Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = polynomial Wronskians

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 475 KB  
Article
Confluent Darboux Transformations and Wronskians for Algebraic Solutions of the Painlevé III (D7) Equation
by Joe W. E. Harrow and Andrew N. W. Hone
Mathematics 2025, 13(14), 2236; https://doi.org/10.3390/math13142236 - 10 Jul 2025
Viewed by 904
Abstract
Darboux transformations are relations between the eigenfunctions and coefficients of a pair of linear differential operators, while Painlevé equations are nonlinear ordinary differential equations whose solutions arise in diverse areas of applied mathematics and mathematical physics. Here, we describe the use of confluent [...] Read more.
Darboux transformations are relations between the eigenfunctions and coefficients of a pair of linear differential operators, while Painlevé equations are nonlinear ordinary differential equations whose solutions arise in diverse areas of applied mathematics and mathematical physics. Here, we describe the use of confluent Darboux transformations for Schrödinger operators, and how they give rise to explicit Wronskian formulae for certain algebraic solutions of Painlevé equations. As a preliminary illustration, we briefly describe how the Yablonskii–Vorob’ev polynomials arise in this way, thus providing well-known expressions for the tau functions of the rational solutions of the Painlevé II equation. We then proceed to apply the method to obtain the main result, namely, a new Wronskian representation for the Ohyama polynomials, which correspond to the algebraic solutions of the Painlevé III equation of type D7. Full article
42 pages, 518 KB  
Article
Exceptional Differential Polynomial Systems Formed by Simple Pseudo-Wronskians of Jacobi Polynomials and Their Infinite and Finite X-Orthogonal Reductions
by Gregory Natanson
Mathematics 2025, 13(9), 1487; https://doi.org/10.3390/math13091487 - 30 Apr 2025
Viewed by 867
Abstract
The paper advances a new technique for constructing the exceptional differential polynomial systems (X-DPSs) and their infinite and finite orthogonal subsets. First, using Wronskians of Jacobi polynomials (JPWs) with a common pair of the indexes, we generate the Darboux–Crum nets of the rational [...] Read more.
The paper advances a new technique for constructing the exceptional differential polynomial systems (X-DPSs) and their infinite and finite orthogonal subsets. First, using Wronskians of Jacobi polynomials (JPWs) with a common pair of the indexes, we generate the Darboux–Crum nets of the rational canonical Sturm–Liouville equations (RCSLEs). It is shown that each RCSLE in question has four infinite sequences of quasi-rational solutions (q-RSs) such that their polynomial components from each sequence form a X-Jacobi DPS composed of simple pseudo-Wronskian polynomials (p-WPs). For each p-th order rational Darboux Crum transform of the Jacobi-reference (JRef) CSLE, used as the starting point, we formulate two rational Sturm–Liouville problems (RSLPs) by imposing the Dirichlet boundary conditions on the solutions of the so-called ‘prime’ SLE (p-SLE) at the ends of the intervals (−1, +1) or (+1, ∞). Finally, we demonstrate that the polynomial components of the q-RSs representing the eigenfunctions of these two problems have the form of simple p-WPs composed of p Romanovski–Jacobi (R-Jacobi) polynomials with the same pair of indexes and a single classical Jacobi polynomial, or, accordingly, p classical Jacobi polynomials with the same pair of positive indexes and a single R-Jacobi polynomial. The common, fundamentally important feature of all the simple p-WPs involved is that they do not vanish at the finite singular endpoints—the main reason why they were selected for the current analysis in the first place. The discussion is accompanied by a sketch of the one-dimensional quantum-mechanical problems exactly solvable by the aforementioned infinite and finite EOP sequences. Full article
(This article belongs to the Special Issue Polynomials: Theory and Applications, 2nd Edition)
43 pages, 521 KB  
Article
On Finite Exceptional Orthogonal Polynomial Sequences Composed of Rational Darboux Transforms of Romanovski-Jacobi Polynomials
by Gregory Natanson
Axioms 2025, 14(3), 218; https://doi.org/10.3390/axioms14030218 - 16 Mar 2025
Cited by 2 | Viewed by 879
Abstract
The paper presents the united analysis of the finite exceptional orthogonal polynomial (EOP) sequences composed of rational Darboux transforms of Romanovski-Jacobi polynomials. It is shown that there are four distinguished exceptional differential polynomial systems (X-Jacobi DPSs) of series J1, J2, J3, and W. [...] Read more.
