage ZZ1 and comparison with other T4-like Acinetobacter phages. BMC Genom. 2014, 15, 793. [Google Scholar] [CrossRef]
- Jeon, J.; Park, J.-H.; Yong, D. Efficacy of bacteriophage treatment against carbapenem-resistant Acinetobacter baumannii in Galleria mellonella larvae and a mouse model of acute pneumonia. BMC Microbiol. 2019, 19, 70. [Google Scholar] [CrossRef]
- Popova, A.V.; Shneider, M.M.; Mikhailova, Y.V.; Shelenkov, A.A.; Shagin, D.A.; Edelstein, M.V.; Kozlov, R.S. Complete genome sequence of Acinetobacter baumannii phage BS46. Microbiol. Resour. Announc. 2020, 9, e00398–20. [Google Scholar] [CrossRef] [PubMed]
- Loh, B.; Wang, X.; Hua, X.; Chook, H.W.; Ma, L.; Zhang, L.; Manohar, P.; Jin, Y.; Leptihn, S. Complete genome sequence of the lytic bacteriophage Phab24, which infects clinical strains of the nosocomial pathogen Acinetobacter baumannii. Microbiol. Resour. Announc. 2021, 10, e0066921. [Google Scholar] [CrossRef]
- Mardiana, M.; Teh, S.-H.; Tsai, Y.-C.; Yang, H.-H.; Lin, L.C.; Lin, N.-T. Characterization of a novel and active temperate phage vB_AbaM_ABMM1 with antibacterial activity against Acinetobacter baumannii infection. Sci. Rep. 2023, 13, 11347. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Chen, H.; Zhang, M.; Zhao, Y.; Jiang, Y.; Liu, X.; Huang, W.; Ma, Y. Clinical experience of personalized phage therapy against carbapenem-resistant Acinetobacter baumannii lung infection in a patient with chronic obstructive pulmonary disease. Front. Cell. Infect. Microbiol. 2021, 11, 631585. [Google Scholar] [CrossRef] [PubMed]
- Turner, D.; Wand, M.E.; Briers, Y.; Lavigne, R.; Sutton, J.M.; Reynolds, D.M. Characterisation and genome sequence of the lytic Acinetobacter baumannii bacteriophage vB_AbaS_Loki. PLoS ONE 2017, 12, e0172303. [Google Scholar] [CrossRef]
- Pehde, B.M.; Niewohner, D.; Keomanivong, F.E.; Carruthers, M.D. Genome sequence and characterization of Acinetobacter phage DMU1. Phage 2021, 2, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Hua, Y.; Xu, M.; Wang, R.; Zhang, Y.; Zhu, Z.; Guo, M.; He, P. Characterization and whole genome analysis of a novel bacteriophage SH-Ab 15497 against multidrug resistant Acinetobacater baummanii. Acta Biochim. Biophys. Sin. 2019, 51, 1079–1081. [Google Scholar] [CrossRef]
- Mardiana, M.; Teh, S.-H.; Lin, L.-C.; Lin, N.-T. Isolation and characterization of a novel Siphoviridae phage, vB_AbaS_TCUP2199, infecting multidrug-resistant Acinetobacter baumannii. Viruses 2022, 14, 1240. [Google Scholar] [CrossRef]
- Kim, K.; Islam, M.M.; Kim, D.; Yun, S.H.; Kim, J.; Lee, J.C.; Shin, M. Characterization of a novel phage ΦAb1656-2 and its endolysin with higher antimicrobial activity against multidrug-resistant Acinetobacter baumannii. Viruses 2021, 13, 1848. [Google Scholar] [CrossRef]
- Jeon, J.; D’Souza, R.; Pinto, N.; Ryu, C.-M.; Park, J.; Yong, D.; Lee, K. Complete genome sequence of the siphoviral bacteriophage Βϕ-R3177, which lyses an OXA-66-producing carbapenem-resistant Acinetobacter baumannii isolate. Arch. Virol. 2015, 160, 3157–3160. [Google Scholar] [CrossRef]
- Jeon, J.; Kim, J.; Yong, D.; Lee, K.; Chong, Y. Complete genome sequence of the podoviral bacteriophage YMC/09/02/B1251 ABA BP, which causes the lysis of an OXA-23-producing carbapenem-resistant Acinetobacter baumannii isolate from a septic patient. J. Virol. 2012, 86, 12437–12438. [Google Scholar] [CrossRef]
- Badawy, S.; Pajunen, M.; Haiko, J.; Baka, Z.; Abou-Dobara, M.; El-Sayed, A.; Skurnik, M. Identification and functional analysis of temperate Siphoviridae bacteriophages of Acinetobacter baumannii. Viruses 2020, 12, 604. [Google Scholar] [CrossRef]
- Turner, D.; Wand, M.E.; Sutton, J.M.; Centron, D.; Kropinski, A.M.; Reynolds, D.M. Genome sequence of vB_AbaS_TRS1, a viable prophage isolated from Acinetobacter baumannii strain A118. Genome Announc. 2016, 4, e01051-16. [Google Scholar] [CrossRef] [PubMed]
- Pas, C.; Latka, A.; Fieseler, L.; Briers, Y. Phage tailspike modularity and horizontal gene transfer reveals specificity towards E. coli O-antigen serogroups. Virol. J. 2023, 20, 174. [Google Scholar] [CrossRef] [PubMed]
- Steinbacher, S.; Miller, S.; Baxa, U.; Budisa, N.; Weintraub, A.; Seckler, R.; Huber, R. Phage P22 tailspike protein: Crystal structure of the head-binding domain at 2.3 Å, fully refined structure of the endorhamnosidase at 1.56 Å resolution, and the molecular basis of O-antigen recognition and cleavage. J. Mol. Biol. 1997, 267, 865–880. [Google Scholar] [CrossRef] [PubMed]
- Greenfield, J.; Shang, X.; Luo, H.; Zhou, Y.; Linden, S.B.; Heselpoth, R.D.; Leiman, P.G.; Nelson, D.C.; Herzberg, O. Structure and function of bacteriophage CBA120 ORF211 (TSP2), the determinant of phage specificity towards E. coli O157:H7. Sci. Rep. 2020, 10, 15402. [Google Scholar] [CrossRef] [PubMed]
- Knirel, Y.A.; Shneider, M.M.; Popova, A.V.; Kasimova, A.A.; Senchenkova, S.N.; Shashkov, A.S.; Chizhov, A.O. Mechanisms of Acinetobacter baumannii capsular polysaccharide cleavage by phage depolymerases. Biochem. Biokhimiia 2020, 85, 567–574. [Google Scholar] [CrossRef] [PubMed]
