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Abstract: This paper exploits two remarkable features of the translationally form‑invariant (TFI)
canonical Sturm–Liouville equation (CSLE) transfigured by Liouville transformation into the Schrö‑
dinger equationwith the shape‑invariant Gendenshtein (Scarf II) potential. First, theDarboux–Crum
net of rationally extended Gendenshtein potentials can be specified by a single series of Maya dia‑
grams. Second, the exponent differences for the poles of the CSLE in the finite plane are energy‑
independent. The cornerstone of the presented analysis is the reformulation of the conventional
supersymmetric (SUSY) quantum mechanics of exactly solvable rational potentials in terms of ‘gen‑
eralized Darboux transformations’ of canonical Sturm–Liouville equations introduced by Rudyak
and Zakhariev at the end of the last century. It has been proven by the author that the first feature
assures that all the eigenfunctions of the TFICSLE are expressible in terms ofWronskians of seed solu‑
tions of the same type, while the second feature makes it possible to represent each of the mentioned
Wronskians as a weighted Wronskian of Routh polynomials. It is shown that the numerators of the
polynomial fractions in question form the exceptional orthogonal polynomial (EOP) sequences com‑
posed of Wronskian transforms of the given finite set of Romanovski–Routh polynomials excluding
their juxtaposed pairs, which have already been used as seed polynomials.

Keywords: canonical Sturm–Liouville equation; Liouville transformation; shape‑invariant poten‑
tial; Darboux–Crum transformations; Maya diagrams; polynomial Wronskians; Routh polynomials;
Romanovski–Routh polynomials

1. Introduction
In a recent work [1], the author introduced the concept of the translationally form‑

invariant (TFI) rational canonical Sturm–Liouville equation (RCSLE) converted by Liou‑
ville transformation [2–4] to the Schrödinger equationwith a translationally shape‑invariant
(TSI) Liouville potential [5,6]. It is essential that all the eigenfunctions have a ‘quasi‑ratio‑
nal’ [7] form, being expressible either in terms of classical orthogonal (Jacobi or Laguerre)
polynomials [8,9] or via Romanovski/pseudo‑Jacobi polynomials in Lesky’s terms [10,11]
(simply referred to as Romanovski polynomials [12] in [13–17]) with degree‑dependent in‑
dexes in most cases. (Keeping in mind that Lesky was simply unaware of Routh’s revolu‑
tionary treatise [18], we [19–21] prefer to term the aforementioned finite orthogonal subset
of Routh polynomials as ‘Romanovski–Routh’ (R‑Routh) polynomials.) We refer to these
three families of rational CSLEs (RCSLEs) as ‘Jacobi‑reference’ (
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Keeping in mind the asymptotic behavior of the density function with large values 
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We have thus proven that the RLDT in question does not change the ExpDiff of the 
CSLE at infinity—the common feature of the Fuchsian CSLEs with the density functions 
decreasing as 21 / η  with large values of | |η . 

Substituting the logarithmic derivative 

Ref), ‘Laguerre‑reference’
( Ref), and ‘Routh‑reference’ (ℜRef) respectively. The CSLEs from the same family share
the same reference polynomial fraction (RefPF) combined with different density functions.

It was shown in [1] that the RCSLEs under consideration can be divided into two
groups (A and B) similarly to the classification scheme suggested by Odake and Sasaki
[22,23] for rational TSI potentials. (While combining the CSLEs into the two groups is
unique, it was found that this is generally not true for the TSI potentials and that two TSI
potentials exactly solvable in terms of hypergeometric or confluent hypergeometric func‑
tions may be included into both groups depending on their rational representation.) If the
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Ref, Ref, or ℜRef CSLE requires only simple poles in the finite
plane, then the resultant CSLE can be converted by gauge transformation to the three real re‑
ductions of the complex Bochner‑type differential equations [24] with polynomial solutions
forming Jacobi, Laguerre and Routh (twisted Jacobi [25], or pseudo‑Jacobi [26]) differential
polynomial systems [27,28].

The common feature of these CSLEs is that they can be converted to the so‑called [29]
‘prime’ form such that their eigenfunctions obey the Dirichlet boundary conditions (DBCs)
at the ends of the quantization interval. One can then take advantage of powerful theorems
proven in [30] for zeros of principal solutions of SLEs solved under the DBCs at singu‑
lar ends.

The next important development was the reformulation of the conventional supersym‑
metric (SUSY) theory of exactly solvable rational potentials in terms of the so‑called [31]
‘generalized Darboux transformations‘ (GDTs) introduced by Rudyak and Zakhariev [32]
at the end of the last century. Since various authors give completely different meaning to
the latter term, we (for the reason scrupulously explained in Section 2) prefer to refer to the
mentioned operations as Liouville–Darboux transformations’ (LDTs).

In a sharp contrast with Quesne’s breakthrough paper [17] starting from a rational
SUSY partner of the Scarf II potential, then converting the corresponding Schrödinger equa‑
tion to the RCSLE, we directly apply a rational LDT (RLDT) to the ℜRef CSLE and then
convert the resultant RCSLE to its prime form. We then prove that the rational Liouville–
Darboux transforms (RLD
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s) of the eigenfunctions of the prime ℜRef SLE obey the DBCs
and thereby represent the eigenfunctions of the transformed RSLE. Moreover, it is proven
that the new SLE may not have any other eigenfunctions, which implies that the Dirich‑
let problem in question is exactly solvable. This important result is commonly taken for
granted in conventional SUSY quantum mechanics [5,6].

The concept of the translational form‑invariance of RCSLEs is based on the existence
of the so‑called [1] ‘basic solutions’ such that their analytical continuations into the complex
plane remain finite in any regular point. The RCSLE is referred to as TFI iff the LDT using
one of these basic solutions as the transformation function (TF) simply shifts each of the
translational parameters by one.

Both
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sic solutions, and as a result, their rational Darboux–Crum [33,34] transforms (RDC
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s) are
specified by two series of Maya diagrams [35], so the corresponding exceptional DPSs (X‑
DPSs) are formed by pseudo‑Wronskians of Jacobi or Laguerre polynomials with the same
absolute values of the polynomial indexes (as well as with the same absolute value of the
argument in the latter case). (In following [36–38], we term the given DPS ‘exceptional’ if it
either does not start from a constant or lacks the first‑order polynomials and thereby does
not obey the prerequisites of the Bochner theorem [24].) We direct the reader to the recent
review article by Durán [39] for a detailed discussion of this non‑trivial issue, as well as for
relevant references.

On other hand, the ℜRef CSLE with the simple‑pole density function has only two
basic solutions and as a result its RDC
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ii. Gendenshtein potential [42,43] (Scarf II potential in the classification scheme of

Cooper et al. [5,6];
iii. Morse potential [44].
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As it has been pointed out by the author [1], the corresponding eigenfunctions for
these three families of solvable rational potentials are expressible in terms of the RDC
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s of
the Romanovski–Jacobi (R‑Jacobi), already mentioned R‑Routh, and Romanovski–Bessel
(R‑Bessel) polynomials.

Since the finite EOP sequences formed by the RDC
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s of the R‑Jacobi polynomials con‑
stitute some orthogonal subsets of X‑Jacobi DPSs, they are generally formed by pseudo‑
Wronskians of Jacobi polynomials with the same absolute value for each polynomial index.
In [45], we constructed the subnet of this DC net, which is formed solely of the Wronskians
of the Jacobi polynomials with the same indexes. However, the analysis of the whole DC
net of the solvable rational potentials specified by two series of Maya diagrams, with ad‑
ditional restrictions on the polynomial indexes, constitutes a much more serious problem,
which we plan to address in a separate publication.

It was Alhaidari [46] who drew our attention to the alternative rational representa‑
tion of the Morse potential, making it possible to quantize this potential in terms of a finite
sequence of orthogonal polynomials [47–49], which were identified in [50] as R‑Bessel poly‑
nomials (a fact already mentioned in passing by Quesne [17]). This observation helped the
author to fully appreciate the significance of thementioned paper byOdake and Sasaki [23],
who did not realized that the eigenfunctions of the three TSI potentials listed above are
composed of three families of Romanovski polynomials [12]. Similarly to the RDC

Symmetry 2024, 16, x FOR PEER REVIEW 2 of 42 
 

 

unique, it was found that this is generally not true for the TSI potentials and that two TSI 
potentials exactly solvable in terms of hypergeometric or confluent hypergeometric func-
tions may be included into both groups depending on their rational representation.) If the 
density function for the JRef , LRef , or ℜRef  CSLE requires only simple poles in the fi-
nite plane, then the resultant CSLE can be converted by gauge transformation to the three 
real reductions of the complex Bochner-type differential equations [24] with polynomial 
solutions forming Jacobi, Laguerre and Routh (twisted Jacobi [25], or pseudo-Jacobi [26]) 
differential polynomial systems [27,28]. 

The common feature of these CSLEs is that they can be converted to the so-called [29] 
‘prime’ form such that their eigenfunctions obey the Dirichlet boundary conditions 
(DBCs) at the ends of the quantization interval. One can then take advantage of powerful 
theorems proven in [30] for zeros of principal solutions of SLEs solved under the DBCs at 
singular ends. 

The next important development was the reformulation of the conventional super-
symmetric (SUSY) theory of exactly solvable rational potentials in terms of the so-called 
[31] ‘generalized Darboux transformations‘ (GDTs) introduced by Rudyak and Zakhariev 
[32] at the end of the last century. Since various authors give completely different meaning 
to the latter term, we (for the reason scrupulously explained in Section 2) prefer to refer to 
the mentioned operations as Liouville–Darboux transformations’ (LDTs). 

In a sharp contrast with Quesne’s breakthrough paper [17] starting from a rational 
SUSY partner of the Scarf II potential, then converting the corresponding Schrödinger 
equation to the RCSLE, we directly apply a rational LDT (RLDT) to the ℜRef  CSLE and 
then convert the resultant RCSLE to its prime form. We then prove that the rational Liou-
ville–Darboux transforms )(RLD sT  of the eigenfunctions of the prime ℜRef  SLE obey 
the DBCs and thereby represent the eigenfunctions of the transformed RSLE. Moreover, 
it is proven that the new SLE may not have any other eigenfunctions, which implies that 
the Dirichlet problem in question is exactly solvable. This important result is commonly 
taken for granted in conventional SUSY quantum mechanics [5,6]. 

The concept of the translational form-invariance of RCSLEs is based on the existence 
of the so-called [1] ‘basic solutions’ such that their analytical continuations into the com-
plex plane remain finite in any regular point. The RCSLE is referred to as TFI iff the LDT 
using one of these basic solutions as the transformation function (TF) simply shifts each 
of the translational parameters by one. 

Both JRef   and LRef   CSLEs with simple-pole density functions have a quartet of 
basic solutions, and as a result, their rational Darboux–Crum [33,34] transforms ( TRDC s
) are specified by two series of Maya diagrams [35], so the corresponding exceptional DPSs 
(X-DPSs) are formed by pseudo-Wronskians of Jacobi or Laguerre polynomials with the 
same absolute values of the polynomial indexes (as well as with the same absolute value 
of the argument in the latter case). (In following [36–38], we term the given DPS ‘excep-
tional’ if it either does not start from a constant or lacks the first-order polynomials and 
thereby does not obey the prerequisites of the Bochner theorem [24].) We direct the reader 
to the recent review article by Durán [39] for a detailed discussion of this non-trivial issue, 
as well as for relevant references. 

On other hand, theℜRef CSLE with the simple-pole density function has only two 
basic solutions and as a result its TRDC s  can be specified by a single series of Maya dia-
grams [1]. As proven by the author [1], these TR D C s   can be constructed using only 
Wronskians of Routh polynomials. If the polynomial Wronskian in question does not have 
real zeros, then the eigenfunctions of the transformed RCSLE are expressible in terms of 
a finite exceptional orthogonal polynomial (EOP) sequence in Quesne’s terms [17]. 

While the exceptional orthogonal polynomial systems (X-OPSs) have attracted the 
broad attention of both mathematicians and physicists (see, e.g., [36–40] and the references 
therein), nearly all of the cited works overlook the revolutionary discovery [23] of the Dar-
boux–Crum nets of rational potentials composed of TRDC s  of the three TSI potentials: 

s of
the R‑Routh polynomials, the DC net of finite X‑Bessel orthogonal polynomial sequences
is specified by a single series of Maya diagrams, so each finite EOP sequence can be repre‑
sented in the form of the Wronskian transforms (W
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Again, in contrastwith [23], all the arguments below are presentedwith nomentioning
of the Schrödinger equation. To formulate the corresponding quantum mechanical prob‑
lem, one can perform the Liouville transformation of the constructed RCSLE, which results
in a rational potential exactly solvable in terms of the corresponding finite EOP sequence.
But this is simply a physical application of the developed formalism unrelated to our dis‑
cussion.

2. Translational Form Invariance of ℜRef CSLE with the Simple‑Pole Density
Let us start our analysis with the ℜRef CSLE:{

d2

dη2 + iI
o[η; λo] + εiρ♢[η]

}
iΦ[η; λo; ε] = 0, (1)

with the following RefPF [19–21]:

iI
o[η; λo] =

1 − λ2
o

4(η+ i)2 +
1 − (λ∗o)

2

4(η− i)2 + iO
o(λo)

4(η2 + 1)
(2)

and the following density function [45]:

iρ♢ [η] = (η2 + 1)
−1 (3)

having two simple poles at ±i. (We use subscript i to stress that we deal with the RCSLEs
always having two poles at ±i, while diamond indicates that the density function in ques‑
tion has only simple poles. By definition, all the parameters marked by a circle are chosen
to be energy‑independent.) The coefficient

iO
o(λ) := 2(Re2λ− Im2λ) + 1 (4)
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is chosen in such away that the exponent difference (ExpDiff) for the pole of theℜRef CSLE
(1) at infinity vanishes at ε = 0. As a result of such a specific choice of the density function, the
ℜRef CSLE becomes TFI [1,20,21], and the corresponding Liouville potential [13,17,19,42]

VG[η; a, b] = −(η2 + 1) iI
o[η; a + ib]− 1/2{η, x}, (5)

with a and b standing for the real and imaginary parts of the complex parameter

λo ≡ a + ib (6)

respectively, turns into the TSI Gendenshtein potential by the change of variable

η(x) = sinh x (7)

satisfying the first‑order ordinary differential equation (ODE)

η′(x) = iρ
−1/2

♢ [η(x)], (8)

where prime stands for the derivative with respect to x, so the Schwatzian derivative ex‑
pressed in terms of the variable η takes the following form:

{η, x} =
3

2(η2 + 1)
− 1/2. (9)

Re‑writing RefPF (2) as

iI
o[η; a + ib] =

a2 − b2 − 1 + 2abη

(η2 + 1)2 +
1

4(η2 + 1)
, (10)

we come to the Liouville potential

VG(x; a, b) =
b2 − a2 + 1/4 + 2ab sinh x

cosh2 x
(11)

commonly referred to in the literature as the Scarf II potential [5,6,13,17], with the conven‑
tional parameters A and B standing for a − 1/2 and b, respectively. As pointed out by
Quesne [17], the potential remains unchanged under the simultaneous change of sign of
a and b. Note that our parameter a differs by 1/2 from the parameter a ≡ A in [13,42]). In
addition, Gendenshtein [42] defines the Schrödinger equationwith the coefficient of the sec‑
ond derivative being equal to 1/2, so his formula for potential (5) differs by the mentioned
factor.