The paper presents the united analysis of the finite exceptional orthogonal polynomial (EOP) sequences composed of rational Darboux transforms of Romanovski-Jacobi polynomials. It is shown that there are four distinguished exceptional differential polynomial systems (X-Jacobi DPSs) of series J1, J2, J3, and W. The first three X-DPSs formed by pseudo-Wronskians of two Jacobi polynomials contain both exceptional orthogonal polynomial systems (X-Jacobi OPSs) on the interval (−1, +1) and the finite EOP sequences on the positive interval (1, ∞). On the contrary, the X-DPS of series W formed by Wronskians of two Jacobi polynomials contains only (infinitely many) finite EOP sequences on the interval (1, ∞). In addition, the paper rigorously examines the three isospectral families of the associated Liouville potentials (rationally extended hyperbolic Pöschl-Teller potentials of types a, b, and a) exactly quantized by the EOPs in question. Full article
37 pages, 2252 KB  
Article
Rogue Waves in the Nonlinear Schrödinger, Kadomtsev–Petviashvili, Lakshmanan–Porsezian–Daniel and Hirota Equations
by Pierre Gaillard
Axioms 2025, 14(2), 94; https://doi.org/10.3390/axioms14020094 - 27 Jan 2025
Cited by 2 | Viewed by 1515
Abstract
We give some of our results over the past few years about rogue waves concerning some partial differential equations, such as the focusing nonlinear Schrödinger equation (NLS), the Kadomtsev–Petviashvili equation (KPI), the Lakshmanan–Porsezian–Daniel equation (LPD) and the Hirota equation (H). For the NLS [...] Read more.
We give some of our results over the past few years about rogue waves concerning some partial differential equations, such as the focusing nonlinear Schrödinger equation (NLS), the Kadomtsev–Petviashvili equation (KPI), the Lakshmanan–Porsezian–Daniel equation (LPD) and the Hirota equation (H). For the NLS and KP equations, we give different types of representations of the solutions, in terms of Fredholm determinants, Wronskians and degenerate determinants of order 2N. These solutions are called solutions of order N. In the case of the NLS equation, the solutions, explicitly constructed, appear as deformations of the Peregrine breathers PN as the last one can be obtained when all parameters are equal to zero. At order N, these solutions are the product of a ratio of two polynomials of degree N(N+1) in x and t by an exponential depending on time t and depending on 2N2 real parameters: they are called quasi-rational solutions. For the KPI equation, we explicitly obtain solutions at order N depending on 2N2 real parameters. We present different examples of rogue waves for the LPD and Hirota equations. Full article
(This article belongs to the Special Issue Differential Equations and Its Application)
Show Figures

Figure 1

47 pages, 810 KB  
Article
X1-Jacobi Differential Polynomial Systems and Related Double-Step Shape-Invariant Liouville Potentials Solvable by Exceptional Orthogonal Polynomials
by Gregory Natanson
Symmetry 2025, 17(1), 109; https://doi.org/10.3390/sym17010109 - 12 Jan 2025
Cited by 1 | Viewed by 1246
Abstract
This paper develops a new formalism to treat both infinite and finite exceptional orthogonal polynomial (EOP) sequences as X-orthogonal subsets of X-Jacobi differential polynomial systems (DPSs). The new rational canonical Sturm–Liouville equations (RCSLEs) with quasi-rational solutions (q-RSs) were obtained by applying rational Rudjak–Zakhariev [...] Read more.