- Lai, M.-J.; Chang, K.-C.; Huang, S.-W.; Luo, C.-H.; Chiou, P.-Y.; Wu, C.-C.; Lin, N.-T. The tail associated protein of Acinetobacter baumannii phage ΦAB6 is the host specificity determinant possessing exopolysaccharide depolymerase activity. PLoS ONE 2016, 11, e0153361. [Google Scholar] [CrossRef] [PubMed]
- Abdelkader, K.; Gutiérrez, D.; Latka, A.; Boeckaerts, D.; Drulis-Kawa, Z.; Criel, B.; Gerstmans, H.; Safaan, A.; Khairalla, A.S.; Gaber, Y.; et al. The specific capsule depolymerase of phage PMK34 sensitizes Acinetobacter baumannii to serum killing. Antibiotics 2022, 11, 677. [Google Scholar] [CrossRef]
- Senchenkova, S.N.; Shashkov, A.S.; Shneider, M.M.; Arbatsky, N.P.; Popova, A.V.; Miroshnikov, K.A.; Volozhantsev, N.V.; Knirel, Y.A. Structure of the capsular polysaccharide of Acinetobacter baumannii ACICU containing di-N-acetylpseudaminic acid. Carbohydr. Res. 2014, 391, 89–92. [Google Scholar] [CrossRef] [PubMed]
- Kasimova, A.A.; Shneider, M.M.; Arbatsky, N.P.; Popova, A.V.; Shashkov, A.S.; Miroshnikov, K.A.; Balaji, V.; Biswas, I.; Knirel, Y.A. Structure and gene cluster of the K93 capsular polysaccharide of Acinetobacter baumannii B11911 containing 5-N-Acetyl-7-N-[(R)-3-hydroxybutanoyl]pseudaminic acid. Biochem. Biokhimiia 2017, 82, 483–489. [Google Scholar] [CrossRef]
- Grygorcewicz, B.; Roszak, M.; Golec, P.; Śleboda-Taront, D.; Łubowska, N.; Górska, M.; Jursa-Kulesza, J.; Rakoczy, R.; Wojciuk, B.; Dołęgowska, B. Antibiotics act with vB_AbaP_AGC01 phage against Acinetobacter baumannii in human heat-inactivated plasma blood and Galleria mellonella models. Int. J. Mol. Sci. 2020, 21, 4390. [Google Scholar] [CrossRef]
- Kenyon, J.J.; Arbatsky, N.P.; Sweeney, E.L.; Shashkov, A.S.; Shneider, M.M.; Popova, A.V.; Hall, R.M.; Knirel, Y.A. Production of the K16 capsular polysaccharide by Acinetobacter baumannii ST25 isolate D4 involves a novel glycosyltransferase encoded in the KL16 gene cluster. Int. J. Biol. Macromol. 2019, 128, 101–106. [Google Scholar] [CrossRef]
- Kenyon, J.J.; Shneider, M.M.; Senchenkova, S.N.; Shashkov, A.S.; Siniagina, M.N.; Malanin, S.Y.; Popova, A.V.; Miroshnikov, K.A.; Hall, R.M.; Knirel, Y.A. K19 capsular polysaccharide of Acinetobacter baumannii is produced via a wzy polymerase encoded in a small genomic island rather than the KL19 capsule gene cluster. Microbiology 2016, 162, 1479–1489. [Google Scholar] [CrossRef]
- Cahill, S.M.; Arbatsky, N.P.; Shashkov, A.S.; Shneider, M.M.; Popova, A.V.; Hall, R.M.; Kenyon, J.J.; Knirel, Y.A. Elucidation of the K32 capsular polysaccharide structure and characterization of the KL32 gene cluster of Acinetobacter baumannii LUH5549. Biochem. Biokhimiia 2020, 85, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Arbatsky, N.P.; Shneider, M.M.; Kenyon, J.J.; Shashkov, A.S.; Popova, A.V.; Miroshnikov, K.A.; Volozhantsev, N.V.; Knirel, Y.A. Structure of the neutral capsular polysaccharide of Acinetobacter baumannii NIPH146 that carries the KL37 capsule gene cluster. Carbohydr. Res. 2015, 413, 12–15. [Google Scholar] [CrossRef]
- Timoshina, O.Y.; Kasimova, A.A.; Shneider, M.M.; Arbatsky, N.P.; Shashkov, A.S.; Shelenkov, A.A.; Mikhailova, Y.V.; Popova, A.V.; Hall, R.M.; Knirel, Y.A.; et al. Loss of a branch sugar in the Acinetobacter baumannii K3-type capsular polysaccharide due to frameshifts in the gtr6 glycosyltransferase gene leads to susceptibility to phage APK37.1. Microbiol. Spectr. 2023, 11, e0363122. [Google Scholar] [CrossRef]
- Kenyon, J.J.; Kasimova, A.A.; Sviridova, A.N.; Shpirt, A.M.; Shneider, M.M.; Mikhaylova, Y.V.; Shelenkov, A.A.; Popova, A.V.; Perepelov, A.V.; Shashkov, A.S.; et al. Correlation of Acinetobacter baumannii K144 and K86 capsular polysaccharide structures with genes at the K locus reveals the involvement of a novel multifunctional rhamnosyltransferase for structural synthesis. Int. J. Biol. Macromol. 2021, 193, 1294–1300. [Google Scholar] [CrossRef] [PubMed]
- Arbatsky, N.P.; Popova, A.V.; Shneider, M.M.; Shashkov, A.S.; Hall, R.M.; Kenyon, J.J.; Knirel, Y.A. Structure of the K87 capsular polysaccharide and KL87 gene cluster of Acinetobacter baumannii LUH5547 reveals a heptasaccharide repeating unit. Carbohydr. Res. 2021, 509, 108439. [Google Scholar] [CrossRef]
- Arbatsky, N.P.; Shashkov, A.S.; Shneider, M.M.; Popova, A.V.; Kasimova, A.A.; Miroshnikov, K.A.; Knirel, Y.A.; Hall, R.M.; Kenyon, J.J. The K89 capsular polysaccharide produced by Acinetobacter baumannii LUH5552 consists of a pentameric repeat-unit that includes a 3-acetamido-3,6-dideoxy-d-galactose residue. Int. J. Biol. Macromol. 2022, 217, 515–521. [Google Scholar] [CrossRef] [PubMed]
- Shashkov, A.S.; Cahill, S.M.; Arbatsky, N.P.; Westacott, A.C.; Kasimova, A.A.; Shneider, M.M.; Popova, A.V.; Shagin, D.A.; Shelenkov, A.A.; Mikhailova, Y.V.; et al. Acinetobacter baumannii K116 capsular polysaccharide structure is a hybrid of the K14 and revised K37 structures. Carbohydr. Res. 2019, 484, 107774. [Google Scholar] [CrossRef]
- Arbatsky, N.P.; Kasimova, A.A.; Shashkov, A.S.; Shneider, M.M.; Popova, A.V.; Shagin, D.A.; Shelenkov, A.A.; Mikhailova, Y.V.; Yanushevich, Y.G.; Azizov, I.S.; et al. Structure of the K128 capsular polysaccharide produced by Acinetobacter baumannii KZ-1093 from Kazakhstan. Carbohydr. Res. 2019, 485, 107814. [Google Scholar] [CrossRef]
