Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = polyolefin encapsulant

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1979 KB  
Article
In Situ Synthesis of Hierarchical Carbon-Encapsulated Pd Nanoparticles as an Efficient Semi-Hydrogenation Catalyst
by Weijie Kong, Wenhui Zhang, Yiming Wang, Xin Chen, Yongjian Ai, Zenan Hu and Hong-Bin Sun
Catalysts 2025, 15(3), 295; https://doi.org/10.3390/catal15030295 - 20 Mar 2025
Viewed by 1022
Abstract
The process of directly using atmospheric H2 for the catalytic semi-hydrogenation of alkynes to alkenes has significant applications in the polyolefin industry. Herein, we report a facile approach to synthesize a hierarchical carbon-encapsulated Pd catalyst for the highly selective semi-hydrogenation of nitrophenylacetylene. [...] Read more.
The process of directly using atmospheric H2 for the catalytic semi-hydrogenation of alkynes to alkenes has significant applications in the polyolefin industry. Herein, we report a facile approach to synthesize a hierarchical carbon-encapsulated Pd catalyst for the highly selective semi-hydrogenation of nitrophenylacetylene. The catalyst featured a structure of (Pd@NG)/(Pd@C), which demonstrated that an oligo-layer of nitrogen-doped graphene (NG)-encapsulated Pd particles are supported on the carbon matrix, semi-embedded by another type of Pd particle. The catalyst, named Pd@NC, achieved 99% selectivity for nitrostyrene at 97% nitrophenylacetylene conversion and demonstrated an excellent stability. A good selectivity arose from the bridging effect of hierarchical porous carbon, where hydrogen activation and alkyne hemihydrogenation took place on palladium particles and NG, respectively. The NG layer provided excellent protection against the over-hydrogenation of the reaction. Full article
(This article belongs to the Special Issue Catalyst Immobilization)
Show Figures

Graphical abstract

10 pages, 2336 KB  
Article
A Facile Approach for the Encapsulation of Perovskite Solar Cells
by Yibo Xu, Rui Xia, Jifan Gao, Shubo Wang, Jun Zhu, Weicheng Xiong, Ningyi Yuan and Jianning Ding
Energies 2023, 16(2), 598; https://doi.org/10.3390/en16020598 - 4 Jan 2023
Cited by 15 | Viewed by 6693
Abstract
Effectively encapsulating perovskite solar cells (PSCs) to enhance the external reliability is the key towards commercialization. We herein propose a facile encapsulation method by introducing conductive ribbons and a polyethylene terephthalate (PET) backsheet on both sides of PSC. Via applying thermoplastic polyolefin (TPO) [...] Read more.
Effectively encapsulating perovskite solar cells (PSCs) to enhance the external reliability is the key towards commercialization. We herein propose a facile encapsulation method by introducing conductive ribbons and a polyethylene terephthalate (PET) backsheet on both sides of PSC. Via applying thermoplastic polyolefin (TPO) encapsulant, we implemented PSCs with fine encapsulation, enabling considerable durability in the ambient atmosphere and even with water immersion, demonstrating almost no degradation in the device output, which is ascribed to the low water vapor transmission rate as well as the high chemical stability of TPO. The operation reliability of the encapsulated cell is also significantly increased, maintaining 80% of the initial efficiency after 770 hours’ light illumination in an ambient atmosphere. This novel encapsulation route provides a feasible idea for the commercial application of PSCs in the future. Full article
Show Figures