This paper develops a new formalism to treat both infinite and finite exceptional orthogonal polynomial (EOP) sequences as X-orthogonal subsets of X-Jacobi differential polynomial systems (DPSs). The new rational canonical Sturm–Liouville equations (RCSLEs) with quasi-rational solutions (q-RSs) were obtained by applying rational Rudjak–Zakhariev transformations (RRZTs) to the Jacobi equation re-written in the canonical form. The presented analysis was focused on the RRZTs leading to the canonical form of the Heun equation. It was demonstrated that the latter equation preserves its form under the second-order Darboux–Crum transformation. The associated Sturm–Liouville problems (SLPs) were formulated for the so-called ‘prime’ SLEs solved under the Dirichlet boundary conditions (DBCs). It was proven that one of the two X1-Jacobi DPSs composed of Heun polynomials contains both the X1-Jacobi orthogonal polynomial system (OPS) and the finite EOP sequence composed of the pseudo-Wronskian transforms of Romanovski–Jacobi (R-Jacobi) polynomials, while the second analytically solvable Heun equation does not have the discrete energy spectrum. The quantum-mechanical realizations of the developed formalism were obtained by applying the Liouville transformation to each of the SLPs formulated in such a way. Full article
(This article belongs to the Section Physics)
14 pages, 268 KB  
Article
Totally Positive Wronskian Matrices and Symmetric Functions
by Pablo Díaz, Esmeralda Mainar and Beatriz Rubio
Axioms 2024, 13(9), 589; https://doi.org/10.3390/axioms13090589 - 29 Aug 2024
Cited by 2 | Viewed by 1064
Abstract
The elements of the bidiagonal decomposition (BD) of a totally positive (TP) collocation matrix can be expressed in terms of symmetric functions of the nodes. Making use of this result, and studying the relation between Wronskian and collocation matrices of a given TP [...] Read more.
The elements of the bidiagonal decomposition (BD) of a totally positive (TP) collocation matrix can be expressed in terms of symmetric functions of the nodes. Making use of this result, and studying the relation between Wronskian and collocation matrices of a given TP basis of functions, we can express the entries of the BD of Wronskian matrices as the values of certain symmetric functions evaluated at a single node. Moreover, in the case of polynomial bases, we obtain compact formulae for the entries of the BD of their Wronskian matrices. Interesting examples illustrate the applications of the obtained formulae. Full article
(This article belongs to the Section Algebra and Number Theory)
38 pages, 3002 KB  
Article
Uniqueness of Finite Exceptional Orthogonal Polynomial Sequences Composed of Wronskian Transforms of Romanovski-Routh Polynomials
by Gregory Natanson
Symmetry 2024, 16(3), 282; https://doi.org/10.3390/sym16030282 - 29 Feb 2024
Cited by 2 | Viewed by 1508
Abstract
This paper exploits two remarkable features of the translationally form-invariant (TFI) canonical Sturm–Liouville equation (CSLE) transfigured by Liouville transformation into the Schrödinger equation with the shape-invariant Gendenshtein (Scarf II) potential. First, the Darboux–Crum net of rationally extended Gendenshtein potentials can be specified by [...] Read more.