- Chang, K.-C.; Lin, N.-T.; Hu, A.; Lin, Y.-S.; Chen, L.-K.; Lai, M.-J. Genomic analysis of bacteriophage ϕAB1, a ϕKMV-like virus infecting multidrug-resistant Acinetobacter baumannii. Genomics 2011, 97, 249–255. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, X.; Li, X.-J. Bioinformatic analysis of phage AB3, a phiKMV-like virus infecting Acinetobacter baumannii. Genet. Mol. Res. GMR 2015, 14, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Senchenkova, S.N.; Kenyon, J.J.; Jia, T.; Popova, A.V.; Shneider, M.M.; Kasimova, A.A.; Shashkov, A.S.; Liu, B.; Hall, R.M.; Knirel, Y.A. The K90 capsular polysaccharide produced by Acinetobacter baumannii LUH5553 contains di-N-acetylpseudaminic acid and is structurally related to the K7 polysaccharide from A. baumannii LUH5533. Carbohydr. Res. 2019, 479, 1–5. [Google Scholar] [CrossRef]
- Han, P.; Pu, M.; Li, Y.; Fan, H.; Tong, Y. Characterization of bacteriophage BUCT631 lytic for K1 Klebsiella pneumoniae and its therapeutic efficacy in Galleria mellonella larvae. Virol. Sin. 2023, 38, 801–812. [Google Scholar] [CrossRef]
- Solovieva, E.V.; Myakinina, V.P.; Kislichkina, A.A.; Krasilnikova, V.M.; Verevkin, V.V.; Mochalov, V.V.; Lev, A.I.; Fursova, N.K.; Volozhantsev, N.V. Comparative genome analysis of novel Podoviruses lytic for hypermucoviscous Klebsiella pneumoniae of K1, K2, and K57 capsular types. Virus Res. 2018, 243, 10–18. [Google Scholar] [CrossRef]
- Tu, I.-F.; Lin, T.-L.; Yang, F.-L.; Lee, I.-M.; Tu, W.-L.; Liao, J.-H.; Ko, T.-P.; Wu, W.-J.; Jan, J.-T.; Ho, M.-R.; et al. Structural and biological insights into Klebsiella pneumoniae surface polysaccharide degradation by a bacteriophage K1 lyase: Implications for clinical use. J. Biomed. Sci. 2022, 29, 9. [Google Scholar] [CrossRef]
- Sørensen, A.N.; Woudstra, C.; Sørensen, M.C.H.; Brøndsted, L. Subtypes of tail spike proteins predicts the host range of Ackermannviridae phages. Comput. Struct. Biotechnol. J. 2021, 19, 4854–4867. [Google Scholar] [CrossRef] [PubMed]
- Kasimova, A.A.; Kenyon, J.J.; Arbatsky, N.P.; Shashkov, A.S.; Popova, A.V.; Knirel, Y.A.; Hall, R.M. Structure of the K82 capsular polysaccharide from Acinetobacter baumannii LUH5534 containing a d-galactose 4,6-pyruvic acid acetal. Biochem. Biokhimiia 2018, 83, 831–835. [Google Scholar] [CrossRef] [PubMed]
- Shashkov, A.S.; Shneider, M.M.; Senchenkova, S.N.; Popova, A.V.; Nikitina, A.S.; Babenko, V.V.; Kostryukova, E.S.; Miroshnikov, K.A.; Volozhantsev, N.V.; Knirel, Y.A. Structure of the capsular polysaccharide of Acinetobacter baumannii 1053 having the KL91 capsule biosynthesis gene locus. Carbohydr. Res. 2015, 404, 79–82. [Google Scholar] [CrossRef]
- Li, P.; Chen, B.; Song, Z.; Song, Y.; Yang, Y.; Ma, P.; Wang, H.; Ying, J.; Ren, P.; Yang, L.; et al. Bioinformatic analysis of the Acinetobacter baumannii phage AB1 genome. Gene 2012, 507, 125–134. [Google Scholar] [CrossRef]
- Peng, F.; Mi, Z.; Huang, Y.; Yuan, X.; Niu, W.; Wang, Y.; Hua, Y.; Fan, H.; Bai, C.; Tong, Y. Characterization, sequencing and comparative genomic analysis of vB_AbaM-IME-AB2, a novel lytic bacteriophage that infects multidrug-resistant Acinetobacter baumannii clinical isolates. BMC Microbiol. 2014, 14, 181. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Huang, H.; Wu, X.; Hao, Y.; Sun, Y. Complete genome sequence of lytic bacteriophage LZ35 infecting Acinetobacter baumannii isolates. Genome Announc. 2016, 4, e01104–e01116. [Google Scholar] [CrossRef]
- Reid, A.J.; Eade, C.; Jones, K.J.; Jorgenson, M.A.; Troutman, J.M. Tracking colanic acid repeat unit formation from stepwise biosynthesis inactivation in Escherichia coli. Biochemistry 2021, 60, 2221–2230. [Google Scholar] [CrossRef]
- Li, S.; Xu, X.; Lv, X.; Liu, Y.; Li, J.; Du, G.; Liu, L. Combinatorial metabolic engineering and enzymatic catalysis enable efficient production of colanic acid. Microorganisms 2022, 10, 877. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Lee, S.M.; Mao, Y. Protective effect of exopolysaccharide colanic acid of Escherichia coli O157:H7 to osmotic and oxidative stress. Int. J. Food Microbiol. 2004, 93, 281–286. [Google Scholar] [CrossRef]
- Mao, Y.; Doyle, M.P.; Chen, J. Insertion mutagenesis of wca reduces acid and heat tolerance of enterohemorrhagic Escherichia coli O157:H7. J. Bacteriol. 2001, 183, 3811–3815. [Google Scholar] [CrossRef] [PubMed]
- Ophir, T.; Gutnick, D.L. A role for exopolysaccharides in the protection of microorganisms from desiccation. Appl. Environ. Microbiol. 1994, 60, 740–745. [Google Scholar] [CrossRef]
- Prigent-Combaret, C.; Prensier, G.; Le Thi, T.T.; Vidal, O.; Lejeune, P.; Dorel, C. Developmental pathway for biofilm formation in curli-producing Escherichia coli strains: Role of flagella, curli and colanic acid. Environ. Microbiol. 2000, 2, 450–464. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, H.; Domingues, R.; Evans, B.; Sutton, J.M.; Adriaenssens, E.M.; Turner, D. Genomic diversity of bacteriophages infecting the genus Acinetobacter. Viruses 2022, 14, 181. [Google Scholar] [CrossRef]