Figure 1

11 pages, 4227 KB  
Article
Construction and Characterization of Polyolefin Elastomer Blends with Chemically Modified Hydrocarbon Resin as a Photovoltaic Module Encapsulant
by Jin Hwan Park and Seok-Ho Hwang
Polymers 2022, 14(21), 4620; https://doi.org/10.3390/polym14214620 - 31 Oct 2022
Cited by 12 | Viewed by 5641
Abstract
In this study, polyolefin elastomer (POE) was blended with a chemically modified hydrocarbon resin (m-HCR), which was modified through a simple radical grafting reaction using γ-methacryloxypropyl trimethoxy silane (MTS) as an adhesion promotor to the glass surface, to design an [...] Read more.
In this study, polyolefin elastomer (POE) was blended with a chemically modified hydrocarbon resin (m-HCR), which was modified through a simple radical grafting reaction using γ-methacryloxypropyl trimethoxy silane (MTS) as an adhesion promotor to the glass surface, to design an adhesion-enhanced polyolefin encapsulant material for photovoltaic modules. Its chemical modification was confirmed by 1H and 29Si NMR and FT-IR. Interestingly, the POE blends with the m-HCR showed that the melting peak temperature (Tm) was not changed. However, Tm shifted to lower values with increasing m-HCR content after crosslinking. Additionally, the mechanical properties did not significantly differ with increasing m-HCR content. Meanwhile, with increasing m-HCR content in the POE blend, the peel strength increased linearly without sacrificing their transmittance. The test photovoltaic modules comprising the crosslinked POE blend encapsulants showed little difference in the electrical performance after manufacturing. After 1000 h of damp-heat exposure, no significant power loss was observed. Full article
Show Figures

Graphical abstract

13 pages, 1440 KB  
Article
Polar Wax as Adhesion Promoter in Polymeric Blend Films for Durable Photovoltaic Encapsulants
by Marilena Baiamonte, Elisabetta Morici, Claudio Colletti and Nadka Tz. Dintcheva
Materials 2022, 15(19), 6751; https://doi.org/10.3390/ma15196751 - 29 Sep 2022
Cited by 5 | Viewed by 2505
Abstract
Technological developments in the solar photovoltaic field must guarantee the high performance and low deterioration of solar cells in order for solar power plants to be more efficient and competitive. The solar cell needs comprehensive protection offered by a polymeric encapsulant, which improves [...] Read more.
Technological developments in the solar photovoltaic field must guarantee the high performance and low deterioration of solar cells in order for solar power plants to be more efficient and competitive. The solar cell needs comprehensive protection offered by a polymeric encapsulant, which improves UV stability, reduces water and moisture absorption, reduces oxygen and vapor permeability and enhances mechanical resistance. Moreover, high transparency and adhesion yields improved the solar panel performance. The current work analyzes polymeric films based on poly(ethylene-co-vinyl acetate) (EVA) and polyolefin (PO) for photovoltaic encapsulant use (the high temperature resistance is improved by adding PO to EVA, as investigated and documented before). To enhance the mechanical resistance and optical properties of the investigated matrices, a crosslinking agent, an adhesion promoter and stabilizing agents have been incorporated in both EVA and EVA/PO systems. The adhesion promoter is a polar wax–silane-free agent; the absence of the silane function allows the integrity of the module to be maintained over time. All samples were characterized through mechanical and rheological analysis, and their long-term UV stability was investigated by accelerated ageing and by FTIR and UV–vis spectroscopy. The obtained results suggest that the presence of a crosslinking agent, an adhesion promoter and stabilizers in EVA/PO-based films allows for the achievement of the required features for the encapsulants, showing mechanical and rheological behavior similar to those of EVA containing the same additives. Full article
Show Figures