The ℜRef CSLE (1) has two infinite sequences of quasi‑rational solutions (q‑RSs), as
follows:

iϕ±,m[η; λo] = (1 − iη)1/2(1±λo)(1 + iη)1/2(1±λ∗
o)ℜ(±λo)

m (η) (12)

≡ (1 + η2)
1/2(1±a)

exp(∓1/2b arctan η)ℜ(±λo)
m [η] (13)

where the Routh [18] polynomials, ℜ(λ)
m [η], are defined via (A2) in Appendix A under con‑

straint (A8). Since each q‑RS (12) has, by its definition [7], a rational logarithmic derivative, it
can be used (see Section 3.1 below) as the TF for the RLDT of theℜRef CSLE (1), which gives
rise to an exactly solvable RCSLE iff that the Routh polynomial in question does not have
real roots [17,19]. We refer the reader to Section 3.1 below for a more thorough definition
of the LDTs introduced in the cited paper of Rudyak and Zakhariev [32].

Keeping in mind that the ExpDiffs for the poles of the ℜRef CSLE (1) in the finite com‑
plex plane are energy‑independent, we [1] identified it as the CSLE of group A [23], which
implies that the characteristic exponents (ChExps) of q‑RSs (12) for these poles must be in‑
dependent of the polynomial degree. As the direct corollary of the latter observation, we
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assert that the Wronskian of q‑RSs (12) from the same sequence can be decomposed into
the product of a quasi‑rational weight and a Wronskian of Routh polynomials. Selecting
polynomial Wronskians with no real zeros brings us to a net of exactly solvable RDC
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the ℜRef CSLE (1)—the main focus of this paper.

Examination of the asymptotic behavior of q‑RSs (12) at infinity brings us to the fol‑
lowing simple formula for two roots of the indicial equation:

iρ∞;±,m = ∓ a −m− 1 (14)

which unambiguously determines the following solution energies:

iε±,m(a) = −(iρ∞;±,m + 1/2)2 (15)

= −(±a +m+ 1/2)2. (16)

Each of the sequences (12) starts from the basic solutionmentioned in the Introduction,
as follows:

iϕ±,0[η; λo] = (1 − iη)1/2(1±λo)(1 + iη)1/2(1±λ∗
o). (17)

As expected [1], the basic solutions satisfy the following generic TFI condition:

iϕ−,0[η; a + 1, b]iϕ+;0[η; a, b] = iρ
−1/2

♢ [η]. (18)

Note that the real‑field reduction of the complex
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i
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 
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η λ
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η η

φ
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ρ
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f{f } f
f

ld ηη = η
η η

J  (51)
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•
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1 1
2 2

2d[ ] [ ]2d
f f −= − η η

η
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where both constants, fିଵ and fିଶ, may generally depend on the sign of η. As the direct 
consequence of (54), we find that 

( ) 3 4
2

1 d f [ ] f ( )
d

ld 0− −
−η η ≈ η + η

η η
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Keeping in mind the asymptotic behavior of the density function with large values 
of | |η , 

2[ ]i
−

 η ≈ ηρ  for | | 1η >> , (56) 

the analysis of the right-hand side of (50) with large values of | |η shows that 

( ) ( )2 o 2 o
o o
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Substituting the logarithmic derivative 

Ref CSLE [45]{
d2

dη2 + ∑
ℵ =±

1 − λ2
o;ℵ

4(1 − ℵη)2 +
Oo − ε

4(η2 − 1)

}
Φ[η; λo;±,Oo ; ε] = 0 (19)

on the imaginary axis (with λo;± and Oo standing for some complex parameters) retains
only two of the four complex basic solutions, contrary to its reduction onto the real axis,
with three parameters chosen to be real.

The gauge transformations

iΦ[η; a + ib; ε] ≡ iΦ[η; a, b; ε] = iϕ±;0[η; a, b
]

iF±[η; a + ib; ε] (20)

convert the ℜRef CSLE (1) to a pair of Bochner‑type eigenequations{
(η2 + 1)

d2

dη2 + iτ1[η;±a ± ib]
d
dη

+ [ε− iε±,0(a)]

}
iF±[η; a + ib; ε] = 0, (21)

where
iτ1[η;±a ± ib] := 2(η2 + 1) ld iϕ±,0[η; a, b] = 2ℜ(±a±ib)

1 (η) (22)

(cf. (3.1) in [17]withα = 2b, β = 1− a in our notation). Comparing (21) and (22)with (9.9.5)
in [26], we find that the Routh polynomials forming q‑RSs (12) are nothing but polynomial
solutions of the Bochner‑type eigenequations:{

(η2 + 1)
d2

dη2 + 2[b −N±(a)η]
d
dη

+ [iε±,m(a)− iε±,0(a)]

}
Pn(x; b,N±(a)) = 0 (23)

at energies (16), with
N±(a) = ∓a − 1. (24)
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Note that the pseudo‑Jacobi polynomials defined via (9.9.1) in [26] are nothing but the
monic Routh polynomials in our terms:

Pn(η; b,N) ≡ ℜ̂(−N−1+ib)
n (η) (25)

(see Remarks on p. 233 in [26] for their definition) assuming, based on (A7), that 2N is not
a non‑negative integer smaller than n.

Setting

i/p [η] ≡ (η2 + 1)
1/2 (26)

and performing the following gauge transformation

i /Ψ[η; λo ; ε] = i/p
−1/2[η] iΦ[η; λo ; ε] (27)

we then convert the ℜRef CSLE (1) into the ‘prime’ SLE [20,21]:{
d
dη i/p [η]

d
dη

− i/q [η; λo] + ε i /w[η]

}
i /Ψ[η; λo ; ε] = 0 (28)

with the following weight:
iw[η] := iρ♢[η] i/p [η] (29)

= (η2 + 1)
−1/2

, (30)

where the zero‑energy free term is given by the following conventional formula [29]

i/q [η; λo] := − i/p [η]
(

iI
o [η; λo] + I{ i/p [η]}

)
, (31)

where
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p

p

o p( ,n)
o p o,n( ,n) ,0

o p( )

[ ; | , n]
[ ; ] [ ; p] ,

[ ; | ]

η λ −
η | − = η λ −

η λ −
ψ ψ/ /








i
i i

i
M

M
c c

M

M
M

M
λ

N

N

W

W
 (129)

which obey the DBCs 

p o p,n ( ,n ) [ ; ] 0
η→ ±∞

η | − =ψ/


ilim c M Mλ  
(130)

for 0 ≤ 1
2n a< −  and, therefore, are mutually orthogonal with the weight [ ]i w η/  as 

follow: 

p po p o p,n( ,n) ,n( ,n )[ ; ] [ ; ] [ ]d 0
∞

′
−∞

η | − η | − η η =/ ψ ψ/ /
 

 i i iwc M c MM Mλ λ  

for 0 ≤ 1
2n n a′< < − . 

(131)

Their order number, pn ( , n )

M , for p > 1 will be explicitly specified in next three sub-

sections, while, as demonstrated earlier, 

{f[η]} := 1/4
•
f 2[η]/f[η]− 1/2

••
f [η], (32)

with dots denoting the derivatives of an arbitrary function (f[η]) with respect to η. It can be
directly verified that [20,21]√

η2 + 1
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sections, while, as demonstrated earlier, 

{
√
η2 + 1} =

3

4(η2 + 1)
3/2

− 1

4(η2 + 1)
1/2

. (33)

Themain advantage of converting theℜRe f CSLE (1) to its prime formwith respect to
the regular singular point at infinity comes from our observation [29] that the ChExps for
the pole in question have opposite signs; therefore, the corresponding principal Frobenius
solution is unambiguously selected by the DBC at the given endpoint. (Remember that the
energy reference point was chosen in such a way that the indicial equation for the pole at
infinity has real roots at any negative energy) Reformulating the given spectral problem in
such a way allows us to take advantage of powerful theorems proven in [30] for zeros of
principal solutions of SLEs solved under the DBCs at singular end points. Our choice of
leading coefficient function (26) assures that sum of the ChExps for the pole at infinity is
equal to zero at any negative energy so that the DBCs in question unambiguously select the
principal Frobenius solution (PFS) of the ℜRef CSLE (1).

Below, we specify the eigenfunctions of the given Dirichlet problem by subscript c
following the labeling originally introduced by us for the transformation functions (TFs) of
Darboux transformations of radial potentials [51] years before the birth of supersymmetric
quantum mechanics [52–54]. One can directly verify that the eigenfunctions

i /ψc,n[η; a + ib] = (1 + η2)
1/4−1/2a

(
1 + iη
1 − iη

)
1/2ib

R(−2b,−a+1)
n [η] (34)
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with the R‑Routh polynomial on the right defined via (A10) in Appendix A satisfy theDBCs

lim
η→±∞i /ψc,n[η; λo] = 0 (n = 0, . . . , nmax) (35)

with
nmax = ⌊a − 1/2⌋ (36)

Examination of the integral

0 <

∞∫
−∞

|iϕc,n[η; λo] |2iρ♢[η]dη =

∞∫
−∞

|i /ψc,n[η; λo] |2i /w[η]dη < ∞ (37)

reveals that q‑RS (12) of the ℜRe f CSLE (1) is squarely integrable with the weight iρ♢[η] iff
the corresponding q‑RS (34) of prime SLE (28) obeys DBCs (35).

To prove that the SLP problem in question is exactly solvable, the author [19] took ad‑
vantage of Stevenson’s idea [55] to express an analytically continued solution of the CSLE
(19)—or, to be more accurate, an analytically continued solution of the prime SLE (28)—in
terms of hypergeometric polynomials in a complex argument. It was just confirmed that
the latter (formally complex) polynomials can be converted into real R‑Routh polynomials
(A10). The reader can argue that this proof is unnecessary, since theGendenshtein potential
is TSI [42]. However, as demonstrated in [19], Gendenshtein’s arguments have to be accom‑
panied by some additional assumptions, which drastically reduce the practical significance
of his conclusions.

As a direct consequence of the disconjugacy theorem [40,56–59], we conclude that q‑RS
(12) may not have more than one node if

iε±,m(a) < iεc,0(a) ≡ iε−,0(a), (38)

and hence, it is necessarily nodeless iff its asymptotic values at the ends of the quantiza‑
tion interval have the same sign. Compared with more complicated examples discussed
in [40,56–59], the DBCs for the prime SLE (28) are imposed at ±∞, so the cited constraint
holds if the given q‑RS of type III (in Quesne’s terms [17]) is formed by a Routh polynomial
of an even degree.

Making use of (16), one finds

iε−,0(a)− iε+,m(a) = (m+ 1)(2 a +m) > 0 (39)

and
iε−,0(a)− iε−,m(a) = m(m+ 1 − 2 a) > 0 for m > 2 a − 1 > 0. (40)

Keeping in mind that leading coefficient (A7) of Routh polynomial (A6) differs from zero
for any a > 0; therefore, we conclude that all q‑RSs (12) with the upper label (+) and even
non‑negative m must be nodeless [17]. This is also true for q‑RSs (12) with the lower label
(−) and even

m = 2j > 2 a − 1. (41)

(Note that the rising factorial in (A7) in Appendix A starts from a positive factor in the latter
case and therefore must be positive.).

3. Quantization of RDCTs of Gendenshtein Potentials by Finite Sequences of EOPs
It was proven in [1] that any RDCT of the TSI SLE with two basic solutions can be

obtained using seed solutions of the same type (+ or −). Since the eigenfunctions of the
CSLE (1) belong to the sequence |−,m), we focus solely on the RDCTs that use, as their seed
functions, only the q‑RSs from the latter sequence. These restrictions allow us to express
all the EOP sequences of our interest as Wronskians of Routh polynomials with exactly the
same complex index, −λo.
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3.1. Liouville–Darboux Transformations
As discussed in the end of previous section, q‑RSs (12) with the lower label (−) are

nodeless for even values of m larger than 2 a − 1. The notation

iϕ±,2j[η; λo] = iϕ[η;±λo] ℜ(±λo)
2j [η] (42)

with
iϕ[η; λ] := (1 − iη)1/2(1+λ)(1 + iη)1/2(1+λ∗) (43)

always assumes that the degree of the Routh polynomial obeys the mentioned constraint
for any q‑RS |−, 2j) with j > a − 1/2, while j is allowed to be any positive integer for the
q‑RSs |+, 2j). Any nodeless q‑RS (42) can be used as the TF for the RLDT [20,21] such that
Rudyak and Zahariev’s reciprocal function [32]

iϕc,0[η; λo| ± , 2j] = iρ
−1/2

♢ [η]

iϕ±,2j[η; λo]
(44)

= iϕ[η;−1 ∓ λo
]

ℜ(±λo)
2j [η]

(45)

represents a q‑RS of the transformed RCSLE as follows:{
d2

dη2 + iI
o[η; λo| ± , 2j] + iε±,2j(a) iρ♢[η]

}
iϕc,0[η; λo| ± , 2j] = 0 (46)

at the energy iε±,2j(a), where

iI
o[η; λo| ± , 2j] = −ld2

iϕc,0[η; λo| ± , 2j]−
•
ldiϕc,0[η; λo| ± , 2j]

− iε±,2j(a)iρ♢[η],
(47)

with ld standing for the logarithmic derivative of a function with respect to η. It will be
proven below that q‑RS (43) represents the zero‑energy eigenfunction of the given Sturm–
Liouville problem as indicated by the label.

We [29,60] suggested the term ‘LDT’ to stress that we deal with the following three‑
step operation:
(i) The Liouville transformation from the given SLE to the conventional Schrödinger

equation;
(ii) The Darboux deformation of the corresponding Liouville potential;
(iii) The inverse Liouville transformation from the Schrödinger equation to the new SLE,

which, by definition, preserves both the leading coefficient function and weight.
Note that the preservation of the leading coefficient function and weight is an addi‑

tional constraint imposed on the ‘Darboux transformations’ of SLEs defined using the in‑
tertwining operators [37,38,61].