- Schulz, E.C.; Schwarzer, D.; Frank, M.; Stummeyer, K.; Mühlenhoff, M.; Dickmanns, A.; Gerardy-Schahn, R.; Ficner, R. Structural basis for the recognition and cleavage of polysialic acid by the bacteriophage K1F tailspike protein EndoNF. J. Mol. Biol. 2010, 397, 341–351. [Google Scholar] [CrossRef]
- Soothill, J.S. Treatment of experimental infections of mice with bacteriophages. J. Med. Microbiol. 1992, 37, 258–261. [Google Scholar] [CrossRef] [PubMed]
- Obana, Y.; Nishino, T.; Tanino, T. In-vitro and in-vivo activities of antimicrobial agents against Acinetobacter calcoaceticus. J. Antimicrob. Chemother. 1985, 15, 441–448. [Google Scholar] [CrossRef] [PubMed]
Cluster | Phages * | Number of Phages | Taxonomy | Lifestyle ** | Morphology |
---|---|---|---|---|---|
1 | Phanie | 1 | Astrithrvirus | lytic | podovirus |
2 | AB3 (partial genome sequence) [53], Ab124 [54], AB_SZ6 [55], Abgy2021-6-2, AbKT21phiIII [56] ***, Abp1 [57], ABp57, AbpL, AbTP3phi1 [32], Acba_6 [58], AIIMS-AbE5-RC ***, APK09 [34], APK15, APK16 [34], APK20, APK37.1 [34], APK77, APK86 [34], APK127v [34], Aristophanes [30], BM12, F70-K44, fBenAci001 [59], fBenAci002 [59], fBenAci003 [59], Fri1 [25], IME-200 [60], MRABP9, Paty, pB3074 [61], Petty [62,63], phiAB1 [57], phiAB6 [27], Pipo, SH-Ab 15519 [64], SWH-Ab-1, SWH-Ab-3, vB_Ab4_Hep4 [65], vB_Ab4_Hep4-M [65], vB_AbaP_46-62_Aci07 [66], vB_AbaP_100, vB_AbaP_ABWU2101 [67], vB_AbaP_Acibel007 [68], vB_AbaP_AGC01 [69], vB_AbaP_APK2 [26], vB_AbaP_APK2-2, vB_AbaP_APK14 [34], vB_AbaP_APK26 [70], vB_AbaP_APK32 [31], vB_AbaP_APK37 [31], vB_AbaP_APK44 [31], vB_AbaP_APK48 [31], vB_AbaP_APK48-3, vB_AbaP_APK81, vB_AbaP_APK87 [31], vB_AbaP_APK89 [31], vB_AbaP_APK93, vB_AbaP_APK116 [31], vB_AbaP_APK128 [34], vB_AbaP_AS11 [25], vB_AbaP_AS12 [25], vB_AbaP_B1 [26], vB_AbaP_B3 [26], vB_AbaP_B4, vB_AbaP_B5 [71], vB_AbaP_B09_Aci08 [66], vB_AbaP_D2 [72], vB_AbaP_D2M, vB_AbaP_EPab_B, vB_AbaP_IME546, vB_AbaP_PD-6A3 [73], vB_AbaP_PD-AB9 [74], vB_AbaP_PE21, vB_AbaP_PMK34 [75], vB_AbaP_WU2001 [76], vB_AbaP_ZHSHW, vB_Ab-P-7, vB_AP_P1489, vB_Api_3043-K38 [77], vB_ApiP_P1 [26], vB_ApiP_P2 [26], WCHABP5, YZ2 | 83 | Autographiviridae; Beijerinckvirinae | lytic | podovirus |
3 | vB_AbaA_LLY | 1 | Autographiviridae; Slopekvirinae; Drulisvirus | lytic | podovirus |
4 | nACB1 [78], Presley, VB_ApiP_XC38 [79] | 3 | Schitoviridae **** | lytic | podovirus |
5 | 4316 | 1 | unclassified Caudoviricetes | temperate | podovirus |
6 | nACB2 [78], SH-Ab 15599 [64,80] | 2 | Ackermannviridae | lytic | myovirus |
7 | vB_AbaM_ME3 [81] | 1 | Metrivirus | lytic | myovirus |
8 | A2.1, A832.1 [82], AB1 [83], Abp2 [84], Ab31, Ab59, Ab65, Abp9 [85], Abp95 [86], AP22 [87], Arbor, Bphi-R1888, Bphi-R2919, Brutus [88], BUCT628 [89], BUCT629 [90], Cato [91], HZY2308, LZ35, NJ02, P1068, P115 [82], P711 [82], phiAC-1 [92], Scipio [88], vvB_AbaM_AB3P2 [93], vB_AbaM_BP10, vB_AbaM_fThrA, vB_AbaM_IME284, vB_AbaM_IME285 [94], vB_AbaM_IME512, vB_AbaM-IME-AB2 [95], vWUPSU [96], WCHABP1 [97], WCHABP12 [97], XC1, YMC11/12/R1215 [98], YMC11/12/R2315 [98], YMC-13-01-C62 | 39 | Obolenskvirus and related phages | lytic | myovirus |
9 | Ab_121, Abp53 (partial genome sequence) [99], Liucustia, TAC1, vB_AbaM_Acibel004 [68], vB_AbaM_B09_Aci01-1 [66], vB_AbaM_B09_Aci02-2 [66], vB_AbaM_B09_Aci05 [66], vB_AbaM_CP14, vB_AbaM_D22, vB_AbaM_P1, vB_AbaM_phiAbaA1, vB_AbaP_HB01 | 13 | Saclayvirus | lytic | myovirus |
10 | vB_AbaM_ABPW7 [100] | 1 | Stephanstirmvirinae; Phapecoctavirus | lytic | myovirus |
11 | 133 [101], AB-Navy1 [32], AB-Navy4 [32], AB-Navy71 [32], AB-Navy97 [32], Abraxas, AbTZA1 [102], AC4 [32], Ac42 [103], Acj9 [103], Acj61 [103], AM101, Henu6, KARL-1, Maestro [32], Melin, Meroveus, Minot, Mokit, Morttis, Octan, PhaR5, Stupor, vB_AbaM_Apostate, vB_AbaM_Berthold, vB_AbaM_DLP1 [104], vB_AbaM_DLP2 [104], vB_AbaM_DP45, vB_AbaM_Kimel, vB_AbaM_Konradin, vB_AbaM_Lazarus, vB_AbaM_PhT2 [105,106], vB_ApiM_fHyAci03 [107], ZZ1 [108] | 34 | Straboviridae (Tevenvirinae; Twarogvirinae including Acajnonavirus, Hadassahvirus, Lasallevirus, Lazarusvirus, and Zedzedvirus) | lytic | myovirus |
12 | ABPH49 | 1 | Vequintavirinae | lytic | myovirus |
13 | AM24 [71], Bestia, Herod, Mithridates, P577 [82], YMC13/03/R2096 [109] | 6 | unclassified Caudoviricetes | lytic | myovirus |
14 | BS46 [110], Phab24 [111], TaPaz [33], and vB_AbaM_B9 [28] | 4 | unclassified Caudoviricetes | lytic | myovirus |
15 | Ab105-1phi, AbTJ | 2 | unclassified Caudoviricetes | temperate | myovirus |
16 | vB_AbaM_ABMM1 [112] | 1 | unclassified Caudoviricetes | temperate | myovirus |
17 | vB_AbaP_Alexa | 1 | unclassified Caudoviricetes | temperate | myovirus |
18 | NJ01 | 1 | Dhillonvirus | lytic | siphovirus |
19 | Ab_SZ3 [113], IMEAB3, Loki [114], PBAB25, and vB_AbaS_D0 | 5 | Lokivirus | lytic | siphovirus |
20 | 53, Barton, DMU1 [115], JeffCo, SH-Ab 15497 [116] | 5 | unclassified Caudoviricetes | lytic | siphovirus |
21 | EAb13 [53], vB_AbaS_TCUP2199 [117] | 2 | unclassified Caudoviricetes | lytic | siphovirus |
22 | Effie | 1 | unclassified Caudoviricetes | lytic | siphovirus |
23 | Ab1656-2 [118] ***, Ab11510-phi, Acba_1 (partial genome) [58], Acba_3 [58], Acba_4 [58], Acba_11 [58] ***, Acba_13 [58], Acba_14 [58], Acba_15 [58], Acba_16 [58], Acba_18 [58], Aclw_8 [58], Aclw_9 [58], AM106, YC#06, YMC11/11/R3177 [119], YMC/09/02/B1251 [120] | 17 | Vieuvirus and related unclassified phages | temperate | siphovirus |