Graphical abstract

18 pages, 2932 KB  
Review
Sustainable PV Module Design—Review of State-of-the-Art Encapsulation Methods
by Anna Katharina Schnatmann, Fabian Schoden and Eva Schwenzfeier-Hellkamp
Sustainability 2022, 14(16), 9971; https://doi.org/10.3390/su14169971 - 12 Aug 2022
Cited by 32 | Viewed by 7240
Abstract
In times of climate change and increasing resource scarcity, the importance of sustainable renewable energy technologies is increasing. However, the photovoltaic (PV) industry is characterised by linear economy structures, energy-intensive production, downcycling and little sustainability. One starting point for sustainable technologies is offered [...] Read more.
In times of climate change and increasing resource scarcity, the importance of sustainable renewable energy technologies is increasing. However, the photovoltaic (PV) industry is characterised by linear economy structures, energy-intensive production, downcycling and little sustainability. One starting point for sustainable technologies is offered by the circular economy with its circular design principles. One problematic aspect of the design of crystalline PV modules is the encapsulation. In particular, the encapsulation avoids high-value recycling or the remanufacturing of modules, which could close loops and extend the lifetime of the products. For this reason, this paper provides an overview of the current state of encapsulation methods regarding production, materials and recycling. In addition, the current state of sustainability research in the photovoltaic sector is presented using the VOSviewer tool. Furthermore, alternative encapsulation technologies are discussed and compared in terms of performance and sustainability. The current encapsulation method using ethylene vinyl acetate as the encapsulation material offers major disadvantages in terms of performance and recyclability. Alternatives are the thermoplastic material polyolefin and the alternative structure of the NICE technology. Overall, however, research should focus more on sustainability and recyclability. Alternative module structures will be a decisive factor in this context. Full article
(This article belongs to the Special Issue Renewable Energy Technologies and Environmental Impact Assessment)
Show Figures

Figure 1

8 pages, 1993 KB  
Communication
Gradient Porous Structured MnO2-Nonwoven Composite: A Binder-Free Polymeric Air Filter for Effective Room-Temperature Formaldehyde Removal
by Zijian Dai, Jianyong Yu and Yang Si
Polymers 2022, 14(12), 2504; https://doi.org/10.3390/polym14122504 - 20 Jun 2022
Cited by 6 | Viewed by 3232
Abstract
Recently, MnO2-coated polymeric filters have shown promising performance in room-temperature formaldehyde abatement. However, a commonly known concern of MnO2/polymer composites is either MnO2 crystal encapsulation or weak adhesion. This work reports a low-cost high-throughput and green strategy to [...] Read more.
Recently, MnO2-coated polymeric filters have shown promising performance in room-temperature formaldehyde abatement. However, a commonly known concern of MnO2/polymer composites is either MnO2 crystal encapsulation or weak adhesion. This work reports a low-cost high-throughput and green strategy to produce binder-free MnO2-nonwoven composite air filters. The production approach is energy saving and environmentally friendly, which combines MnO2 crystal coating on bicomponent polyolefin spunbond nonwovens and subsequent heat immobilizing of crystals, followed by the removal of weakly bonded MnO2. The binder-free MnO2-nonwoven composites show firm catalyst-fiber adhesion, a gradient porous structure, and excellent formaldehyde removal capability (94.5% ± 0.4%) at room temperature, and the reaction rate constant is 0.040 min−1. In contrast to the MnO2-nonwoven composites containing organic binders, the HCHO removal of binder-free filters increased by over 4%. This study proposes an alternative solution in producing catalyst/fabric composite filters for formaldehyde removal. Full article
(This article belongs to the Special Issue Progress in Polymer Membranes and Films)
Show Figures