This paper exploits two remarkable features of the translationally form-invariant (TFI) canonical Sturm–Liouville equation (CSLE) transfigured by Liouville transformation into the Schrödinger equation with the shape-invariant Gendenshtein (Scarf II) potential. First, the Darboux–Crum net of rationally extended Gendenshtein potentials can be specified by a single series of Maya diagrams. Second, the exponent differences for the poles of the CSLE in the finite plane are energy-independent. The cornerstone of the presented analysis is the reformulation of the conventional supersymmetric (SUSY) quantum mechanics of exactly solvable rational potentials in terms of ‘generalized Darboux transformations’ of canonical Sturm–Liouville equations introduced by Rudyak and Zakhariev at the end of the last century. It has been proven by the author that the first feature assures that all the eigenfunctions of the TFI CSLE are expressible in terms of Wronskians of seed solutions of the same type, while the second feature makes it possible to represent each of the mentioned Wronskians as a weighted Wronskian of Routh polynomials. It is shown that the numerators of the polynomial fractions in question form the exceptional orthogonal polynomial (EOP) sequences composed of Wronskian transforms of the given finite set of Romanovski–Routh polynomials excluding their juxtaposed pairs, which have already been used as seed polynomials. Full article
9 pages, 250 KB  
Article
Hyperbolic and Weak Euclidean Polynomials from Wronskian and Leibniz Maps
by Mircea Crasmareanu
Axioms 2024, 13(2), 104; https://doi.org/10.3390/axioms13020104 - 3 Feb 2024
Viewed by 1515
Abstract
A real univariate polynomial is called hyperbolic or stable if all its roots are real. We search for hyperbolic polynomials of two and three degrees by using the Wronskian map W and a dual map to W called Leibniz, since it involves the [...] Read more.
A real univariate polynomial is called hyperbolic or stable if all its roots are real. We search for hyperbolic polynomials of two and three degrees by using the Wronskian map W and a dual map to W called Leibniz, since it involves the classical Leibniz rule for the derivative of a product of functions. In addition to hyperbolicity, we use these two methods to search for a class of polynomials introduced by the first author and now called weak Euclidean. Full article
17 pages, 616 KB  
Article
On the Total Positivity and Accurate Computations of r-Bell Polynomial Bases
by Esmeralda Mainar, Juan Manuel Peña and Beatriz Rubio
Axioms 2023, 12(9), 839; https://doi.org/10.3390/axioms12090839 - 29 Aug 2023
Cited by 1 | Viewed by 1428
Abstract
A new class of matrices defined in terms of r-Stirling numbers is introduced. These r-Stirling matrices are totally positive and determine the linear transformation between monomial and r-Bell polynomial bases. An efficient algorithm for the computation to high relative accuracy [...] Read more.
A new class of matrices defined in terms of r-Stirling numbers is introduced. These r-Stirling matrices are totally positive and determine the linear transformation between monomial and r-Bell polynomial bases. An efficient algorithm for the computation to high relative accuracy of the bidiagonal factorization of r-Stirling matrices is provided and used to achieve computations to high relative accuracy for the resolution of relevant algebraic problems with collocation, Wronskian, and Gramian matrices of r-Bell bases. The numerical experimentation confirms the accuracy of the proposed procedure. Full article
(This article belongs to the Special Issue Advances in Linear Algebra with Applications)
Show Figures

Figure 1

17 pages, 383 KB  
Article
Matrix Approaches for Gould–Hopper–Laguerre–Sheffer Matrix Polynomial Identities
by Tabinda Nahid, Parvez Alam and Junesang Choi
Axioms 2023, 12(7), 621; https://doi.org/10.3390/axioms12070621 - 21 Jun 2023
Cited by 4 | Viewed by 1149
Abstract
The Gould–Hopper–Laguerre–Sheffer matrix polynomials were initially studied using operational methods, but in this paper, we investigate them using matrix techniques. By leveraging properties of Pascal functionals and Wronskian matrices, we derive several identities for these polynomials, including recurrence relations. It is highlighted that [...] Read more.
The Gould–Hopper–Laguerre–Sheffer matrix polynomials were initially studied using operational methods, but in this paper, we investigate them using matrix techniques. By leveraging properties of Pascal functionals and Wronskian matrices, we derive several identities for these polynomials, including recurrence relations. It is highlighted that these identities, acquired via matrix techniques, are distinct from the ones obtained when using operational methods. Full article
(This article belongs to the Special Issue Research in Special Functions)
Back to TopTop