Representing the ℜRef CSLE (1) for the TF (iϕ±,2j[η; λo]) in the Riccati form as follows:

−ld 2
iϕ±,2j[η; λo]−

•
ld iϕ±,2j[η; λo] = iI

o[η; λo] + iε±,2j(a)iρ♢[η] (48)

and taking into account that

ldiϕc,0[η; λo| ± , 2j] = −ldiϕ±,2j[η; λo]− 1/2ldiρ♢ [η], (49)
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we can alternatively represent RefPF (47) as [31]

iI
o[η; λo| ± , 2j] = iI

o[η; λo] + 2
√

iρ♢ [η]
d
dη

ldiϕ±,2j[η; λo]√
iρ♢ [η]

+
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≡ 1/2
•
ld f[η]− 1/4ld2 f[η] (52)

= −f1/2[η]
d2

dη2 f−1/2[η] (53)

Note that the logarithmic derivatives of both functions, iϕ ±,2j[η; λo] and iρ♢ [η], be‑
have as follows with large values of η:

ld f[η] = f−1η
−1 + f−2η

−2 + 0(η−3) (54)

where both constants, f−1 and f−2, may generally depend on the sign of η. As the direct
consequence of (54), we find that

1
η

d
dη

(η ld f[η]) ≈ f−2η
−3 + 0(η−4) (55)

Keeping in mind the asymptotic behavior of the density function with large values
of |η|,

iρ♢ [η] ≈ η−2 for |η| >> 1, (56)

the analysis of the right‑hand side of (50) with large values of |η| shows that

lim
|η|→∞

(η2
iI
o[η; λo| ± , 2j]) = lim

|η|→∞
(η2

iI
o[η; λo]). (57)

We have thus proven that the RLDT in question does not change the ExpDiff of the
CSLE at infinity—the common feature of the Fuchsian CSLEs with the density functions
decreasing as 1/η2 with large values of |η|.

Substituting the logarithmic derivative

ldiϕ c,0[η; λo| ± , 2j] = ldiϕ[η;−1 ∓ λo]− ld ℜ(±λo)
2j [η] (58)

into (47) and taking into account that

iϕ
−1[η; λ]i

••
ϕ [η; λ] =

ld 2
iϕ[η; λ] +

•
ld iϕ[η; λ] = −iI

o[η; λ]− iε +,0(Reλ)iρ♢[η]
(59)

with
iε +,0( Reλ) := −( Reλ+ 1/2)2 ≡ iε −,0(− Reλ), (60)

and also making use of (21), we come to the alternative representation for the RefPFs of
CSLEs (46):

iI
o[η; λo| ± , 2j] = iI

o[η; 1 ± λo] + 2
⌢
Q[η;η2j(±λo)]+

i

⌢
O o

2j[η;λo|±,2j]

4(η2+1)ℜ(±λo)
2j [η]

,
(61)
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where we set
ℜ̂(λ)
m [η] = Π[η;ηm(λ)] :=

m

∏
k=1

[η− ηm;k(λ)] (62)

⌢
Q[η;ηm] := −1/2Π[η;ηm]

d2

dη2 Π−1[η;ηm] (63)

= 1/2

{ •
ld Π[η;ηm]− ld2 Π[η;ηm]

}
, (64)

and

i

⌢
O o

2j[η; λo| ± , 2j] := 8ℜ(−1∓λo)
1 (η)

•
ℜ (±λo)

2j [η]−
4[iε ±,2j(a)− iε ±,0(a)]ℜ(±λo)

2j [η].
(65)

Taking into account that

ℜ(−1∓λo)
1 [η] = −ℜ(±λo)

1 [η] + 2η, (66)

it is convenient to re‑write polynomial (65) as

i

⌢
O o

2j[η; λo| ± , 2j] := 4(η2 + 1)
••
ℜ (±λo)

2j [η] + 8η. (67)

Examination of RefPFs (61) reveals that the RLDTs in question change by one the Ex‑
pDiffs for the poles at±i while creating the new second‑order pole at each zero of the Routh
polynomial.

Again, we can convert CSLE (46) to its prime form{
d
dη (η

2 + 1)
1/2 d

dη − i/q [η; λo|±, 2j] + iε c,n(λo) i /w[η]
}
×

i /ψ c,n[η; λo|±, 2j] = 0
(68)

solved under the DBCs
lim

|η|→∞
i /ψ c,n[η; λo|±, 2j] = 0, (69)

where [29]

i/q [η; λo|±, 2j] := −
√
η2 + 1 (iI

o [η; λo|±, 2j] +
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which obey the DBCs 

p o p,n ( ,n ) [ ; ] 0
η→ ±∞

η | − =ψ/


ilim c M Mλ  
(130)

for 0 ≤ 1
2n a< −  and, therefore, are mutually orthogonal with the weight [ ]i w η/  as 
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∞

′
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for 0 ≤ 1
2n n a′< < − . 
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Their order number, pn ( , n )

M , for p > 1 will be explicitly specified in next three sub-

sections, while, as demonstrated earlier, 

{
√
η2 + 1 }) (70)

and
i /ψ c,n[η; λo|±, 2j] := (η2 + 1)

−1/4

iϕ c,n[η; λo|±, 2j] (71)

by definition. It then directly follows from asymptotic Formula (57), coupled with (31) and
(33), that

lim
|η|→∞

|η i/q [η; λo|±, 2j]| = lim
|η|→∞

|ηi/q [η; λo]| < ∞, (72)

which confirms that the two ChExps for the pole of prime SLE (68) at infinity differ only
by sign and, therefore, OBCs unambiguously select the PFS near the given singularity. In
particular, keeping in mind that the absolute value of the q‑RS

i /ψ ±,2j[η; λo] := (η2 + 1)
−1/4

iϕ ±,2j[η; λo] ≡ i /ψ[η;±λo]ℜ(±λo)
2j (η) (73)

infinitely grows as |η| → ∞ we conclude that the nodeless solution of prime SLE (68),

i /ψ c,0[η; λo| ± , 2j] := (η2 + 1)
−1/4

iϕ c,0[η; λo| ± , 2j] = i /ψ
−1
±,2j[η; λo], (74)
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vanishes at both quantization ends and therefore represents the lowest‑energy eigenfunc‑
tion. Any other eigenfunction of prime SLE (68) has the following generic form [32]:

i /ψ c,n+1[η; λo|±, 2j] =
W

{
i /ψ ±,2j[η; λo], i /ψ c,n[η; λo]

}
iρ

1/2

♢ [η] i /ψ ±,2j[η; λo]
(75)

As discussed in more detail in Appendix B, all the EOP sequences forming the eigen‑
functions of prime SLE (68) for TF |+, 2j) can be represented as Wronskians of R‑Routh
polynomials of sequential degrees starting from the first‑degree polynomial.

Let us now prove the cornerstone of the theory of the RLDs developed in [29]:

Theorem 1.  Prime SLEs (68) are exactly solvable under the DBCs at infinity.

Proof of Theorem 1.  Our purpose is thus to show that all the eigenfunctions of prime SLEs
(68), other than a nodeless eigenfunction (74), can be written in quasi‑rational form (75).
Indeed, suppose that one of prime SLEs (68) has another eigenfunction i /ψ c,n[η; λo|±, 2j],
which, by definition, obeys the DBCs

lim
|η| →∞

i /ψ c,n[η; λo|±, 2j] = 0. (76)

Since this eigenfunction must be a PFS near each singular end point at infinity,

i /ψ c,n[η; λo|±, 2j] ∝ |η| −ρ± for |η| >> 1; (77)

therefore,
lim

|η| →∞
(η i

•
/ψ c,n[η; λo|±, 2j]) = 0. (78)

Taking into account that the lowest‑energy eigenfunction (74) has a quasi‑rational form,

lim
|η| →∞

|η ldi /ψ c,0[η; λo|±, 2j] | < ∞, (79)

we find that the function

i /ψ ±[η; λo] :=
W

{
i /ψ c,0[η; λo|±, 2j], i /ψ c,n[η; λo|±, 2j]

}
iρ

1/2

♢ [η] i /ψ c,0[η; λo|±, 2j]
(80)

=
√
η2 + 1 i

•
/ψ c,n[η; λo|±, 2j]

−
√
η2 + 1 ldi /ψ c,0[η; λo|±, 2j] i /ψ c,n[η; λo|±, 2j]

(81)

vanishes at both limits (η→ ±∞ ) and, therefore, must be an eigenfunction of prime SLE
(28), in contradictionwith the fact that any eigenfunction of theℜRefCSLE (1) can bewritten
in the form of (12). We thus assert that q‑RSs (75) represent all possible eigenfunctions of
prime SLE (68), which completes the proof of Theorem 1. □

For the RD
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using the TF |−, 2j) eigenfunctions (75) with n ≥ 0 can be represented
as the weighted Wronskians of Routh and R‑Routh polynomials with the common quasi‑
rational weight
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−1/4

♢ [η]iϕ[η; λo|−, 2j] := i /ψ[η; 1 − λo
]

ℜ(−λo)
2j (η)

, (82)

namely

i /ψc,n+1[η; λo|−, 2j] = −i /ψ[η; λo|−, 2j] i
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is the polynomial of degree 2j+ n− 1, with the R‑Routh polynomial defined via (A10) in
Appendix A. One can directly verify that q‑RSs (74) of prime SLEs (68) obey the DBCs iff
n < a − 1/2.

By analogy with (37), we conclude that q‑RSs (74) are normalizable with the weight
i /w[η] as follows:

0 <

+∞∫
−∞

|i /ψ c,n[η; λo| − , 2j]|2i /w[η]dη ≡
+∞∫

−∞

|iϕ c,n[η; λo| − , 2j]|2iρ♢[η] dη < ∞. (85)

It directly follows from the analysis presented by Gestesy et al. [30] for the generic
SLE solved under the DBCs that eigenfunctions (74) must be mutually orthogonal with
the weight, i /w[η]. Again, as the direct corollary of this orthogonality, we conclude that
polynomial Wronskians (84) are necessarily orthogonal with the weight,

i
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Substituting the q‑RSs

iϕ−,n+1[η; λo|−,m] := iϕ[η; λo|−,m] i
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into CSLE (68) with the RefPF represented in form (61) and also taking into account (59)
and (63), we find that polynomial Wronskians (84) obey the following Bochner‑type ODE:{

iD−;m[η; λo] + iCm[η; λo; iε−,n(λo)|−,m]
}

i
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m [η]

d2
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d
dη

(92)

is the second‑order differential operator with the energy‑independent polynomial coeffi‑
cient of the first derivative

iτ m+1[η; λo|−,m] := 2(η2 + 1) ld iϕ[η; λo|−,m] (93)

= 2ℜ(1−λo)
1 [η]ℜ(−λo)

m [η]− 2(η2 + 1)
•
ℜ (−λo)

m [η]. (94)

by analogy with (22). The energy‑dependent free term of ODE (91) is the m‑degree polyno‑
mial linear in ε, as follows:

iCm[η; λo; ε|−,m] = iCm[η; λo−,m] + εℜ(−λo)
m (η) (95)

where
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1 (η)
•
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m [η]− iε −,m(Reλo)ℜ (−λo)
m [η]. (96)

For m = 2j and n < a − 1/2, the polynomial Wronskians in question form a finite EOP
subset of the X‑DPS in question.

3.2. Finite EOP Sequences as Truncations of X‑DPSs Formed by Wronskians of Routh
Polynomials

Let −
... Mp be a finite set of the q‑RSs iϕ −,mk [η; λo], with

Mp := mk=1, ..., p(mk+1 > mk ≥ 0 for k < p) (97)

standing for a monotonic sequence of non‑negative integers. Again, we assume that 2a is
not a positive integer; therefore, the leading coefficient, Km(−a), of the Routh polynomial
ℜ(−a−i b)
m [η] differs from zero regardless of the polynomial degree (m). Writing the leading

coefficient of the polynomial Wronskian

i
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(Mp)
(λo| −

...Mp) =
p
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k=1

Kmk(−a)D(Mp), (99)

where [63]

D(m1, . . . ,mp) :=

∣∣∣∣∣∣∣∣∣
1 1 . . . 1 1
m1 m2 . . . mp mp+1

mp−1
1 mp−1

2 . . . mp−1
p mp−1

p+1
mp

1 mp
2 . . . mp

p mp
p+1

∣∣∣∣∣∣∣∣∣ (100)

=
p

∏
k=1

p

∏
k′=k+1

(mk′−mk) > 0, (101)
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one can verify that the cited restriction assures that the degree of polynomial Wronskian
(98) is equal to [63]
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(Mp)
[η; λo| −

...Mp], (103)

into Schulze‑Halberg’s [64] general formula for the DCT of the zero‑energy free term of the
generic CSLE,

iI
o[η; λo| −

...Mp] = iI
o[η; λo]+

2
√

iρ♢[η]
d
dη

ld W{iϕ−,mk=1, ..., p
[η;λo]}√

iρ♢[η]
− p(p− 2)
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Substituting the logarithmic derivative 

{iρ♢[η]},
(104)

coupled with (51), then combining all the second‑order poles at η ̸= ±1 into Quesne PF
(A19) with the monomial product replaced with polynomial Wronskian (98), one finds

iI
o[η; λo| −

...Mp] = iI
o[η; λo] + 2p

√
iρ♢[η]

d
dη

ld iϕ[η;−λo+1/2p−1]√
iρ♢[η]

+

2Q[η; λo| −
...Mp] + pld(η2 + 1)ld i
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Q[η; λo| −

...Mp] := −1/2 i
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(28), in contradiction with the fact that any eigenfunction of the ℜRef  CSLE (1) can be 
written in the form of (12). We thus assert that q-RSs (75) represent all possible eigenfunc-
tions of prime SLE (68), which completes the proof of Theorem 1. □ 

For the R D T using the TF | , 2 )− j  eigenfunctions (75) with n ≥ 0 can be represented 
as the weighted Wronskians of Routh and R-Routh polynomials with the common quasi-
rational weight 

1
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o
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o o ( )
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[ ;1[ ; | , 2 ] [ ] [ ; | ,, 2 ] :
(
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−
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ℜ η

ψ/ψ φ/ i
i i iρ

j
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namely 

,n 1 o o 2 n 1 o[ ; | , 2 ] [ ; | , 2 ] [ ; n, 2 ],+ + −η λ − = − η λ − η λ −ψ ψ/ / i i i |jj j jc W  (83)

where 

( , ) ( )
2 n 1 n 2

2 1[ ; n , 2 ] : W R [ ], [ ]{ }−
− +− − −

+ η + − = η ℜ ηi
b a a iba |ibW j jj  (84)

is the polynomial of degree 2 n 1+ −j , with the R-Routh polynomial defined via (A10) in 
Appendix A. One can directly verify that q-RSs (74) of prime SLEs (68) obey the DBCs iff 

1
2n a< − . 