Graphical abstract

13 pages, 1317 KB  
Article
Comparison of Crosslinking Kinetics of UV-Transparent Ethylene-Vinyl Acetate Copolymer and Polyolefin Elastomer Encapsulants
by Gernot M. Wallner, Baloji Adothu, Robert Pugstaller, Francis R. Costa and Sudhanshu Mallick
Polymers 2022, 14(7), 1441; https://doi.org/10.3390/polym14071441 - 1 Apr 2022
Cited by 26 | Viewed by 6143
Abstract
Encapsulants based on ethylene-vinyl acetate copolymers (EVA) or polyolefin elastomers (POE) are essential for glass or photovoltaic module laminates. To improve their multi-functional property profile and their durability, the encapsulants are frequently peroxide crosslinked. The crosslinking kinetics are affected by the macromolecular structure [...] Read more.
Encapsulants based on ethylene-vinyl acetate copolymers (EVA) or polyolefin elastomers (POE) are essential for glass or photovoltaic module laminates. To improve their multi-functional property profile and their durability, the encapsulants are frequently peroxide crosslinked. The crosslinking kinetics are affected by the macromolecular structure and the formulation with stabilizers such as phenolic antioxidants, hindered amine light stabilizers or aromatic ultraviolet (UV) absorbers. The main objective of this study was to implement temperature-rise and isothermal dynamic mechanical analysis (DMA) approaches in torsional mode and to assess and compare the crosslinking kinetics of novel UV-transparent encapsulants based on EVA and POE. The gelation time was evaluated from the crossover of the storage and loss shear modulus. While the investigated EVA and POE encapsulants revealed quite similar activation energy values of 155 kJ/moles, the storage modulus and complex viscosity in the rubbery state were significantly higher for EVA. Moreover, the gelation of the polar EVA grade was about four times faster than for the less polar POE encapsulant. Accordingly, the curing reaction of POE was retarded up to a factor of 1.6 to achieve a progress of crosslinking of 95%. Hence, distinct differences in the crosslinking kinetics of the UV-transparent EVA and POE grades were ascertained, which is highly relevant for the lamination of modules. Full article
(This article belongs to the Special Issue Polymer Films for Photovoltaic Applications)
Show Figures

Graphical abstract

13 pages, 4207 KB  
Article
Durability and Performance of Encapsulant Films for Bifacial Heterojunction Photovoltaic Modules
by Marilena Baiamonte, Claudio Colletti, Antonino Ragonesi, Cosimo Gerardi and Nadka Tz. Dintcheva
Polymers 2022, 14(5), 1052; https://doi.org/10.3390/polym14051052 - 6 Mar 2022
Cited by 19 | Viewed by 5165
Abstract
Energy recovery from renewable sources is a very attractive, and sometimes, challenging issue. To recover solar energy, the production of photovoltaic (PV) modules becomes a prosperous industrial certainty. An important material in PV modules production and correct functioning is the encapsulant material and [...] Read more.
Energy recovery from renewable sources is a very attractive, and sometimes, challenging issue. To recover solar energy, the production of photovoltaic (PV) modules becomes a prosperous industrial certainty. An important material in PV modules production and correct functioning is the encapsulant material and it must have a good performance and durability. In this work, accurate characterizations of performance and durability, in terms of photo- and thermo-oxidation resistance, of encapsulants based on PolyEthylene Vinyl Acetate (EVA) and PolyOlefin Elastomer (POE), containing appropriate additives, before (pre-) and after (post-) lamination process have been carried out. To simulate industrial lamination processing conditions, both EVApre-lam and POEpre-lam sheets have been subjected to prolonged thermal treatment upon high pressure. To carry out an accurate characterization, differential scanning calorimetry, rheological and mechanical analysis, FTIR and UV-visible spectroscopy analyses have been performed on pre- and post-laminated EVA and POE. The durability, in terms of photo- and thermo-oxidation resistance, of pre-laminated and post-laminated EVA and POE sheets has been evaluated upon UVB exposure and prolonged thermal treatment, and the progress of degradation has been monitored by spectroscopy analysis. All obtained results agree that the lamination process has a beneficial effect on 3D-structuration of both EVA and POE sheets, and after lamination, the POE shows enhanced rigidity and appropriate ductility. Finally, although both EVA and POE can be considered good candidates as encapsulants for bifacial PV modules, it seems that the POE sheets show a better resistance to oxidation than the EVA sheets. Full article
(This article belongs to the Special Issue Polymer Films for Photovoltaic Applications)
Show Figures