24 | 5W | 1 | unclassified Caudoviricetes | temperate | siphovirus |
25 | Ab105-2phi, Ab105-2phideltaCI404ad, and Ab105-3phi | 3 | unclassified Caudoviricetes | temperate | siphovirus |
26 | fEg-Aba01 [121], fLi-Aba02 [121], and fLi-Aba03 [121] | 3 | unclassified Caudoviricetes | temperate | siphovirus |
27 | vB_AbaS_TRS1 [122] | 1 | unclassified Caudoviricetes | temperate | siphovirus |
# | Phage Name * (Country of Isolation) | Genbank Accession # (##) | Acinetobacter Bacterial Host Strain ** (K Type) | Tailspike Protein | Reference *** | K Specificity of a Phage **** | |||
---|---|---|---|---|---|---|---|---|---|
# of Gene Product | Genbank Accession # (##) | Annotation in Genbank | |||||||
Viruses; Duplodnaviria; Heunggongvirae; Uroviricota; Caudoviricetes; Autographiviridae; Beijerinckvirinae; Friunavirus | |||||||||
1 | phiAB6 (Taiwan) | KT339321/ NC_031086 | 54149 (K2) | gp40 | ALA12264/ YP_009288671 | tail fiber protein | [27,127] | K2 | |
2 | vB_AbaP_B3 (Portugal) | MF033348/ NC_042004 | NIPH2061 (K2) | gp42 | ASN73401/ YP_009610379 | tail fiber protein | [26] | K2 | |
3 | vB_AbaP_PMK34 (Egypt) | MN433707 | MK34 (N/A); CIP 110467 (K2) | gp45 | QGF20174 | putative tail fiber | [128] | K2 | |
4 | vB_AbaP_WU2001 (Thailand) | MZ099557 | ABPW052 (N/A) | gp34 | QVQ34730 | tail fiber protein | [76] | K2 | |
5 | vB_AbaP_D2 (China) | MH042230/ NC_042124 | AB9 (N/A) | gp02 | AVP40472/ YP_009624618 | tail fiber protein | [72] | K2 | |
6 | vB_AbaP_D2M (China) | MN212906 | N/A (N/A) | gp06 | QFG15400 | tail fiber protein | - | K2 | |
7 | WCHABP5 (China) | KY888680/ NC_041967 | WCHAB1334 (N/A) | gp02 | ARQ94869/ YP_009604582 | putative tail fiber/tail fiber protein | - | K2 | |
8 | SWH-Ab-3 (China) | NC_047883 | N/A (N/A) | gp49 | YP_009949108 | tail fiber protein | - | K2 | |
9 | ABp57 (China) | OR578534 | N/A (N/A) | gp46 | WNV46778 | non-contractile tail fiber protein | - | K2 | |
10 | vB_AbaP_100 ***** (China) | MW926912 (unverified) | N/A (N/A) | the genome sequence was not annotated by the authors; the coordinates of the gene encoding TSP predicted in this work are as follows: 4190–6289 | - | K2 | |||
11 | vB_AbaP_APK2 (Russia) | MK257719 | ACICU (K2), 11911 (K93) | gp43 | AZU99242 | tailspike protein | [31,129,130] | K2/K93 | |
12 | vB_AbaP_APK2-2 (Russia) | MK257720 | ACICU (K2); 11911(K93) | gp43 | AZU99292 | tailspike protein | [129,130] | K2/K93 | |
13 | vB_AbaP_APK93 (Russia) | MK257721 | 11911 (K93); ACICU (K2) | gp43 | AZU99342 | tailspike protein | [129,130] | K93/K2 | |
14 | BM12 (China) | OP508218 | N/A (N/A) | gp26 | UYE92398 | tail fiber protein | - | K2 | |
15 | YZ2 (China) | OR660046 | N/A (N/A) | gp34 | WPD49452 | tailspike protein | - | K2 | |
16 | vB_AbaP_B4 (China) | OR584314 | N/A (N/A) | gp16 | WNO29457 | tail fiber protein | - | K2 | |
17 | IME-200 (China) | KT804908/ NC_028987 | AB1610 (N/A) | gp48 | ALJ97635/ YP_009216489 | tail fiber protein | [60] | K2 | |
18 | AbpL (China) | OP171942 | AB2 (N/A) | gp45 | UVD42134 | non-contractile tail fiber protein | - | K2 | |
19 | pB3074 (China) | OQ730192 | 3074 (Bm3074) (N/A) | gp35 | WID41884 | hypothetical protein | [61] | K2 | |
20 | SH-Ab 15519 (China) | KY082667/ NC_041905 | 15519 (N/A) | gp45 | APD19440/ YP_009598268 | hypothetical protein/tail fiber protein | [64] | K2 | |
21 | Abgy2021-6-2 (China) | OR770644 | GY-6 (N/A) | gp47 | WPF70339 | tail fiber protein | - | K2 | |
22 | Ab124 (China) | MT633129 | b1928040 (N/A) | gp46 | QMP19165 | hypothetical protein | [54] | K2 | |
23 | vB_AbaP_ABWU2101 (Thailand) | OK546191 | ABPW0185 (N/A) | gp8 | UFJ83440 | tailspike protein | [67] | K2 | |
24 | MRABP9 (China) | OP727261 | MRAB11 (N/A) | gp41 | WAK44760 | tailspike protein | - | K2 | |
25 | vB_AbaP_APK81 (Russia) | MT741944 | 36-1512 (N/A) | gp49 | QNO11418 | tailspike protein | - | K2 | |
26 | vB_AbaP_AGC01 (Poland) | MT263719 | ATCC®16909™ (N/A) | gp48 | QIW86364 | endolysin | [131] | K2 | |
28 | AbKT21phiIII ****** (Israel) | MK278859/ NC_048142 | AbKT722 (K3) ******* | the coordinates of the regions in the genome corresponding to TSP predicted in this work are as follows: 38725–40827 and 262–291 | [56] | K3 | |||
27 | vB_AbaP_IME546 ******** (China) | MN061582/ MN395291 | N/A (N/A) | gp49/ gp45 | QFR59034/ QGJ97530 | tail fiber protein | - | K7 | |
29 | APK09 (Russia) | MZ868724 | B05 (K9) | gp48 | UAW09804 | tailspike protein | [34] | K9 | |
30 | vB_AbaP_B1 (Portugal) | MF033347/ NC_042003 | NIPH80 (K9); NIPH528 (K9) | gp45 | ASN73353/ YP_00961033 | tailspike protein | [26] | K9 | |
31 | vB_AbaP_B5 (Portugal) | MF033349/ NC_042005 | NIPH80 (K9); NIPH528 (K9) | gp47 | ASN73455/ YP_009610433 | tailspike protein/tail fiber protein | [26] | K9 | |
32 | vB_AbaP_APK14 (Russia) | MK089780 | AB5256 (K14) | gp49 | AYR04394 | tail spike protein, structural depolymerase | [34] | K14 | |
33 | AB_SZ6 (China) | ON513429 | N/A (N/A) | gp44 | URQ05102 | tail spike protein | [55] | K14 | |
34 | APK15 (Russia) | MZ936315 | MAR15-4788 (K15) | gp48 | UAW10027 | tailspike protein | - | K15 | |
35 | APK16 (Russia) | MZ868725 | D4 (K16) | gp47 | UAW09859 | tailspike protein | [34,132] | K16 | |