By analogy with (37), we conclude that q-RSs (74) are normalizable with the weight 

[ ]i w η/  as follows: 

−1
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(Mp)
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again replacing themonomial product in the right‑hand side of (A22) for polynomialWron‑
skian (98) and also making use of (2), (4), (A13) and (A14), coupled with

1/4[iO
o(λo)− iO

o(λo − p)] = p(a − 1/2p), (107)

we come to the following sought‑for expression:

iI
o[η; λo| −

...Mp] = iI
o[η; λo − p] + 2

⌢
Q[η; λo| −

...Mp]

+
i

⌢
O
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For jm = 2  and 1
2n a< − , the polynomial Wronskians in question form a finite 

EOP subset of the X-DPS in question. 

3.2. Finite EOP Sequences as Truncations of X-DPSs Formed by Wronskians of Routh 
Polynomials 

Let pM−   be a finite set of the q-RSs 
k
[ ; ]om,i φ η λ− , with 

p k 1,...,p k 1 kM : m (m m 0 for k p)= += > ≥ <  (97)

standing for a monotonic sequence of non-negative integers. Again, we assume that 2a is 
not a positive integer; therefore, the leading coefficient, mK ( )a− , of the Routh polyno-

mial ( b )
m [ ]ia− −ℜ η  differs from zero regardless of the polynomial degree (m). Writing 

the leading coefficient of the polynomial Wronskian 

o
p k 1,...,p

( )
o p(M ) m[ ; | M ] : W [ ]{ }

=
−λη λ − = ℜ ηi NW  (98)

as 

kp p

p
o p m p(M ); (M )

k 1
( | M ) K ( ) D(M ),

=
λ − = −∏i aN NW  (99) 

where [63] 

(Mp)
[η; λo| −

...Mp].
(109)

For p = 1, polynomial Wronskian (98) and polynomial (109) turn into the Routh poly‑
nomial and polynomial (67), respectively, and we come back to RefPF (61).

Theorem 2.  W
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s of infinitely many Routh polynomials with a common index form an X‑DPS.

Proof of Theorem 2:  Let us first show that the gauge transformation

iΦ[η; λo; ε| −
...Mp] = iϕ[η; λo| −

...Mp] iF [η; λo; ε| −
...Mp] (110)
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with

iϕ[η; λo| −
...Mp] := iϕ[η;p− λo

]
i
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By analogy with (37), we conclude that q-RSs (74) are normalizable with the weight 

[ ]i w η/  as follows: 
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converts the CSLE{
d2

dη2 + iI
o[η; λo| −

...Mp] + ε iρ♢ [η]

}
iΦ[η; λo; ε| −

...Mp] = 0 (112)

into the second‑order ODE

{D[η; λo| −
...Mp] + iC

o
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ϕ [η; λo| −
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4(η+i)2 +

(λ∗
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(Mp)
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⌢
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(114)

one finds
D[η; λo| −

...Mp] := (η2 + 1) i
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wefind that the polynomialWronskians under consideration satisfy theODEof the Bochner
type as follows: {

D[η; λo| −
...Mp] + iC

o
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and thereby form an X‑DPS, which completes the proof of Theorem 2. □

Here, we are only interested in X‑DPSs containing finite EOP sequences. If polynomial
Wronskian (99) does not have real zeros, we term such a set of seed Routh polynomials
‘admissible’ and mark it with the symbolic expressionМp.

Theorem 3.  Every X‑DPS (−
...Мp,n((n /∈ Мp)) contains a finite EOP sequence starting from a

polynomial of the degree
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Proof of Theorem 3:  By analogy with the discussion presented by us in the previous sub‑
section, we represent CSLE (112) in the prime form as{

d
dη

(η2 + 1)
1/2 d
dη

− i/q [η; λo| −
...Мp

]
+ ε i /w[η]

}
i /Ψ[η; λo ; ε| −

...Мp] = 0, (122)

where

i/q [η; λo| −
...Мp] = −

√
η2 + 1 (iI

o [η; λo| −
...mp] +
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which obey the DBCs 

p o p,n ( ,n ) [ ; ] 0
η→ ±∞

η | − =ψ/


ilim c M Mλ  
(130)

for 0 ≤ 1
2n a< −  and, therefore, are mutually orthogonal with the weight [ ]i w η/  as 

follow: 

p po p o p,n( ,n) ,n( ,n )[ ; ] [ ; ] [ ]d 0
∞

′
−∞

η | − η | − η η =/ ψ ψ/ /
 

 i i iwc M c MM Mλ λ  

for 0 ≤ 1
2n n a′< < − . 

(131)

Their order number, pn ( , n )

M , for p > 1 will be explicitly specified in next three sub-

sections, while, as demonstrated earlier, 

{ √
η2 + 1

}
). (123)

Prime SLE (122) is then solved under the DBCs

lim
η→±∞i /Ψ[η; a + ib ; iεn(a)| −

...Мp] = 0. (124)

Setting
f[η] = W

{
iϕ−,mk=1, ..., p

[η; λo]
}

(125)

in (51), (54) and (55) shows that

lim
|η|→∞

(η2
iI
o[η; λo| −

...Мp]) = lim
|η|→∞

(η2
iI
o[η; λo]) (126)

by analogy with (57). We have thus proven that the RDCT in question does not change the
ExpDiff of the CSLE at infinity. As it has been already stressed in Section 3.1, this is the
common feature of the Fuchsian CSLEs with the density functions decreasing as 1/η2 with
large values of |η|.

It directly follows from the latter relation that the zero‑energy free term (123) in prime
SLE (122) satisfies the following asymptotic relation:

lim
η→±∞

|η i/q [η; λo| −
...Мp]| = lim

η→±∞
|η i/q [η; λo]| < ∞, (127)

similar to (72), which confirms that the two ChExps for the pole of prime SLE (68) at infin‑
ity differ only by sign and, therefore, OBCs unambiguously select the PFS near the given
singularity.

Keeping in mind that
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p k 1,...,p
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k 1
( | M ) K ( ) D(M ),
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(Мp,n)−
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we conclude that each Dirichlet problem formulated in such a way has a finite subset of
quasi‑rational eigenfunctions,

i /ψc,n
˜
(Мp,n)[η; λo| −

...Мp] = i /ψc,0[η; λo − p]
i
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vanishes at both limits (η → ±∞ ) and, therefore, must be an eigenfunction of prime SLE 
(28), in contradiction with the fact that any eigenfunction of the ℜRef  CSLE (1) can be 
written in the form of (12). We thus assert that q-RSs (75) represent all possible eigenfunc-
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(

]
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−
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η − λη λ − ≡ η η λ − =
ℜ η

ψ/ψ φ/ i
i i iρ

j
j j  

(82)

namely 
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2 n 1 n 2
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is the polynomial of degree 2 n 1+ −j , with the R-Routh polynomial defined via (A10) in 
Appendix A. One can directly verify that q-RSs (74) of prime SLEs (68) obey the DBCs iff 

1
2n a< − . 

By analogy with (37), we conclude that q-RSs (74) are normalizable with the weight 

[ ]i w η/  as follows: 
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lim
η→±∞i /ψc,n

˜
(Мp,n)[η; λo| −

...Мp] = 0 (130)

for 0≤ n < a − 1/2 and, therefore, are mutually orthogonal with the weight i /w[η] as follow:

∞∫
−∞

i /ψc,n
˜
(Мp,n)[η; λo| −

...Мp] i /ψc,n
˜
(Мp,n′)[η; λo| −

...Мp]i /w[η] dη = 0

for 0 ≤ n < n′ < a − 1/2.
(131)

Their order number, n
˜
(Мp,n), for p > 1 will be explicitly specified in next three sub‑

sections, while, as demonstrated earlier,

n
˜
(М1,n) = n+ 1. (132)

The polynomial Wronskians in the numerator of the PF in the right‑hand side of (129)
are thereby orthogonal with the weight

iW[η; λo| −
...Мp] ≡ iϕ

2
c,0[η; λo − p]

(η2 + 1)i
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i
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. (134)

Therefore, these polynomials form a finite EOP sequence starting from the polynomial
of the positive degree
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which completes the proof of Theorem 3. □

Like any other q‑RS of this type, the eigenfunctions of prime SLE (122) satisfy the fol‑
lowing asymptotic relation:

lim
|η| →∞

|η ldi /ψc,n[η; λo| −
...Мp]| < ∞, (136)

which will be used in Appendix C to prove that the so‑called ‘generalized’ [65] Wronskian
(
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respectively. 
Let us, in following [30], introduce the g -W 

1
22

N,N 1 o p N,N 1 o p[ ; | ] : ( 1) [ ; | ]W− −+ +η λ = η + η λ i iW M M  (A39)

and generalize Adler’s arguments [71] by proving that the g -W sign is preserved on the 
real axis. Indeed, representing g -W (C4) as 

N,N 1 o p ,N o p ,N+1 o p[ ; | ] [ ; | ] [ ; | ]− − −+ η λ = η λ η λ ×ψ ψ/ /  i i iW c cM M M  

{ }1
22

,N+1 o p ,N o p( 1) [ ; | ] [ ; | ]− −η + η λ − η λψ ψ/ / i ild ldc cM M  
(A40)

and using DBCs (124) coupled with asymptotic relation (136), one finds that g -W (A39) 
vanishes at infinity as follows: 

N ,N 1 o p
| |

[ ; | ] 0,−+
η → ∞

η λ =ilim MW  
(A41)

Without loss of generality, we can choose both eigenfunctions to have the same sign 
within the interval N 1,1( , )+−∞ η , which assures that the derivative of the g -W [30], 

N ,N 1 o p ,N +1 ,N[ ; | ] [ ( ) ( )] [ ]
•

−+ η λ = − ε − ε η ×/i ia a wW c cM  

,N o p ,N + 1 o p[ ; | ] [ ; | ] ,− −η λ η λψ ψ/ / c cM M  
(A42)

is negative there. Keeping in mind (A41), this should also be true for the g -W; therefore, 

−W) vanishes at ±∞.
In the next subsection, we discuss the subnets of EOP sequences with exactly the same

number of polynomials in every sequence from the given subnet. Each subnet starts from
one of the EOS sequences introduced in the previous subsection.
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3.3. Subnets of Finite EOP Sequences with No Gaps in Polynomial Degrees

LetМe,o
p specify a monotonically increasing set of alternating even an odd degrees of

seed Routh polynomials as follows:

Мe,o
p = 2j1, 2j2 + 1, 2j3, . . . , 2jp−1 + 1 − ℓ, 2jp + ℓ, (137)

where
a − 1/2 < j1 ≤ j2 < j3 ≤ . . . ≤ jJ+ℓ−1 ≤ jJ+ℓ

or, to be more precise,

jJ+ℓ−2 ≤ jJ+ℓ−1 < jJ+ℓ i f ℓ = 0 or jJ+ℓ−2 < jJ+ℓ−1 ≤ jJ+ℓ i f ℓ = 1,

so the corresponding polynomial Wronskian (98) for partition (137) has the even degree
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p ) =

p

∑
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mk − 1/2p(p− 1). (138)

(Note that inequality (A8) necessarily holds, since the degree of each Routh polynomial is
larger than a − 1/2).

The TFs for the sequential LDTs generating each subnet of the solvable CSLEs under
consideration have the following quasi‑rational form:

ϕ[η;λo| −
...Мe,o

p , 2jp+1 + 1 − ℓp] = iϕc,0[η; λo − p]

×
i
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( | M ) K ( ) D(M ),
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(me,o
p ;2jp+1+1−ℓp)

[η;λo|−
...Мe,o

p ;2jp+1+1−ℓp]

i
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(Мe,o
p )

[η;λo|−
...Мe,o

p ]

(139)

with
iϕc,0[η; λo − p] ≡ iρ

−1/2p
♢ [η] iϕc,0[η; λo]. (140)

By definition, each q‑RS (139) lies at the energy,

iε−, jp+1+ℓp+1
(a) = −(2jp+1 + ℓp+1 + 1/2 − a)2, (141)

below the lowest eigenvalue,

iε−, jp+ℓk
(a) = −(2jp + 1/2 + ℓp − a)2, (142)

of RCSLE (112) with
Mp = Мe,o

p (143)

or, to be more precise,

iε−, jp+1+ℓp+1
(a)− iε−, jp+ℓp

(a) =

−4 (jp+1 − jp + 1/2)(jp + jp+1 + 1 − a) < 0,
(144)

keeping in mind that
a − 1/2 < jp ≤ jp+1. (145)

As the direct consequence of the disconjugacy theorem, we conclude that q‑RS (139)
may not have more than one node. On other hand, the polynomial Wronskian in the nu‑
merator of the PF in the right‑hand side of (139) has an even degree by its definition and,
therefore, may have only an even number of real zeros. We have thus proven that TFs (139)
for the sequential RLDTs of RCSLE (112) using the finite sets of seed solutions specified by
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the partitions (137) are all nodeless; therefore, the polynomial Wronskians forming eigen‑
functions (129) are mutually orthogonal with weight (133).

Theorem 4.  When applied to an exactly solvable prime SLE (122), an LDT with a finite quasi‑
rational TF diverging at infinity leads to the exactly solvable prime SLE with the inserted lowest‑
energy eigenvalue at the energy of the given q‑RS.

Proof of Theorem 4:  First, let us remind the reader that the function

/ψc,0[η; λo| −
...Мe,o

p+1] = i /ψ
−1
c,0 [η; λo − p] ×

i
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p+1. Also

note that the difference between the polynomial degrees
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(Мe,o
p+1) = 2jp − 2jp+1 − p+ ℓp − ℓp+1 ≤ 0 (147)

is non‑positive, since ℓp = 0, ℓp+1 = 1 if jp+1 = jp, whereas |ℓp − ℓp+1| = 1 regardless
of the value of jp+1 ≥ jp. We thus conclude that nodeless function (146) obeys the DBCs
at infinity and, therefore, represents the lowest‑energy eigenfunction of the prime SLE in
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Now, we can simply reproduce the arguments presented in Section 3.1 in support of
Theorem 1, with TF (42) andRCSLE (46) replaced by TF (139) andRCSLE (112), respectively,
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Note that Theorem 4 was formulated by us in more general terms than the proof it‑
self, which was formally applied to prime SLE (122) withМp defined via (137). It is worth
stressing that the presented arguments are based on the following two presumptions:
(i) The LDT applied to prime SLE (122) has a quasi‑rational TF, with no zeros on the

real axis;
(ii) Its reciprocal obeys the DBCs at infinity and, therefore, represents the lowest‑ energy

eigenfunction of the new Sturm–Liouville problem.
In next subsection, we re‑use Theorem 4 for a different choice of admissible TFs cov‑

ered by the above presumptions.