Graphical abstract

15 pages, 6338 KB  
Article
Biocomposites of Low-Density Polyethylene Plus Wood Flour or Flax Straw: Biodegradation Kinetics across Three Environments
by Anna K. Zykova, Petr V. Pantyukhov, Elena E. Mastalygina, Christian Chaverri-Ramos, Svetlana G. Nikolaeva, Jose J. Saavedra-Arias, Anatoly A. Popov, Sam E. Wortman and Matheus Poletto
Polymers 2021, 13(13), 2138; https://doi.org/10.3390/polym13132138 - 29 Jun 2021
Cited by 22 | Viewed by 3952
Abstract
The purpose of this study was to assess the potential for biocomposite films to biodegrade in diverse climatic environments. Biocomposite films based on polyethylene and 30 wt.% of two lignocellulosic fillers (wood flour or flax straw) of different size fractions were prepared and [...] Read more.
The purpose of this study was to assess the potential for biocomposite films to biodegrade in diverse climatic environments. Biocomposite films based on polyethylene and 30 wt.% of two lignocellulosic fillers (wood flour or flax straw) of different size fractions were prepared and studied. The developed composite films were characterized by satisfactory mechanical properties that allows the use of these materials for various applications. The biodegradability was evaluated in soil across three environments: laboratory conditions, an open field in Russia, and an open field in Costa Rica. All the samples lost weight and tensile strength during biodegradation tests, which was associated with the physicochemical degradation of both the natural filler and the polymer matrix. The spectral density of the band at 1463 cm−1 related to CH2-groups in polyethylene chains decreased in the process of soil burial, which is evidence of polymer chain breakage with formation of CH3 end groups. The degradation rate of most biocomposites after 20 months of the soil assays was greatest in Costa Rica (20.8–30.9%), followed by laboratory conditions (16.0–23.3%), and lowest in Russia (13.2–22.0%). The biocomposites with flax straw were more prone to biodegradation than those with wood flour, which can be explained by the chemical composition of fillers and the shape of filler particles. As the size fraction of filler particles increased, the biodegradation rate increased. Large particles had higher bioavailability than small spherical ones, encapsulated by a polymer. The prepared biocomposites have potential as an ecofriendly replacement for traditional polyolefins, especially in warmer climates. Full article
(This article belongs to the Special Issue Natural Fibres and their Composites II)
Show Figures

Graphical abstract

12 pages, 6048 KB  
Article
Performance Evaluation of Photovoltaic Modules by Combined Damp Heat and Temperature Cycle Test
by Hyeonwook Park, Wonshoup So and Woo Kyoung Kim
Energies 2021, 14(11), 3328; https://doi.org/10.3390/en14113328 - 5 Jun 2021
Cited by 9 | Viewed by 5229
Abstract
Standard damp heat (DH), temperature cycle (TC), and combined DH-TC tests were performed using monocrystalline Si 72-cell modules with a conventional ethylene vinyl acetate (EVA) encapsulant, and their module performance and electroluminescence images were investigated. During the DH test, a significant drop (~20%) [...] Read more.
Standard damp heat (DH), temperature cycle (TC), and combined DH-TC tests were performed using monocrystalline Si 72-cell modules with a conventional ethylene vinyl acetate (EVA) encapsulant, and their module performance and electroluminescence images were investigated. During the DH test, a significant drop (~20%) in the maximum output power of the module was noticed, primarily because of the degradation of fill factor and an increase in series resistance at 5500 h of DH testing (DH5500), presumably due to the corrosion of metal electrodes by moisture ingress. Conversely, it was revealed that temperature cycling did not seriously degrade module performance until 1400 cycles. However, the combined DH5000-TC600 test suggested in this study, with a sequence of DH1000-TC200-DH1000-TC200-DH1000-TC200-DH2000, was confirmed to provide harsher conditions than the DH-only test by causing a 20% decrease in maximum output power (Pmax) after DH3000/TC400. Promisingly, we confirmed that the module with a polyolefin elastomer encapsulant showed better durability than the module with EVA even in the combined DH-TC test, showing a limited decrease in Pmax (~10%) even after the DH5500/TC600 test. Full article
(This article belongs to the Special Issue Modeling, Design, Development and Testing for Solar System)
Show Figures