36 | Fri1 (Switzerland) | KR149290/ NC_028848 | 28 (K19) | gp49 | AKQ06854/ YP_009203055 | tail spike protein | [25,126,133] | K19 | |
37 | vB_AbaP_AS11 (Russia) | KY268296/ NC_041915 | 28 (K19) | gp45 | AQN32697/ YP_009599281 | tail spike protein | [25,133] | K19 | |
38 | vB_AbaP_PE21 (Russia) | OL964948 | 28 (K19) | gp45 | ULG00671 | tail spike protein | [133] | K19 | |
39 | APK20 (Russia) | MZ936316 | MAR14-595 (K20) | gp52 | UAW10085 | tailspike protein | - | K20 | |
40 | vB_AbaP_APK26 (Russia) | MW345241 | KZ-1098 (K26) | gp48 | QQO97001 | tail spike protein | [70] | K26 | |
41 | vB_AbaP_AS12 (Russia) | KY268295/ NC_041914 | 1432 (K27) | gp42 | APW79830/ YP_009599229 | tail spike protein/ tail fiber protein | [18,25,126] | K27 | |
42 | vB_AbaP_APK32 (Russia) | MK257722 | LUH5549 (K32) | gp46 | AZU99395 | tailspike protein | [31,134] | K32 | |
43 | Pipo (USA) | MW366783 | N/A (N/A) | gp52 | QQO92973 | tailspike protein | - | K32 | |
44 | Paty (USA) | MW366784 | N/A (N/A) | gp49 | QQM15083 | tailspike protein | - | K32 | |
45 | vB_AbaP_ZHSHW (China) | OM925528 | 8_4 (N/A) | gp45 | UPT53561 | tailspike protein | - | K32 | |
46 | vB_AbaP_EPab_B (China) | OQ730212 | Ab_8_4 (N/A) | gp41 | WGV35678 | tail spike protein | - | K32 | |
47 | vB_AbaP_APK37 (Russia) | MK257723 | NIPH146 (K37) | gp44 | AZU99445 | tailspike protein | [31,135,136] | K37 | |
48 | APK37.1 (Russia) | MZ967493 | KZ-1101 (K37), AB5001 (K3v1) | gp49 | UAW07728 | tailspike protein | [34,136] | K37/K3v1 | |
49 | vB_Api_3043-K38 (Portugal) | MZ593174 | A. pittii Ap45 (K38) | gp46 | QYC50642 | tailspike protein | [77] | K38 | |
50 | vB_AbaP_APK44 (Russia) | MN604238 | NIPH70 (K44) | gp44 | QGK90444 | tailspike protein | [18,31] | K44 | |
51 | F70-K44 (Portugal) | OQ378314 | NIPH 70 (K44) | gp41 | WDS49595 | tailspike protein | - | K44 | |
52 | vB_AbaP_APK48 (Russia) | MN294712 | NIPH615 (K48) | gp43 | QFG06960 | tailspike protein | [17,31] | K48 | |
53 | vB_AbaP_APK48-3 (Russia) | MN614471 | APEX-294 (K48) | gp48 | QGH71569 | tailspike protein | - | K48 | |
54 | APK77 (Russia) | MZ868726 | APEX 104 (K77) | gp50 | UAW09916 | tailspike protein | - | K77 | |
55 | fBenAci001 (Benin) | MW056501 | 5542 (N/A) | gp44 | QOV07748 | tailspike protein | [59] | K77 | |
56 | vB_AbaP_PD-AB9 (China) | KT388103/ NC_028679 | N/A (N/A) | gp07 | ALM01895/ YP_009189830 | hypothetical protein/tail fiber protein | [74] | K77 | |
57 | APK86 (Russia) | MZ936314 | MAR55-66 (K86) | gp49 | UAW09972 | tailspike protein | [34,137] | K86/K87 | |
58 | vB_AbaP_APK87 (Russia) | MN604239 | LUH5547 (K87) | gp48 | QGK90498 | tailspike protein | [31,138] | K87/86 | |
59 | vB_AbaP_APK89 (Russia) | MN651570 | LUH5552 (K89) | gp46 | QGK90394 | tailspike protein | [31,139] | K89 | |
60 | vB_AbaP_APK116 (Russia) | MN807295 | MAR303 (K116) | gp43 | QHS01530 | tailspike protein | [31,140] | K116 | |
61 | AbTP3phi1 ********* (USA) | OL770263 | TP3 (K116) | gp48 | UNI74976 | tail fiber | [32] | K116 | K116/K37 |
62 | APK127v (Russia) | ON210142 | 36-1454 (K127) | gp47 | URQ05189 | tailspike protein | [19,34] | K127 | |
63 | vB_AbaP_APK128 (Russia) | MW459163 | KZ-1093 (K128) | gp45 | QVD48888 | tailspike protein | [34,141] | K128 | |
64 | phiAB1 (Taiwan) | HQ186308/ NC_028675 | M68316 (N/A) | gp41 | ADQ12745/ YP_009189380 | tail fiber protein | [142] | K128 | |
65 | Abp1 (China) | JX658790/ NC_021316 | AB1 (N/A) | gp47 | AFV51022/ YP_008058239 | hypothetical protein/tail fiber protein | [57] | - | |
66 | AB3 (China) | KC311669/NC_021337 (partial genome sequence) | N/A (N/A) | gp04 | AGC35305/ YP_008060136 | hypothetical protein/tail fiber protein | [143] | - | |
67 | vB_AbaP_PD-6A3 (China) | KT388102/ NC_028684 | Ab32 (N/A) | gp13 | ALM01853/ YP_009190472 | hypothetical protein/tail fiber protein | [73] | - | |
68 | SWH-Ab-1 (China) | NC_047896 | N/A (N/A) | gp47 | YP_009949058 | tail fiber protein | - | - | |
69 | vB_AbaP_B09_Aci08 (France) | MH763831/ NC_048081 | Paris B09 (N/A) | gp46 | AYD82867/ YP_009814060 | putative capsular polysaccharide depolymerase/tail fiber protein | [66] | - | |
70 | vB_AbaP_46-62_Aci07 (France) | MH800200/ NC_048076 | N/A (N/A) | gp45 | AYD85862/ YP_009813438 | putative capsular polysaccharide depolymerase/ tail fiber protein | [66] | - | |
71 | fBenAci002 (Benin) | MW056502 | 5707 (N/A) | gp46 | QOV07800 | tailspike protein | [59] | - | |
72 | fBenAci003 (Benin) | MW056503 | 5910 (N/A) | gp41 | QOV07848 | tailspike protein | [59] | - | |
73 | vB_Ab4_Hep4 (China) | OP019135 | Ab4 (N/A) | gp43 | UVD33039 | non-contractile tail fiber protein | [65] | - | |
74 | vB_Ab4_Hep4-M (China) | OR075895 | Ab4 (N/A) | gp34 | WIS40047 | non-contractile tail fiber protein | [65] | - | |
75 | Acba_6 (Poland) | OQ101251 | 3940 (N/A) | gp44 | WCF71633 | tailspike protein | [58] | - | |
76 | vB_ApiP_P1 (Portugal) | MF033350/ NC_042006 | A. pittii CEB-AP (N/A) | gp43 | ASN73504/ YP_009610482 | tailspike protein/ tail fiber protein | [26] | - | |
77 | vB_ApiP_P2 (Portugal) | MF033351/ NC_042007 | A. pittii NIPH 76 (N/A) | gp48 | ASN73558/ YP_009610536 | tailspike protein/ tail fiber protein | [26] | - | |