3.4. Exact Solvability of RDTs of ℜRe f CSLE Constructed Using Only Seed Functions Composed
of R‑Routh Polynomials

LetN2J,L be J ‘juxtaposed’ [66–68] pairs of seed solutions,

iϕ−,n[η; a + ib] = iϕ−,0[η; a + ib]R(−2b,− a)
n (η)

for n = 1, . . . , ⌊a − 1/2⌋,
(148)

with polynomial degrees (n) forming L segments of even lengths as follows:

N2J,L = n1 : n1 + 2j1 − 1,n2 : n2 + 2j2 − 1, . . . ,nL : n2j
(n1 > 0, n2j ≤ ⌊a − 1/2⌋). (149)

Polynomial Wronskian (98) turns into the followingWronskian of R‑Routh polynomi‑
als:
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which is expected to have more specific features specified by conjectures in [63] for zeros
of the generic Wronskian of orthogonal polynomials. It has been proven by Karlin and
Szegő [69] that the Wronskian of an even number of orthogonal polynomials with sequen‑
tial degrees,

N2j1,1 = n1 : n1 + 2j1 − 1, (151)

may not have real zeros, and here we extend this proof to the Wronskians of the R‑Routh
polynomials for the ‘admissible’ [63] partitions (149).

If polynomial Wronskian (150) does not have real zeros, then each q‑RS,

i /ψc,n
˜
(N2J,L,n)[η; λo| −

...N2J,L] = i /ψc,0[η; λo − 2J]×

i
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satisfies the DBCs at infinity and, therefore, represents the eigenfunction of the prime SLE,{
d
dη

(η2 + 1)
1/2 d
dη

− i/q [η; λo| −
...N2J,L

]
+ ε i /w[η]

}
i /Ψ[η; λo; ε| −

...N2J,L] = 0 (153)

for the energy of ε = εc,n(a). However, to proceed with mathematical induction, we also
need to prove that the Dirichlet problem in question does not have eigenfunctions other
than q‑RSs (152); this is the most challenging part of the proof presented below. In particu‑
lar, we need to confirm that the eigenfunction at the lowest energy of εc,0(a) is nodeless.

First, taking into account that

•
ℜ (−a−ib)

m [η] = 1/2(m+ 1 − 2a)ℜ(1−a−ib)
m−1 [η], (154)

we can represent the aforementioned eigenfunction as

i /ψc,n
˜
(N2J,L,0)[η; λo| −

...N2J,L] =
1
4J ∏

m∈ N2J,L

(m+ n1 − 2a)×

i /ψc,0[η; λo − 2J]
i
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by analogy with (22). The energy-dependent free term of ODE (91) is the m-degree poly-
nomial linear in ε, as follows: 

o( )
m o m o mC [ ; ; | ,m ] C [ ; ,m ] ( )i i

−λη λ ε − = η λ − + εℜ η  (95)

where 

o o o( ) ( ) ( )
m o m ,m o m1C [ ; | ,m] 2 ( ) [ ] ( ) [ ].

•−λ −λ −λ
−η λ − ℜ η ℜ η − ε λ ℜ ηi Re=  (96)

For jm = 2  and 1
2n a< − , the polynomial Wronskians in question form a finite 

EOP subset of the X-DPS in question. 

3.2. Finite EOP Sequences as Truncations of X-DPSs Formed by Wronskians of Routh 
Polynomials 

Let pM−   be a finite set of the q-RSs 
k
[ ; ]om,i φ η λ− , with 

p k 1,...,p k 1 kM : m (m m 0 for k p)= += > ≥ <  (97)

standing for a monotonic sequence of non-negative integers. Again, we assume that 2a is 
not a positive integer; therefore, the leading coefficient, mK ( )a− , of the Routh polyno-

mial ( b )
m [ ]ia− −ℜ η  differs from zero regardless of the polynomial degree (m). Writing 

the leading coefficient of the polynomial Wronskian 

o
p k 1,...,p

( )
o p(M ) m[ ; | M ] : W [ ]{ }

=
−λη λ − = ℜ ηi NW  (98)

as 

kp p

p
o p m p(M ); (M )

k 1
( | M ) K ( ) D(M ),

=
λ − = −∏i aN NW  (99) 

where [63] 

(N2J,L)−2J
[η;λo−1|−

...N2J,L−12J]

i
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vanishes at both limits (η → ±∞ ) and, therefore, must be an eigenfunction of prime SLE 
(28), in contradiction with the fact that any eigenfunction of the ℜRef  CSLE (1) can be 
written in the form of (12). We thus assert that q-RSs (75) represent all possible eigenfunc-
tions of prime SLE (68), which completes the proof of Theorem 1. □ 

For the R D T using the TF | , 2 )− j  eigenfunctions (75) with n ≥ 0 can be represented 
as the weighted Wronskians of Routh and R-Routh polynomials with the common quasi-
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4

o
o

o o ( )
2

[ ;1[ ; | , 2 ] [ ] [ ; | ,, 2 ] :
(

]

)

−
 −λ

η − λη λ − ≡ η η λ − =
ℜ η

ψ/ψ φ/ i
i i iρ

j
j j  

(82)

namely 

,n 1 o o 2 n 1 o[ ; | , 2 ] [ ; | , 2 ] [ ; n, 2 ],+ + −η λ − = − η λ − η λ −ψ ψ/ / i i i |jj j jc W  (83)

where 

( , ) ( )
2 n 1 n 2

2 1[ ; n , 2 ] : W R [ ], [ ]{ }−
− +− − −

+ η + − = η ℜ ηi
b a a iba |ibW j jj  (84)

is the polynomial of degree 2 n 1+ −j , with the R-Routh polynomial defined via (A10) in 
Appendix A. One can directly verify that q-RSs (74) of prime SLEs (68) obey the DBCs iff 

1
2n a< − . 

By analogy with (37), we conclude that q-RSs (74) are normalizable with the weight 

[ ]i w η/  as follows: 
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p k 1,...,p

( )
o p(M ) m[ ; | M ] : W [ ]{ }

=
−λη λ − = ℜ ηi NW  (98)

as 

kp p

p
o p m p(M ); (M )

k 1
( | M ) K ( ) D(M ),

=
λ − = −∏i aN NW  (99) 

where [63] 

(N2J,L)
[η;λo|−

...N2J,L]

,
(155)

where the symbolic expression 12J stands for the 2J‑element row formedbyones. The crucial
point is that the partitionN2J,L − 12J starts from the positive integer n1 − 1 for any n1 > 1.

Let us now use the eigenfunction

iϕc,n
˜
(N2J,L,0)[η; λo| −

...N2J,L] =

(η2 + 1)−
1/4

i /ψc,n
˜
(N2J,L,0)[η; λo| −

...N2J,L]
(156)

as the TF for the RLDT and show that

iI
o[η; λo| −

...N2J,L] + 2
√

iρ♢[η]
d
dη

ldiϕc,n
˜
(N2J,L ,0) [η;λo|−

...N2J,L]√
iρ♢[η]

+
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ρ
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where the so-called [29] ‘universal correction’ is defined via the following generic formula: 

d [ ]1[ ] : [ ]2 d [ ]
f{f } f
f

ld ηη = η
η η

J  (51)
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≡ η − η  (52)

1 1
2 2

2d[ ] [ ]2d
f f −= − η η

η
 (53)
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1 2 3
1 2f ] f f ( )[ld 0− − −

− −η = η + η + η  (54) 

where both constants, fିଵ and fିଶ, may generally depend on the sign of η. As the direct 
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( ) 3 4
2

1 d f [ ] f ( )
d

ld 0− −
−η η ≈ η + η

η η
 (55)

Keeping in mind the asymptotic behavior of the density function with large values 
of | |η , 

2[ ]i
−

 η ≈ ηρ  for | | 1η >> , (56) 

the analysis of the right-hand side of (50) with large values of | |η shows that 

( ) ( )2 o 2 o
o o

| | | |
I ; | ,2 I ; ]i ilim lim

η→∞ η→∞
η η λ ± ] = η η λ[ [j . (57) 

We have thus proven that the RLDT in question does not change the ExpDiff of the 
CSLE at infinity—the common feature of the Fuchsian CSLEs with the density functions 
decreasing as 21 / η  with large values of | |η . 

Substituting the logarithmic derivative 

{
iρ♢[η]

}
= iI

o[η; λo − 1| −
...N2J,L − 12J],

(157)
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where, according to (103) and (104),

iI
o[η; λ| −

...Mp] = iI
o[η; λ] + 2 p

√
iρ♢[η]

d
dη

ld iϕ[η;−λ]√
iρ♢[η]

+

2
√

iρ♢[η]
d
dη

ld i
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p k 1,...,p

( )
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...Mp]
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− p(p− 2)
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the leading coefficient of the polynomial Wronskian 

o
p k 1,...,p

( )
o p(M ) m[ ; | M ] : W [ ]{ }

=
−λη λ − = ℜ ηi NW  (98)

as 

kp p

p
o p m p(M ); (M )

k 1
( | M ) K ( ) D(M ),

=
λ − = −∏i aN NW  (99) 

where [63] 

(Mp)
[η;λo|−

...N2J,L]
√

iρ♢[η]
− 4J(J− 1)
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

η λ
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η η

φ
[ [ jj ρ ρ

ρ
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where the so-called [29] ‘universal correction’ is defined via the following generic formula: 

d [ ]1[ ] : [ ]2 d [ ]
f{f } f
f

ld ηη = η
η η

J  (51)

21 1[ ] [ ]2 4f fld ld
•

≡ η − η  (52)

1 1
2 2

2d[ ] [ ]2d
f f −= − η η

η
 (53)

Note that the logarithmic derivatives of both functions, ,2 o[ ; ]± η λφi j  and [ ]i  ηρ  , 
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1 2 3
1 2f ] f f ( )[ld 0− − −

− −η = η + η + η  (54) 

where both constants, fିଵ and fିଶ, may generally depend on the sign of η. As the direct 
consequence of (54), we find that 

( ) 3 4
2

1 d f [ ] f ( )
d

ld 0− −
−η η ≈ η + η

η η
 (55)

Keeping in mind the asymptotic behavior of the density function with large values 
of | |η , 

2[ ]i
−

 η ≈ ηρ  for | | 1η >> , (56) 

the analysis of the right-hand side of (50) with large values of | |η shows that 

( ) ( )2 o 2 o
o o

| | | |
I ; | ,2 I ; ]i ilim lim

η→∞ η→∞
η η λ ± ] = η η λ[ [j . (57) 

We have thus proven that the RLDT in question does not change the ExpDiff of the 
CSLE at infinity—the common feature of the Fuchsian CSLEs with the density functions 
decreasing as 21 / η  with large values of | |η . 

Substituting the logarithmic derivative 

{
iρ♢[η]

}
,

(159)

where we also take into account that

ld iϕ[η;p− λo] = ld iϕ[η;−λo]− 1/2p ld iρ♢[η] (160)

and form‑invariance condition (A24) for the ℜRef CSLE (1) as follows:

iI
o[η; λo − 1]− iI

o[η; λo] = 2
√

iρ♢[η]
d
dη

ldiϕ[η;−λo]√
iρ♢[η]

+
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We have thus proven that the RLDT using eigenfunction (156) as its TF converts the
given RCSLE with RefPF (159) into the RCSLE with RefPF (157).

To proceedwithmathematical induction, we assume that polynomialWronskian (150)
does not have real zeros for any partition starting from n1 − 1 and also that the correspond‑
ing prime SLE is exactly solvable in terms of the q‑RSs of our interest.

In particular, this assumption is valid for prime SLE (153) with N2J,L and λo replaced
byN2J,L − 12J and λo − 1, respectively. Let us now apply the RLDT to this SLE using the re‑
ciprocal of eigenfunction (155) as its TF. Since the latter quasi‑rational TF obeys both prepo‑
sitions summarized in the end of Section 3.4, we come up with the following result:

Lemma 1.  For any n1 > 1, all the eigenfunctions of prime SLE (153) with no poles on the real axis
have the quasi‑rational form (152) if this is true for any partition starting from the positive integer
n1 − 1.

Based on Lemma 1, we can restrict our analysis only to partitions (149) with n1 = 1 as
follows:

N0
2J,L = 1 : 2j1, N2J−2j1,L−1, (162)

where
N2J−2j1,L−1 := n2 : n2 + 2j2 − 1, . . . ,nL : n2J. (163)

Let us start from the simplest case, as follows:

N0
2j1,1,j1 := 1 : 2j1; (164)

therefore,
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It was proven in [1] that all the RLD
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the Dirichlet problem in question is exactly solvable. This important result is commonly 
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using one of these basic solutions as the transformation function (TF) simply shifts each 
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Both JRef   and LRef   CSLEs with simple-pole density functions have a quartet of 
basic solutions, and as a result, their rational Darboux–Crum [33,34] transforms ( TRDC s
) are specified by two series of Maya diagrams [35], so the corresponding exceptional DPSs 
(X-DPSs) are formed by pseudo-Wronskians of Jacobi or Laguerre polynomials with the 
same absolute values of the polynomial indexes (as well as with the same absolute value 
of the argument in the latter case). (In following [36–38], we term the given DPS ‘excep-
tional’ if it either does not start from a constant or lacks the first-order polynomials and 
thereby does not obey the prerequisites of the Bochner theorem [24].) We direct the reader 
to the recent review article by Durán [39] for a detailed discussion of this non-trivial issue, 
as well as for relevant references. 

On other hand, theℜRef CSLE with the simple-pole density function has only two 
basic solutions and as a result its TRDC s  can be specified by a single series of Maya dia-
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real zeros, then the eigenfunctions of the transformed RCSLE are expressible in terms of 
a finite exceptional orthogonal polynomial (EOP) sequence in Quesne’s terms [17]. 

While the exceptional orthogonal polynomial systems (X-OPSs) have attracted the 
broad attention of both mathematicians and physicists (see, e.g., [36–40] and the references 
therein), nearly all of the cited works overlook the revolutionary discovery [23] of the Dar-
boux–Crum nets of rational potentials composed of TRDC s  of the three TSI potentials: 

s of the TFI SLE of group A described by a sin‑
gle series of Maya diagrams can be constructed using the sequences of the TFs formed by
Wronskians of seed polynomials. In particular, it can be shown that

i

Symmetry 2024, 16, x FOR PEER REVIEW 13 of 42 
 

 

Since this eigenfunction must be a PFS near each singular end point at infinity, 

,n o[ ; | , 2 ] | | ±−ρη λ ± ∝ ηψ/i c j  for | | 1η >> ; (77)

therefore, 

( )o,n| |
lim [ ; | , 2 ] 0 .