Graphical abstract

21 pages, 4086 KB  
Article
Comparison of Degradation Behavior of Newly Developed Encapsulation Materials for Photovoltaic Applications under Different Artificial Ageing Tests
by Chiara Barretta, Gernot Oreski, Sonja Feldbacher, Katharina Resch-Fauster and Roberto Pantani
Polymers 2021, 13(2), 271; https://doi.org/10.3390/polym13020271 - 15 Jan 2021
Cited by 55 | Viewed by 5783
Abstract
The main focus of this work is to investigate the degradation behavior of two newly developed encapsulants for photovoltaic applications (thermoplastic polyolefin (TPO) and polyolefin elastomer (POE)), compared to the most widely used Ethylene Vinyl Acetate (EVA) upon exposure to two different artificial [...] Read more.
The main focus of this work is to investigate the degradation behavior of two newly developed encapsulants for photovoltaic applications (thermoplastic polyolefin (TPO) and polyolefin elastomer (POE)), compared to the most widely used Ethylene Vinyl Acetate (EVA) upon exposure to two different artificial ageing tests (with and without ultraviolet (UV) irradiation). Additive composition, optical and thermal properties and chemical structure (investigated by means of Thermal Desorption Gas Chromatography coupled to Mass Spectrometry, UV-Visible-Near Infrared spectroscopy, Differential Scanning Calorimetry, Thermogravimetric Analysis and Fourier Transform-Infrared spectroscopy, respectively) of the analyzed polymers were monitored throughout the exposure to artificial ageing tests. Relevant signs of photo-oxidation were detectable for TPO after the UV test, as well as a depletion of material’s stabilizers. Signs of degradation for EVA and POE were detected when the UV dose applied was equal to 200 kW h m−2. A novel approach is presented to derive information of oxidation induction time/dose from thermogravimetric measurements that correlate well with results obtained by using oxidation indices. Full article
(This article belongs to the Special Issue Processing-Structure-Properties Relationships in Polymers II)
Show Figures

Graphical abstract

8 pages, 2803 KB  
Article
Reflection Losses Analysis from Interspacing between the Cells in a Photovoltaic Module Using Novel Encapsulant Materials and Backsheets
by Asma Shamim, Muhammad Noman and Adnan Daud Khan
Materials 2019, 12(13), 2067; https://doi.org/10.3390/ma12132067 - 27 Jun 2019
Cited by 4 | Viewed by 3303
Abstract
Higher efficiency and output power of a photovoltaic (PV) module can be achieved by minimizing cell-to-module (CTM) power losses. CTM losses are mainly dependent on electrical and optical losses. In this work, reflection losses from interspacing of cells with respect to different encapsulant [...] Read more.
Higher efficiency and output power of a photovoltaic (PV) module can be achieved by minimizing cell-to-module (CTM) power losses. CTM losses are mainly dependent on electrical and optical losses. In this work, reflection losses from interspacing of cells with respect to different encapsulant materials and backsheets are evaluated. Two novel encapsulant materials thermoplastic polyolefin (TPO) and polybutadiene ionomer are used, in addition to conventionally used ethylene vinyl acetate (EVA). Moreover, the effect of using these encapsulant materials separately with Tedlar and Aluminum foil as backsheets is realized. It has been observed that TPO in combination with Tedlar presents minimum reflection losses compared to other encapsulant materials. The reflection losses calculated experimentally with polybutadiene ionomer were 5.4% less than the conventionally used EVA, whereas, the reflection losses calculated experimentally with TPO were 5.9% less than the conventionally used EVA. The experimental results obtained are also validated through simulations. Full article
(This article belongs to the Special Issue Materials for Photovoltaic Applications)
Show Figures

Figure 1

Back to TopTop