78 | vB_Ab-P-7 (Portugal) | OQ982387 | N/A (N/A) | gp43 | WKV23613 | tail spike protein | - | - | |
79 | vB_AP_P1489 (China) | OQ451773 | A. pittii N/A (N/A) | gp3 | WEM05711 | non-contractile tail fiber protein | - | - | |
80 | AIIMS-AbE5-RC (India) | OP291336 | N/A (N/A) | there is no region in the genome corresponding to TSP due to possible sequencing or assembly errors | - | ||||
Viruses; Duplodnaviria; Heunggongvirae; Uroviricota; Caudoviricetes; Autographiviridae; Beijerinckvirinae | |||||||||
1 | Aristophanes (Russia) | MT783706 | KZ-1098 (K26) | gp41 | QNO11465 | tail spike protein | [30,70] | K26 | |
Viruses; Duplodnaviria; Heunggongvirae; Uroviricota; Caudoviricetes; Autographiviridae; Beijerinckvirinae; Daemvirus; Daemvirus acibel007 | |||||||||
1 | vB_AbaP_Acibel007 (Belgium) | KJ473423/NC_025457 | 070517/0072 (N/A) | gp46 | AHY26817/ YP_009103257 | putative tail fiber/tail protein | [68] | - | |
Viruses; Duplodnaviria; Heunggongvirae; Uroviricota; Caudoviricetes; Autographiviridae; Beijerinckvirinae; Pettyvirus; Pettyvirus petty | |||||||||
1 | Petty (USA) | KF669656/ NC_023570 | A. nosocomialis AU0783 (N/A) | gp39 | AGY48011/ YP_009006536 | tail fiber protein | [62,63] | K116 |
# | Phage Name (Country) | Genbank Accession # (##) | Acinetobacter Bacterial Host(s) (K Type) | Tailspike Protein | Reference | K Specificity of a Phage * | ||
---|---|---|---|---|---|---|---|---|
# of Gene Product | Genbank Accession # | Annotation in Genbank | ||||||
1 | SH-Ab 15599 (China) | MH517022 | A. baumannii 15599 (N/A) ** | gp195 | AXF41546 | hypothetical protein | [64,80] | K77 |
gp196 | AXF41547 | tail fiber | K2 | |||||
gp197 | AXF41548 | hypothetical protein | - | |||||
2 | nACB2 (Portugal) | OQ032512 | Acinetobacter halotolerans ANC 5766T (N/A) | gp164 | WAW11689 | tailspike | [78] | - |
gp165 | WAW11692 | tailspike | - | |||||
gp166 | WAW11690 | putative tail with lipase actitity | - |
# | Phage Name * (Country) | Genbank Accession # (##) | Acinetobacter Bacterial Host ** (K Type) | Tailspike Protein | Reference *** | K Specificity of a Phage **** | ||
---|---|---|---|---|---|---|---|---|
# of Gene Product | Genbank Accession # (##) | Annotation in Genbank | ||||||
1 | Abp95 (China) | MZ618622 | AB2013-95 (N/A) | gp55 | QYC51728 | pectate lyase superfamily protein | [86] | K2 |
2 | vB_AbaM_fThrA (Iran) | PP171454 | Tehran-1 (N/A) | gp50 | WVH13570 | tail fiber protein | - | K2 |
3 | NJ02 (China) | OR126895 | N/A (N/A) | gp64 | WJZ47808 | tail fiber protein | - | K2 |
4 | WCHABP1 (China) | KY829116/ NC_041966 | Ab1186 (N/A) | gp5 | ARQ94726/ YP_009604496 | putative tail fiber protein | [97] | K3 |
5 | Abp9 (China) | MN166083 | ABZY9 (N/A) | gp49 | QEA11050 | hypothetical protein | [85] | K3 |
6 | vB_AbaM_IME512 (China) | MH853788 | N/A (N/A) | gp66 | AYP69084 | hypothetical protein | - | K3 |
7 | P1068 (China) | OQ689089 | N/A (N/A) | gp30 | WHB31253 | hypothetical protein | - | K3 |
8 | vB_AbaM_IME285 (China) | MH853786 | Ab387 (K9) | gp49 | AYP68900 | tail fiber protein | [94] | K9 |
9 | WCHABP12 (China) | KY670595/ NC_041924 | Ab1262 (N/A) | gp16 | ARB06757/ YP_009600510 | tail fiber protein | [97] | K9 |
10 | HZY2308 (China) | OR730450 | N/A (N/A) | gp55 | WPH63970 | tail fiber protein | - | K9 |
11 | BUCT629 (China) | MZ712044 | N/A (N/A) | gp16 | QZI85319 | tail fiber protein | [90] | K9 |
12 | Arbor (China) | ON237674 | XH1383 (N/A) | gp45 | URY98759 | putative tail fiber protein | - | K14 |
13 | vB_AbaM_AB3P2 (China) | OR526523 | AB3 (N/A) | gp17 | WOZ14994 | tail spike protein | [93] | K26 |
14 | P115 (South Korea) | OR180306 | B115 (K48) ***** | gp42 | WNT46052 | hypothetical protein | [82] | K48 |
15 | YMC-13-01-C62 (South Korea) | KJ817802/ NC_024785 | YMC/13/01/C62 (N/A) | gp45 | AID17959/ YP_009055466 | hypothetical protein | - | K48 |
16 | YMC11/12/R2315 (South Korea) | KP861229/ NC_028855 | YMC11/12/R2315 (N/A) | gp83 | AJT61314/ YP_009203602 | hypothetical protein | [98] | K48 |
17 | YMC11/12/R1215 (South Korea) | KP861231 | YMC11/12/R1215 (N/A) | gp21 | AJT61417 | hypothetical protein | [98] | K48 |
18 | A832.1 (South Korea) | OR180310 | B115 (K48) ***** | gp40 | WNT46469 | hypothetical protein | [82] | K48 |
19 | P711 (South Korea) | OR180308 | B711 (K72) ****** | gp39 | WNT46303 | hypothetical protein | [82] | K72 |
20 | Bphi-R2919 (South Korea) | MN516421 | YMC18/02/R2919 (N/A) | gp20 | QGH74055 | hypothetical protein | - | K72 |
21 | Bphi-R1888 (South Korea) | MN516422 | YMC17/03/R1888 (N/A) | gp19 | QGH74134 | hypothetical protein | - | K72 |
22 | A2.1 (South Korea) | OR180309 | N/A (N/A) | gp39 | WNT46385 | hypothetical protein | - | K72 |
23 | AbP2 (China) | MF346584/ NC_041998 | AB2 (N/A) | gp17 | ASJ78888/ YP_009609870 | tail fiber protein | [84] | K77 |
24 | Ab31 (Turkey) | OR045355 | N/A (N/A) | gp55 | WMC00262 | tail fiber protein | - | K77 |
25 | Ab59 (Turkey) | OR045357 | N/A (N/A) | gp95 | WMC00561 | tail fiber protein | - | K77 |
26 | Ab65 (Turkey) | OR045358 | N/A (N/A) | gp28 and gp29 ******* | WMC00590 and WMC00591 | tail fiber proteins | - | K77 |
27 | Scipio (Russia) | ON036883 | LUH5534 (K82) | gp39 | UQS93268 | tailspike protein | [88,149] | K82 |