•

η → ∞
η η λ ± =ψ/i jc  (78)

Taking into account that the lowest-energy eigenfunction (74) has a quasi-rational 
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we find that the function 

1
2

,0 o ,n o
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,0 o

W [ ; | , 2 ], [ ; | , 2 ]
[ ; ] :

[ ] [ ; | , 2 ]

{ }
±



η λ ± η λ ±
η λ =

η η λ ±

ψ ψ/ /ψ/
ψ/

i i
i

i i

c c

c

j j

jρ

 
(80)

2
o,n1 [ ; | , 2 ]

•
= η + η λ ±ψ/i c j  

2
,0 o ,n o1 [ ; | , 2 ] [ ; | , 2 ]− η + η λ ± η λ ±ψ ψ/ /i ild c cj j  

(81)

vanishes at both limits (η → ±∞ ) and, therefore, must be an eigenfunction of prime SLE 
(28), in contradiction with the fact that any eigenfunction of the ℜRef  CSLE (1) can be 
written in the form of (12). We thus assert that q-RSs (75) represent all possible eigenfunc-
tions of prime SLE (68), which completes the proof of Theorem 1. □ 

For the R D T using the TF | , 2 )− j  eigenfunctions (75) with n ≥ 0 can be represented 
as the weighted Wronskians of Routh and R-Routh polynomials with the common quasi-
rational weight 

1
4

o
o

o o ( )
2

[ ;1[ ; | , 2 ] [ ] [ ; | ,, 2 ] :
(

]

)

−
 −λ

η − λη λ − ≡ η η λ − =
ℜ η

ψ/ψ φ/ i
i i iρ

j
j j  

(82)

namely 

,n 1 o o 2 n 1 o[ ; | , 2 ] [ ; | , 2 ] [ ; n, 2 ],+ + −η λ − = − η λ − η λ −ψ ψ/ / i i i |jj j jc W  (83)

where 

( , ) ( )
2 n 1 n 2

2 1[ ; n , 2 ] : W R [ ], [ ]{ }−
− +− − −

+ η + − = η ℜ ηi
b a a iba |ibW j jj  (84)

is the polynomial of degree 2 n 1+ −j , with the R-Routh polynomial defined via (A10) in 
Appendix A. One can directly verify that q-RSs (74) of prime SLEs (68) obey the DBCs iff 

1
2n a< − . 

By analogy with (37), we conclude that q-RSs (74) are normalizable with the weight 

[ ]i w η/  as follows: 

2j1
[η; a + ib| −

...N0
2j1,1,j1 ] = D(1: 2j1)ℜ̂

(a+ib)
2j1

[η], (166)

keeping in mind that the row and column of the same length represent the conjugated
Young diagrams. (In the simplest case j1 = 1, the cited formula has been explicitly proven
in [70].) It was proven in Section 3.1 that the Routh polynomial in question (see Appendix B
formore details) and, therefore,Wronskian (166)may not have real zeros. This confirms the
Karlin and Szegő’s theorem [69] for n1 = 1. Now that we have proven that the correspond‑
ing prime SLE may not have poles on the real axis, directly following from the arguments
presented in support of Lemma 1, we propose the following inference:

Lemma 2.  All the eigenfunctions of prime SLE (153) specified by partition (164) have the quasi‑
rational form (152).

Repeating the arguments presented above, we can then extend this assertion to an
arbitrary partition (151), which brings us to the following corollary of Karlin and Szegő’s
theorem [69]:

Theorem 5.  The Wronskian of an even number of R‑Routh polynomials with sequential degrees
may not have real zeros.

Proof of Theorem 5.  For J = 1, the theorem directly follows from our extension of Adler’s
renowned results [71] to RCSLE (112) for partition (148)—termed by us in Appendix C as
the ‘enhanced Adler theorem’. Since polynomial Wronskian (150) does not have zeros on
the real axis, the corresponding prime SLE may not have poles on the real axis. In addition,
Lemma 2 assures that the corresponding Dirichlet problem is exactly solvable in terms of
q‑RSs (152) for n1 = 1.

Let us nowassume that any eigenfunction of the givenprimeSLEhas the quasi‑rational
form (152) for the partition N2,1, starting from the positive integer n1 − 1. Then, according
to Lemma 1, this should be also true for the partitionN2,1 starting from n1.

We can now repeat these arguments for J > 1, assuming any eigenfunction of the prime
SLE for the partition N2J,1 has the quasi‑rational form (152). Note that this is necessarily
true for partition (164) with j1 = J, and we can thus use Lemma 1 to extend this assertion to
an arbitrary positive value of n1.

To confirm that the theorem holds for any partition (151) with j1 = J+ 1, we can again
take advantage of the enhanced Adler theorem but, this time, coupled with the generic
chain formula for Wronskians [72] as follows:

i
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By analogy with (37), we conclude that q-RSs (74) are normalizable with the weight 
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M2J = N2J,1, n = n1 + 2J. (168)

We can then use mathematical induction to complete the proof. □

Combining Theorem 5 with Lemma 1 brings one to the following intermediate result:
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Lemma 3. Any eigenfunction of the prime SLE (153) specified by the single‑segment partition (151)
has the quasi‑rational form (152).

We are finally ready to prove the most important result of this section.

Theorem 6. Wronskians of R‑Routh polynomials with degrees forming even‑length segments may
not have real zeros.

Proof of Theorem 6.  According to Theorem 5, this assertion is valid for any single seg‑
ment of an even length. Let us now assume that the theorem is valid for any partition
formed by L‑1 even‑length segments formed by positive integers and, in addition, that any
eigenfunction of the corresponding prime SLE has the quasi‑rational form (152) withN2J,L
replaced with N2J,L−1. It directly follows from Lemma 3 that the assumption is valid for
any single‑segment partition of an even length (L = 1). Apparently, we can focus solely on
the partitions with n1 = 1.

If at least one segment of an L‑segment partition has the length of 2, then we can again
take advantage of the enhanced Adler theorem coupled with the cited chain formula with
M2J in (167) substituted byN2J−2,L−1 and

N2J,L = N2J−2,L−1,n,n+ 1 (n,n+ 1 /∈ N2J−2,L−1). (169)

However, we cannot proceed with mathematical induction before proving that any
eigenfunction of the prime SLE (153) for the set of seed solutions specified by the partition
(169) can be represented in the quasi‑rational form (152).

Note that, by analogy with the proof of Theorem 5, we use mathematical induction
in two distinguished way. First, we increase J by one and take advantage of the enhanced
Adler theorem coupled with the cited chain relation to prove that the corresponding poly‑
nomialWronskian does not have real zeros. We then repeatedly increase n1 by one (starting
from n1 = 1) to utilize Lemma 1.

Whether or not polynomial Wronskian (150) has real zeros, one can apply the RLDT
to the corresponding RCSLE using the q‑RS

iϕ
0[η; λo| −

...N0
2J,L,j1 ] = iϕ[η; 2J− λo]×

i
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where for briefness, we set

N′
2J−2j1,L−1:=N2J−2j1,L−1 − 2j112J−2j1 . (174)

Note that a − 2J − 2j1 must be larger than 1/2, since the ℜRef CSLE (1) has at least
2J+ 2j1 eigenfunctions.

By analogy with (157), we now need to confirm that

iI
o[η; λo| −

...N0
2J,L,j1 ] + 2

√
iρ♢[η]

d
dη

iϕ
0[η;λo|−

...N0
2J,L,j1 ]√

iρ♢[η]

+
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Note that the logarithmic derivatives of both functions, ,2 o[ ; ]± η λφi j  and [ ]i  ηρ  , 

behave as follows with large values of η: 

1 2 3
1 2f ] f f ( )[ld 0− − −

− −η = η + η + η  (54) 

where both constants, fିଵ and fିଶ, may generally depend on the sign of η. As the direct 
consequence of (54), we find that 

( ) 3 4
2

1 d f [ ] f ( )
d

ld 0− −
−η η ≈ η + η

η η
 (55)

Keeping in mind the asymptotic behavior of the density function with large values 
of | |η , 

2[ ]i
−

 η ≈ ηρ  for | | 1η >> , (56) 

the analysis of the right-hand side of (50) with large values of | |η shows that 

( ) ( )2 o 2 o
o o

| | | |
I ; | ,2 I ; ]i ilim lim

η→∞ η→∞
η η λ ± ] = η η λ[ [j . (57) 

We have thus proven that the RLDT in question does not change the ExpDiff of the 
CSLE at infinity—the common feature of the Fuchsian CSLEs with the density functions 
decreasing as 21 / η  with large values of | |η . 

Substituting the logarithmic derivative 

{
iρ♢[η]

}
= iI

o[η; λo − 2j1| −
...N′

2J−2j1,L−1],

(175)

where

iI
o[η; λo − 2j1| −

...N2J−2j1,L−1 − 2j112J−2j1 ] = iI
o[η; λo − 2j1]+

4 (J− j1)
√

iρ♢[η]
d
dη

ld iϕ[η;2j1−λo]√
iρ♢[η]

− 4 (J− j1)(J− j1 − 1)J
{

iρ♢[η]
}

2
√

iρ♢[η]
d
dη

ld i

Symmetry 2024, 16, x FOR PEER REVIEW 13 of 42 
 

 

Since this eigenfunction must be a PFS near each singular end point at infinity, 

,n o[ ; | , 2 ] | | ±−ρη λ ± ∝ ηψ/i c j  for | | 1η >> ; (77)

therefore, 

( )o,n| |
lim [ ; | , 2 ] 0 .

•

η → ∞
η η λ ± =ψ/i jc  (78)

Taking into account that the lowest-energy eigenfunction (74) has a quasi-rational 
form, 

,0 o
| |
lim [ ; | , 2 ] ,

η →∞
η η λ ± < ∞ψ/ild jc  (79)

we find that the function 

1
2

,0 o ,n o
o

,0 o

W [ ; | , 2 ], [ ; | , 2 ]
[ ; ] :

[ ] [ ; | , 2 ]

{ }
±



η λ ± η λ ±
η λ =

η η λ ±

ψ ψ/ /ψ/
ψ/

i i
i

i i

c c

c

j j

jρ

 
(80)

2
o,n1 [ ; | , 2 ]

•
= η + η λ ±ψ/i c j  

2
,0 o ,n o1 [ ; | , 2 ] [ ; | , 2 ]− η + η λ ± η λ ±ψ ψ/ /i ild c cj j  

(81)

vanishes at both limits (η → ±∞ ) and, therefore, must be an eigenfunction of prime SLE 
(28), in contradiction with the fact that any eigenfunction of the ℜRef  CSLE (1) can be 
written in the form of (12). We thus assert that q-RSs (75) represent all possible eigenfunc-
tions of prime SLE (68), which completes the proof of Theorem 1. □ 

For the R D T using the TF | , 2 )− j  eigenfunctions (75) with n ≥ 0 can be represented 
as the weighted Wronskians of Routh and R-Routh polynomials with the common quasi-
rational weight 

1
4

o
o

o o ( )
2

[ ;1[ ; | , 2 ] [ ] [ ; | ,, 2 ] :
(

]

)

−
 −λ

η − λη λ − ≡ η η λ − =
ℜ η

ψ/ψ φ/ i
i i iρ

j
j j  

(82)

namely 

,n 1 o o 2 n 1 o[ ; | , 2 ] [ ; | , 2 ] [ ; n, 2 ],+ + −η λ − = − η λ − η λ −ψ ψ/ / i i i |jj j jc W  (83)

where 

( , ) ( )
2 n 1 n 2

2 1[ ; n , 2 ] : W R [ ], [ ]{ }−
− +− − −

+ η + − = η ℜ ηi
b a a iba |ibW j jj  (84)

is the polynomial of degree 2 n 1+ −j , with the R-Routh polynomial defined via (A10) in 
Appendix A. One can directly verify that q-RSs (74) of prime SLEs (68) obey the DBCs iff 

1
2n a< − . 

By analogy with (37), we conclude that q-RSs (74) are normalizable with the weight 

[ ]i w η/  as follows: 

Symmetry 2024, 16, x FOR PEER REVIEW 15 of 42 
 

 

{ };m o m o ,n o m n 1 o[ ; ] C [ ; ; ( ) | ,m] [ ; n,m] 0− − + −η λ + η λ λ − η λ − =εD i i i i |W  

(n = 0, 1, …, m − 1, m + 1, …), 
(91)

where 

o
2( )2

;m o m om 12
d d[ ; ] : ( 1) [ ] [ ; | , m]

dd
−λ

− +η λ = η + ℜ η + τ η λ −
ηη

Di i  (92)

is the second-order differential operator with the energy-independent polynomial coeffi-
cient of the first derivative 

2
o om 1[ ; | ,m] : 2( 1) [ ; | ,m]+τ η λ − = η + φ η λ −i ild  (93)

o o o(1 ) ( ) ( )2
m m12 [ ] [ ] 2( 1) [ ].

•−λ −λ −λ= ℜ η ℜ η − η + ℜ η  (94)

by analogy with (22). The energy-dependent free term of ODE (91) is the m-degree poly-
nomial linear in ε, as follows: 

o( )
m o m o mC [ ; ; | ,m ] C [ ; ,m ] ( )i i

−λη λ ε − = η λ − + εℜ η  (95)

where 

o o o( ) ( ) ( )
m o m ,m o m1C [ ; | ,m] 2 ( ) [ ] ( ) [ ].

•−λ −λ −λ
−η λ − ℜ η ℜ η − ε λ ℜ ηi Re=  (96)

For jm = 2  and 1
2n a< − , the polynomial Wronskians in question form a finite 

EOP subset of the X-DPS in question. 

3.2. Finite EOP Sequences as Truncations of X-DPSs Formed by Wronskians of Routh 
Polynomials 

Let pM−   be a finite set of the q-RSs 
k
[ ; ]om,i φ η λ− , with 

p k 1,...,p k 1 kM : m (m m 0 for k p)= += > ≥ <  (97)

standing for a monotonic sequence of non-negative integers. Again, we assume that 2a is 
not a positive integer; therefore, the leading coefficient, mK ( )a− , of the Routh polyno-

mial ( b )
m [ ]ia− −ℜ η  differs from zero regardless of the polynomial degree (m). Writing 

the leading coefficient of the polynomial Wronskian 

o
p k 1,...,p

( )
o p(M ) m[ ; | M ] : W [ ]{ }

=
−λη λ − = ℜ ηi NW  (98)

as 

kp p

p
o p m p(M ); (M )

k 1
( | M ) K ( ) D(M ),

=
λ − = −∏i aN NW  (99) 

where [63] 

(Mp)
[η;λ|−

...N′
2J−2j1,L−1]

√
iρ♢[η]

.

(176)

Indeed, making use of (160), one can verify that

4 (J− j1)
√

iρ♢[η]
d
dη

ld iϕ[η;2j1−λo]√
iρ♢[η]

− 4 (J− j1)(J− j1 − 1)
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tertwining operators [37,38,61]. 

Representing the ℜRef  CSLE (1) for the TF ( ,2 o[ ; ]± η λφi j ) in the Riccati form as 

follows: 

2 o
,2 o ,2 o o ,2[ ; ] [ ; ] I ; ] ( ) [ ]

•

± ± ± − η λ − η λ = η λ + ε ηφ φ [i i i i ild ld aj j j ρ  (48)

and taking into account that 

1,0 o ,2 o 2[ ; | ,2 ] [ ; ] [ ]i i ild ld ld± φ η λ ± = − η λ − ηφc jj ρ , (49)

we can alternatively represent RefPF (47) as [31] 

,2 oo o
o o

[ ; ]dI ; | ,2 I ; ] 2 [ ] [ ]
d [ ]

{ }i
i i i i

i

ld ±
 



η λ
η λ ± ] = η λ + η + η

η η

φ
[ [ jj ρ ρ

ρ
J , (50)

where the so-called [29] ‘universal correction’ is defined via the following generic formula: 

d [ ]1[ ] : [ ]2 d [ ]
f{f } f
f

ld ηη = η
η η

J  (51)

21 1[ ] [ ]2 4f fld ld
•

≡ η − η  (52)

1 1
2 2

2d[ ] [ ]2d
f f −= − η η

η
 (53)

Note that the logarithmic derivatives of both functions, ,2 o[ ; ]± η λφi j  and [ ]i  ηρ  , 

behave as follows with large values of η: 

1 2 3
1 2f ] f f ( )[ld 0− − −

− −η = η + η + η  (54) 

where both constants, fିଵ and fିଶ, may generally depend on the sign of η. As the direct 
consequence of (54), we find that 

( ) 3 4
2

1 d f [ ] f ( )
d

ld 0− −
−η η ≈ η + η

η η
 (55)

Keeping in mind the asymptotic behavior of the density function with large values 
of | |η , 

2[ ]i
−

 η ≈ ηρ  for | | 1η >> , (56) 

the analysis of the right-hand side of (50) with large values of | |η shows that 

( ) ( )2 o 2 o
o o

| | | |
I ; | ,2 I ; ]i ilim lim

η→∞ η→∞
η η λ ± ] = η η λ[ [j . (57) 

We have thus proven that the RLDT in question does not change the ExpDiff of the 
CSLE at infinity—the common feature of the Fuchsian CSLEs with the density functions 
decreasing as 21 / η  with large values of | |η . 

Substituting the logarithmic derivative 

{
iρ♢[η]

}
=

4 (J− j1)
√

iρ♢[η]
d
dη

ld iϕ[η;−λo]√
iρ♢[η]

+ 4[j1(j1 − 1)− J(J− 1)]
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{
iρ♢[η]

}
,

(177)

whereas form‑invariance condition (161) can be generalized as follows:

iI
o[η; λo − p] = iI

o[η; λo] + 2p
√

iρ♢[η]
d
dη

ldiϕ[η;−λo]√
iρ♢[η]

, (178)

which gives

iI
o[η; λo| −

...N0
2J,L,j1 ] = iI

o[η; λo] + 4 J
√

iρ♢[η]
d
dη

ld iϕ[η;−λo]√
iρ♢[η]

−4J(J− 1)

Symmetry 2024, 16, x FOR PEER REVIEW 10 of 42 
 

 

Note that the preservation of the leading coefficient function and weight is an addi-
tional constraint imposed on the ‘Darboux transformations’ of SLEs defined using the in-
tertwining operators [37,38,61]. 

Representing the ℜRef  CSLE (1) for the TF ( ,2 o[ ; ]± η λφi j ) in the Riccati form as 

follows: 

2 o
,2 o ,2 o o ,2[ ; ] [ ; ] I ; ] ( ) [ ]

•

± ± ± − η λ − η λ = η λ + ε ηφ φ [i i i i ild ld aj j j ρ  (48)

and taking into account that 

1,0 o ,2 o 2[ ; | ,2 ] [ ; ] [ ]i i ild ld ld± φ η λ ± = − η λ − ηφc jj ρ , (49)

we can alternatively represent RefPF (47) as [31] 

,2 oo o
o o

[ ; ]dI ; | ,2 I ; ] 2 [ ] [ ]
d [ ]

{ }i
i i i i

i

ld ±
 



η λ
η λ ± ] = η λ + η + η

η η

φ
[ [ jj ρ ρ

ρ
J , (50)

where the so-called [29] ‘universal correction’ is defined via the following generic formula: 

d [ ]1[ ] : [ ]2 d [ ]
f{f } f
f

ld ηη = η
η η

J  (51)

21 1[ ] [ ]2 4f fld ld
•

≡ η − η  (52)

1 1
2 2

2d[ ] [ ]2d
f f −= − η η

η
 (53)

Note that the logarithmic derivatives of both functions, ,2 o[ ; ]± η λφi j  and [ ]i  ηρ  , 

behave as follows with large values of η: 

1 2 3
1 2f ] f f ( )[ld 0− − −

− −η = η + η + η  (54) 

where both constants, fିଵ and fିଶ, may generally depend on the sign of η. As the direct 
consequence of (54), we find that 

( ) 3 4
2

1 d f [ ] f ( )
d

ld 0− −
−η η ≈ η + η

η η
 (55)

Keeping in mind the asymptotic behavior of the density function with large values 
of | |η , 

2[ ]i
−

 η ≈ ηρ  for | | 1η >> , (56) 

the analysis of the right-hand side of (50) with large values of | |η shows that 

( ) ( )2 o 2 o
o o

| | | |
I ; | ,2 I ; ]i ilim lim

η→∞ η→∞
η η λ ± ] = η η λ[ [j . (57) 

We have thus proven that the RLDT in question does not change the ExpDiff of the 
CSLE at infinity—the common feature of the Fuchsian CSLEs with the density functions 
decreasing as 21 / η  with large values of | |η . 

Substituting the logarithmic derivative 

{iρ♢[η]}+ 2
√

iρ♢[η]
d
dη

i

Symmetry 2024, 16, x FOR PEER REVIEW 13 of 42 
 

 

Since this eigenfunction must be a PFS near each singular end point at infinity, 

,n o[ ; | , 2 ] | | ±−ρη λ ± ∝ ηψ/i c j  for | | 1η >> ; (77)

therefore, 

( )o,n| |
lim [ ; | , 2 ] 0 .

•

η → ∞
η η λ ± =ψ/i jc  (78)

Taking into account that the lowest-energy eigenfunction (74) has a quasi-rational 
form, 

,0 o
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η η λ ± < ∞ψ/ild jc  (79)

we find that the function 

1
2

,0 o ,n o
o

,0 o

W [ ; | , 2 ], [ ; | , 2 ]
[ ; ] :

[ ] [ ; | , 2 ]

{ }
±



η λ ± η λ ±
η λ =

η η λ ±

ψ ψ/ /ψ/
ψ/

i i
i

i i

c c

c

j j

jρ

 
(80)

2
o,n1 [ ; | , 2 ]

•
= η + η λ ±ψ/i c j  

2
,0 o ,n o1 [ ; | , 2 ] [ ; | , 2 ]− η + η λ ± η λ ±ψ ψ/ /i ild c cj j  

(81)

vanishes at both limits (η → ±∞ ) and, therefore, must be an eigenfunction of prime SLE 
(28), in contradiction with the fact that any eigenfunction of the ℜRef  CSLE (1) can be 
written in the form of (12). We thus assert that q-RSs (75) represent all possible eigenfunc-
tions of prime SLE (68), which completes the proof of Theorem 1. □ 

For the R D T using the TF | , 2 )− j  eigenfunctions (75) with n ≥ 0 can be represented 
as the weighted Wronskians of Routh and R-Routh polynomials with the common quasi-
rational weight 

1
4

o
o

o o ( )
2

[ ;1[ ; | , 2 ] [ ] [ ; | ,, 2 ] :
(

]

)

−
 −λ

η − λη λ − ≡ η η λ − =
ℜ η

ψ/ψ φ/ i
i i iρ

j
j j  

(82)

namely 

,n 1 o o 2 n 1 o[ ; | , 2 ] [ ; | , 2 ] [ ; n, 2 ],+ + −η λ − = − η λ − η λ −ψ ψ/ / i i i |jj j jc W  (83)

where 

( , ) ( )
2 n 1 n 2

2 1[ ; n , 2 ] : W R [ ], [ ]{ }−
− +− − −

+ η + − = η ℜ ηi
b a a iba |ibW j jj  (84)

is the polynomial of degree 2 n 1+ −j , with the R-Routh polynomial defined via (A10) in 
Appendix A. One can directly verify that q-RSs (74) of prime SLEs (68) obey the DBCs iff 

1
2n a< − . 

By analogy with (37), we conclude that q-RSs (74) are normalizable with the weight 

[ ]i w η/  as follows: 
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o
2( )2
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dd
−λ

− +η λ = η + ℜ η + τ η λ −
ηη

Di i  (92)

is the second-order differential operator with the energy-independent polynomial coeffi-
cient of the first derivative 

2
o om 1[ ; | ,m] : 2( 1) [ ; | ,m]+τ η λ − = η + φ η λ −i ild  (93)

o o o(1 ) ( ) ( )2
m m12 [ ] [ ] 2( 1) [ ].

•−λ −λ −λ= ℜ η ℜ η − η + ℜ η  (94)

by analogy with (22). The energy-dependent free term of ODE (91) is the m-degree poly-
nomial linear in ε, as follows: 

o( )
m o m o mC [ ; ; | ,m ] C [ ; ,m ] ( )i i

−λη λ ε − = η λ − + εℜ η  (95)

where 

o o o( ) ( ) ( )
m o m ,m o m1C [ ; | ,m] 2 ( ) [ ] ( ) [ ].

•−λ −λ −λ
−η λ − ℜ η ℜ η − ε λ ℜ ηi Re=  (96)

For jm = 2  and 1
2n a< − , the polynomial Wronskians in question form a finite 

EOP subset of the X-DPS in question. 

3.2. Finite EOP Sequences as Truncations of X-DPSs Formed by Wronskians of Routh 
Polynomials 

Let pM−   be a finite set of the q-RSs 
k
[ ; ]om,i φ η λ− , with 

p k 1,...,p k 1 kM : m (m m 0 for k p)= += > ≥ <  (97)

standing for a monotonic sequence of non-negative integers. Again, we assume that 2a is 
not a positive integer; therefore, the leading coefficient, mK ( )a− , of the Routh polyno-

mial ( b )
m [ ]ia− −ℜ η  differs from zero regardless of the polynomial degree (m). Writing 

the leading coefficient of the polynomial Wronskian 

o
p k 1,...,p

( )
o p(M ) m[ ; | M ] : W [ ]{ }

=
−λη λ − = ℜ ηi NW  (98)

as 

kp p

p
o p m p(M ); (M )

k 1
( | M ) K ( ) D(M ),

=
λ − = −∏i aN NW  (99) 

where [63] 

(N0
2J,L,j1

)
[η;λo|−

...N0
2J,L,j1 ]

√
iρ♢[η]

.

(179)

Substituting (170) into the left‑hand side of (175) and taking advantage of (160), cou‑
pled with (176), we come back to the following conventional formula:

iI
o[η; λo| −

...N0
2J,L,j1 ] = iI

o[η; λo] + 4 J
√

iρ♢[η]
d
dη

ld iϕ[η;−λo]√
iρ♢[η]

−4J(J− 1)
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not a positive integer; therefore, the leading coefficient, mK ( )a− , of the Routh polyno-
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p k 1,...,p

( )
o p(M ) m[ ; | M ] : W [ ]{ }
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p
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where [63] 

(N0
2J,L,j1

)
[η;λo|−

...N0
2J,L,j1

]

√
iρ♢[η]

,

(180)

which completes the proof of (175). Wehave thus proven that theRLDTusing eigenfunction
(170) as its TF converts the given RCSLE with RefPF (180) into the RCSLE with RefPF (175).
It is crucial that the partition specifying this RefPF is formed by the L‑1 segments of even
lengths and, therefore, each eigenfunction of prime SLE (153) with N2J,L and λo replaced
respectively with (174) and λo − 2j1, respectively, can be represented in the quasi‑rational
form of our interest.
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Note that partition (174) is composed of L‑1 segments of even lengths. We can thus
proceed with mathematical induction, assuming that the theorem does hold for partition
(174) and that all the eigenfunctions of prime SLE (153) with the partitionN2J,L changed for
(174) are expressible in the quasi‑rational form under consideration.

We can finally prove that Theorem 6 holds for polynomial Wronskian (150) withN2J,L
defined via (171). First, note that it is necessarily true for polynomial Wronskian (168) with
m2J−2,n,n+ 1 substituted byN0

2J,L,1 as the straightforward corollary of the enhanced Adler
theorem. This implies that q‑RS (170) with j1 = 1 represents the lowest‑energy eigenfunction
of prime SLE (153) withN2J,L changed forN

0
2J,L,1. Since the reciprocal of this q‑RS obeys the

prerequisites for Theorem 4, we assert that all the eigenfunctions of prime SLE (153) with
N2J,L changed as specified above have the quasi‑rational form under consideration.

Now, let us assume that both the latter assertion and Theorem 6 hold for the partition

N0
2J,L,j := 1 : 2j,N′

2J−2j1,L−1, (181)

bearing in mind that this is necessarily true for j =1. It then directly follows from the en‑
hanced Adler theorem that polynomial Wronskian (167) with M2J substituted for N0

2J,L,j
and

M2J,n,n+ 1 = N0
2J,L,j, 2j+ 1, 2j+ 2 (182)

may not have real zeros. This confirms that prime SLE (153) specified by partition (182)
has no poles on the real axis. It then directly follows from Lemma 1 that all the eigenfunc‑
tions of prime SLE (153) with N2J,L replaced with partition (182) can be represented in the
quasi‑rational form (152). We can then complete the proof of Theorem 6 by mathematical
induction over j. □

In the next subsection, we will extend these arguments to prime SLE (122) obtained
from the ℜRef CSLE by the RDCT using the set of seed functions (144), in addition to pairs
of the juxtaposed eigenfunctions.

3.5. General form of a Finite EOP Sequence Formed by W
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s of R‑Routh Polynomials
Let us now generalize the results of Sections 3.3 and 3.4 as follows:

Theorem 7.  Wronskians of Routh polynomials with degrees forming any compound partition
(N2J,М

e,o
∆p) may not have real zeros.