28 | AP22 (Russia) | HE806280/ NC_017984 | 1053 (K91) | gp54 | CCH57762/ YP_006383804 | hypothetical protein/tail protein | [87,126,150] | K91 (40) |
29 | Cato (Russia) | OM471864 | KZ-1102 (K102) | gp43 | UMO77867 | tailspike protein | [91] | K102 |
30 | Brutus (Russia) | ON036882 | MAR15-3273 (K116) | gp46 | UQS93189 | tailspike protein | [88] | K116 |
31 | vB_AbaM_BP10 (China) | OP585104 | AB10 (N/A) | gp74 | UYL86100 | tail spike protein, capsular polysaccharide depolymerase | - | K116 |
32 | AB1 (China) | HM368260/ NC_042028 | KD311 (N/A) | gp76 | ADO14447/ YP_009613841 | tail fiber protein | [83,151] | - |
33 | phiAC-1 (South Korea) | JX560521/ NC_028995 | Acinetobacter soli KZ-1 (N/A) | gp69 | AFU62318/ YP_009216837 | putative tail fiber protein | [92] | - |
34 | vB_AbaM-IME-AB2 (China) | JX976549/ NC_041857 | MDR-AB2 (N/A) | gp71 | AFV51555/ YP_009592222 | putative tail fiber | [152] | - |
35 | vB_AbaM_IME284 (China) | MH853787 | N/A (N/A) | gp48 | AYP68982 | hypothetical protein | - | - |
36 | LZ35 (China) | KU510289/ NC_031117 | N/A (N/A) | gp30 | AMD43190/ YP_009291902 | putative tail-fiber protein | [153] | - |
37 | BUCT628 (China) | MZ593728 | N/A (N/A) | gp25 | QYC51347 | hypothetical protein | [89] | - |
38 | vB_AbM_WUPSU or vWUPSU (Thailand) | OL743187 | NPRCOE 160519 (N/A) | gp83 | UJQ43526 | putative tail-fiber protein | [96] | - |
39 | XC1 (China) | OQ547903 | A. nosocomialis N/A (N/A) | gp83 | WFD61290 | tail fiber protein | - | - |
# | Phage Name * (Country) | Genbank Accession # (##) | A. baumannii Bacterial Host(s) ** (K Type) | Tailspike Protein | Reference *** | K Specificity of a Phage **** | ||
---|---|---|---|---|---|---|---|---|
# of Gene Product | Genbank Accession # (##) | Annotation in Genbank | ||||||
Viruses; Duplodnaviria; Heunggongvirae; Uroviricota; Caudoviricetes (Cluster 13) | ||||||||
1 | Mithridates (Russia) | MW316731 | LUH 5533 (K7) | gp61 | QVG63948 | tail spike protein | [144] | K7 |
2 | AM24 (Russia) | KY000079 | B05 (K9) | gp50 | APD20249 | tailspike protein | [71] | K9 |
3 | Herod (Russia) | MW316732 | KZ-1096 (K10) | gp58 | QVG64122 | tail spike protein | - | K10 |
4 | YMC13/03/R2096 (South Korea) | KM672662/NC_027332 | YMC13/03/R209 (N/A) | gp34 | AIW02768/ YP_009146765 | tail fiber protein | [109] | K14 |
5 | P577 (South Korea) | OR180307 | B577 (K14) ***** | gp162 | WNT46259 | putative tail fiber | [82] | K14 |
6 | Bestia (Russia) | MW316733 | KZ-1098 (K26) | gp53 | QVG64286 | tail spike protein | [70] | K26 |
Viruses; Duplodnaviria; Heunggongvirae; Uroviricota; Caudoviricetes (Cluster 14) | ||||||||
1 | BS46 (United Kingdom) | MN276049 | AC54 (K9) B05 (K9) | gp47 | QEP53229 | tailspike protein | [110,126,162,163] | K9 |
2 | vB_AbaM_B9 (Portugal) | MH133207 | NIPH 201 (K45) | gp69 | AWD93192 | tail spike protein | [28] | K30/45 |
3 | TaPaz (Russia) | MZ043613 | NIPH 601 (K47) | gp78 | QVW53859 | tailspike protein I | [33] | K47 |
gp79 | QVW53860 | tailspike protein II | K102 | |||||
4 | Phab24 (China) | MZ477002 | XH198 | gp164 | QXM18609 | hypothetical protein | [111] | - |
# | Phage Name (Country) | Genbank Accession # | Acinetobacter Bacterial Host * | Tailspike Protein | Reference | ||
---|---|---|---|---|---|---|---|
# of Gene Product | Genbank Accession # | Annotation in Genbank | |||||
Viruses; Duplodnaviria; Heunggongvirae; Uroviricota; Caudoviricetes (Cluster 20) | |||||||
1 | 53 (China) | MW590698 (unverified) | WHG40137 | the genome sequence was not annotated by the authors; the coordinates of the gene encoding TSP predicted in this work are as follows: 40833–42812 | - | ||
2 | Barton (USA) | MW176032 | A. calcoaceticus ATCC 23055 | gp20 | QXO06608 | hypothetical protein | - |
3 | DMU1 (USA) | MT992243 | 19606 | gp20 | QOI69765 | hypothetical protein | [115] |
4 | JeffCo (USA) | MW176034 | A. calcoaceticus ATCC 23055 | gp20 | QXO06716 | hypothetical protein | - |
5 | SH-Ab 15497 (China) | MG674163 | N/A | gp19 | AUG85465 | hypothetical protein | [70,116] |
Viruses; Duplodnaviria; Heunggongvirae; Uroviricota; Caudoviricetes (Cluster 22) | |||||||
1 | Effie (USA) | MW176033 | A. calcoaceticus ATCC 23055 | gp24 | QXO06658 | SGNH/GDSL hydrolase family protein | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Evseev, P.V.; Sukhova, A.S.; Tkachenko, N.A.; Skryabin, Y.P.; Popova, A.V. Lytic Capsule-Specific Acinetobacter Bacteriophages Encoding Polysaccharide-Degrading Enzymes. Viruses 2024, 16, 771. https://doi.org/10.3390/v16050771
Evseev PV, Sukhova AS, Tkachenko NA, Skryabin YP, Popova AV. Lytic Capsule-Specific Acinetobacter Bacteriophages Encoding Polysaccharide-Degrading Enzymes. Viruses. 2024; 16(5):771. https://doi.org/10.3390/v16050771
Chicago/Turabian StyleEvseev, Peter V., Anastasia S. Sukhova, Nikolay A. Tkachenko, Yuriy P. Skryabin, and Anastasia V. Popova. 2024. "Lytic Capsule-Specific Acinetobacter Bacteriophages Encoding Polysaccharide-Degrading Enzymes" Viruses 16, no. 5: 771. https://doi.org/10.3390/v16050771
APA StyleEvseev, P. V., Sukhova, A. S., Tkachenko, N. A., Skryabin, Y. P., & Popova, A. V. (2024). Lytic Capsule-Specific Acinetobacter Bacteriophages Encoding Polysaccharide-Degrading Enzymes. Viruses, 16(5), 771. https://doi.org/10.3390/v16050771