Proof of Theorem 7.  Let us consider the sequence of the LDTs with the TFs

∗/ψc,0[η; λo| −
...N2J,М

e,o
∆p] = i /ψc,0[η; λo − p] ×

i
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1
2

,0 o ,n o
o

,0 o

W [ ; | , 2 ], [ ; | , 2 ]
[ ; ] :

[ ] [ ; | , 2 ]

{ }
±



η λ ± η λ ±
η λ =

η η λ ±

ψ ψ/ /ψ/
ψ/

i i
i

i i

c c

c

j j

jρ

 
(80)

2
o,n1 [ ; | , 2 ]

•
= η + η λ ±ψ/i c j  

2
,0 o ,n o1 [ ; | , 2 ] [ ; | , 2 ]− η + η λ ± η λ ±ψ ψ/ /i ild c cj j  

(81)

vanishes at both limits (η → ±∞ ) and, therefore, must be an eigenfunction of prime SLE 
(28), in contradiction with the fact that any eigenfunction of the ℜRef  CSLE (1) can be 
written in the form of (12). We thus assert that q-RSs (75) represent all possible eigenfunc-
tions of prime SLE (68), which completes the proof of Theorem 1. □ 

For the R D T using the TF | , 2 )− j  eigenfunctions (75) with n ≥ 0 can be represented 
as the weighted Wronskians of Routh and R-Routh polynomials with the common quasi-
rational weight 

1
4

o
o

o o ( )
2

[ ;1[ ; | , 2 ] [ ] [ ; | ,, 2 ] :
(

]

)

−
 −λ

η − λη λ − ≡ η η λ − =
ℜ η

ψ/ψ φ/ i
i i iρ

j
j j  

(82)

namely 

,n 1 o o 2 n 1 o[ ; | , 2 ] [ ; | , 2 ] [ ; n, 2 ],+ + −η λ − = − η λ − η λ −ψ ψ/ / i i i |jj j jc W  (83)

where 

( , ) ( )
2 n 1 n 2

2 1[ ; n , 2 ] : W R [ ], [ ]{ }−
− +− − −

+ η + − = η ℜ ηi
b a a iba |ibW j jj  (84)

is the polynomial of degree 2 n 1+ −j , with the R-Routh polynomial defined via (A10) in 
Appendix A. One can directly verify that q-RSs (74) of prime SLEs (68) obey the DBCs iff 

1
2n a< − . 

By analogy with (37), we conclude that q-RSs (74) are normalizable with the weight 

[ ]i w η/  as follows: 
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k 1
( | M ) K ( ) D(M ),
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λ − = −∏i aN NW  (99) 
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(N2J ,М
e,o
∆p+1)

[η;λo|−
...N2J,М

e,o
∆p+1]

i
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starting from prime SLE (122) with Мp substituted by N2J. It was proven in Section 3.4
that each eigenfunction of this SLE has the quasi‑rational form (129). Since the sequence in
question starts from the RLDT with the TF

∗/ψc,0[η; λo| −
...N2J,М

e,o
1 ] = i /ψc,0[η; λo] ×

i
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By analogy with (37), we conclude that q-RSs (74) are normalizable with the weight 

[ ]i w η/  as follows: 
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both presumptions formulated at the end of Section 3.4 are satisfied. As the direct conse‑
quence of Theorem 4, we thus assert that Theorem 7 holds for p = 2J + 1.

Now, we can complete the proof bymathematical induction. Indeed, suppose that the
denominator of the PF in the right‑hand side of (129) with

Мp = N2J,М
e,o
∆p (185)

does not have real zeros and that the eigenvalues

εmk=1, ..., ∆p(a), εnk=1, ..., 2J(a), (186)

where
mk=1, ..., ∆p ≡ Мe,o

∆p, nk=1, ..., 2J ≡ N2J, (187)

constitute the complete discrete energy spectrum of prime SLE (122) for partition (185).
It then directly follows from Theorem 4 that the RLDT using the seed solutions

Мp+1 = N2J,М
e,o
∆p+1 (188)

with
Мe,o

∆p+1 = Мe,o
∆p,mp+1 (mp+1 > mp), (189)

simply inserts the neweigenvalue, εmp+1
(a), below energy spectrum (186)without affecting

the rest of the energy spectrum. □

We have thus demonstrated that each X‑DPS formed byWronskians of Routh polyno‑
mials and specified by compound partition (188) contains the finite EOP sequence formed
by the polynomial Wronskians

i
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4. Discussion
Although the current paperwas focused solely on the RDC
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s of theℜRef CSLE (1), the
concept of LDTs sketched in Section 3.1 hasmuchmore general implications. Asmentioned
in the Introduction, this new concept forms the theoretical basis for the simplistic rules of
SUSY quantum mechanics. For rational Liouville potentials with exponential tails at large
absolute values of the argument (the subject of the current analysis), the main advantage
of the suggested formalism (cf. [17], for example) manifests itself in our proofs, i.e., that
the RDC
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s of these potentials are exactly solvable in terms of q‑RSs. For rational radial
potentials, as well for rational potentials with singularities at both end points (like the t‑
PT potential), additional complications come up if the singular end point lies in the limit‑
circle region of the corresponding RCSLE, where the conventional rules of SUSY quantum
mechanics become invalid [73].

In [1], we (under the influence of Odake and Sasaki’s breakthrough works [22,23]) ap‑
plied the LDTs to the RCSLEs associated with the rational TSI potentials. It was shown
that the RCSLEs in question have so‑called ‘basic’ solutions satisfying the following trans‑
lational form‑invariance condition:

ιϕ−,0[η; a + 1, b
]

ιϕ+;0[η; a, b
]
= ιρ

−1/2 [η], (191)

with ιρ [η] standing for the density function of the corresponding TFI RCSLE. TFI condition
(18) represents the particular case of (191) for the ℜRef CSLE (1). This common property of
TFI CSLEs directly leads to a subnet (or just the net here) of the RDCTs specified by a single
series of Maya diagrams [74].

It was observed that the RCSLEs with the q‑RSs formed by Jacobi and Laguerre DPSs
[25,27,28] have two pairs of basic solutions satisfying TFI condition (191). As a result, one
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needs two series ofMaya diagrams [35] to specify their RDCTs solvable in terms of X‑Jacobi
and X‑Laguerre DPSs. Note that the latter feature was related in [35] to the translational
shape‑invariance of the t‑PT potential (trigonometric version [33] of the PT potential [41])
and the isotonic oscillator. However, we deal here with a muchmore general phenomenon,
and the equivalence theorem proven in [35] can be re‑formulated [1] whether or not the
given X‑DPS contains an X‑OPS.

One also needs two series of Maya diagrams to identify all the RDCTs of the h‑PT po‑
tential, since both trigonometric and hyperbolic versions of the PT potential can be obtained
by the Liouville transformation of the same RSLE but on two different (finite or infinite)
quantization intervals. The X‑Jacobi DPSs containing RDCTs of R‑Jacobi polynomials may
or may not hold X‑Jacobi OPSs.

In following Odake and Sasaki’s classification of the TSI potentials under considera‑
tion, we include the TFI RCSLEs in group A if the ExpDiffs for the poles in the finite plane
are energy‑independent, otherwise referring to them asCSLEs ofGroup B. The common im‑
portant feature of RCSLEs from groupA is thatWronskians of quasi‑rational seed solutions
of the same type (+ or−) turn into weighted polynomial Wronskians. It was demonstrated
that the grouping is the intrinsic characteristic of the TFI CSLE itself, while its Liouville
potential can be, in some cases (h‑PT and Morse potentials), included into either group,
depending on the choice of the rational representation for the given TSI potential.

There are two TFI CSLEs of group A that have only single pairs of the basic solutions.
One of them is the ℜRef CSLE (1); the second is the Bessel‑reference (BRef) CSLE, which
can be converted by Liouville transformation to the Schrödinger equation with Morse po‑
tential [50]. In both cases, the complete net of the DCTs of the given TFI CSLEs can be
constructed using Wronskians of Routh or generalized Bessel [26,75] polynomials with the
same index. This implies that an arbitrary EOP sequence for each net of the RCSLEs can be
represented as a finite set of W
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s of R‑Routh or R‑Bessel polynomials accordingly.
In Section 3.5, we constructed the net of Routh‑seed (RS) EOP sequences specified by

the compound partitions (188). We speculate that there is no other EOP sequence formed
by W
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is the polynomial of degree 2 n 1+ −j , with the R-Routh polynomial defined via (A10) in 
Appendix A. One can directly verify that q-RSs (74) of prime SLEs (68) obey the DBCs iff 

1
2n a< − . 

By analogy with (37), we conclude that q-RSs (74) are normalizable with the weight 

[ ]i w η/  as follows: 

Symmetry 2024, 16, x FOR PEER REVIEW 15 of 42 
 

 

{ };m o m o ,n o m n 1 o[ ; ] C [ ; ; ( ) | ,m] [ ; n,m] 0− − + −η λ + η λ λ − η λ − =εD i i i i |W  

(n = 0, 1, …, m − 1, m + 1, …), 
(91)

where 

o
2( )2

;m o m om 12
d d[ ; ] : ( 1) [ ] [ ; | , m]

dd
−λ

− +η λ = η + ℜ η + τ η λ −
ηη

Di i  (92)

is the second-order differential operator with the energy-independent polynomial coeffi-
cient of the first derivative 

2
o om 1[ ; | ,m] : 2( 1) [ ; | ,m]+τ η λ − = η + φ η λ −i ild  (93)

o o o(1 ) ( ) ( )2
m m12 [ ] [ ] 2( 1) [ ].

•−λ −λ −λ= ℜ η ℜ η − η + ℜ η  (94)

by analogy with (22). The energy-dependent free term of ODE (91) is the m-degree poly-
nomial linear in ε, as follows: 

o( )
m o m o mC [ ; ; | ,m ] C [ ; ,m ] ( )i i

−λη λ ε − = η λ − + εℜ η  (95)

where 

o o o( ) ( ) ( )
m o m ,m o m1C [ ; | ,m] 2 ( ) [ ] ( ) [ ].

•−λ −λ −λ
−η λ − ℜ η ℜ η − ε λ ℜ ηi Re=  (96)

For jm = 2  and 1
2n a< − , the polynomial Wronskians in question form a finite 

EOP subset of the X-DPS in question. 
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although, this time, with no lower bound for the positive even integer m1 = 2j1. The com‑
mon remarkable feature of the partitions selected in such a way is that they have even gaps
between the segments. For the rational TSI potentials of our interest, the RDCTs of this
kind were independently introduced in [23,35]. According to the theorems formulated in

these papers, the state‑adding RDCTs specified by partitions | +
...Me,o

p ) are equivalent to

the RDCTs using the set | −
...N2J,L) of seed functions (148) such that the two equivalent

transformations are described by the conjugated Young diagrams.
More specifically, the RDCTs using polynomial Wronskians (192) were explicitly in‑

troduced in [23], while, to the best of our knowledge, the EOP sequences introduced in
Section 3.3 have not been discussed in the literature so far.

The RLDTs of the ℜRef CSLE (1) with infinitely many TFs | +
...2j1) (which start the

subnet of the RDTs using the seed functions |+
...Me,o

p ) were thoroughly analyzed byQuesne
[17], and we refer the reader to Appendix B for more details.
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5. Conclusions
As mentioned above, there are three TFI RCSLEs of group A quantized in terms of

one of three families of the Romanovski polynomials [12]. Two of these RCSLEs have sin‑
gle pairs of the basic solutions, and as a result, all the possible EOP sequences associated
with RDC
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s of the given CSLE can be represented as the W

Symmetry 2024, 16, x FOR PEER REVIEW 2 of 42 
 

 

unique, it was found that this is generally not true for the TSI potentials and that two TSI 
potentials exactly solvable in terms of hypergeometric or confluent hypergeometric func-
tions may be included into both groups depending on their rational representation.) If the 
density function for the JRef , LRef , or ℜRef  CSLE requires only simple poles in the fi-
nite plane, then the resultant CSLE can be converted by gauge transformation to the three 
real reductions of the complex Bochner-type differential equations [24] with polynomial 
solutions forming Jacobi, Laguerre and Routh (twisted Jacobi [25], or pseudo-Jacobi [26]) 
differential polynomial systems [27,28]. 

The common feature of these CSLEs is that they can be converted to the so-called [29] 
‘prime’ form such that their eigenfunctions obey the Dirichlet boundary conditions 
(DBCs) at the ends of the quantization interval. One can then take advantage of powerful 
theorems proven in [30] for zeros of principal solutions of SLEs solved under the DBCs at 
singular ends. 

The next important development was the reformulation of the conventional super-
symmetric (SUSY) theory of exactly solvable rational potentials in terms of the so-called 
[31] ‘generalized Darboux transformations‘ (GDTs) introduced by Rudyak and Zakhariev 
[32] at the end of the last century. Since various authors give completely different meaning 
to the latter term, we (for the reason scrupulously explained in Section 2) prefer to refer to 
the mentioned operations as Liouville–Darboux transformations’ (LDTs). 

In a sharp contrast with Quesne’s breakthrough paper [17] starting from a rational 
SUSY partner of the Scarf II potential, then converting the corresponding Schrödinger 
equation to the RCSLE, we directly apply a rational LDT (RLDT) to the ℜRef  CSLE and 
then convert the resultant RCSLE to its prime form. We then prove that the rational Liou-
ville–Darboux transforms )(RLD sT  of the eigenfunctions of the prime ℜRef  SLE obey 
the DBCs and thereby represent the eigenfunctions of the transformed RSLE. Moreover, 
it is proven that the new SLE may not have any other eigenfunctions, which implies that 
the Dirichlet problem in question is exactly solvable. This important result is commonly 
taken for granted in conventional SUSY quantum mechanics [5,6]. 

The concept of the translational form-invariance of RCSLEs is based on the existence 
of the so-called [1] ‘basic solutions’ such that their analytical continuations into the com-
plex plane remain finite in any regular point. The RCSLE is referred to as TFI iff the LDT 
using one of these basic solutions as the transformation function (TF) simply shifts each 
of the translational parameters by one. 

Both JRef   and LRef   CSLEs with simple-pole density functions have a quartet of 
basic solutions, and as a result, their rational Darboux–Crum [33,34] transforms ( TRDC s
) are specified by two series of Maya diagrams [35], so the corresponding exceptional DPSs 
(X-DPSs) are formed by pseudo-Wronskians of Jacobi or Laguerre polynomials with the 
same absolute values of the polynomial indexes (as well as with the same absolute value 
of the argument in the latter case). (In following [36–38], we term the given DPS ‘excep-
tional’ if it either does not start from a constant or lacks the first-order polynomials and 
thereby does not obey the prerequisites of the Bochner theorem [24].) We direct the reader 
to the recent review article by Durán [39] for a detailed discussion of this non-trivial issue, 
as well as for relevant references. 

On other hand, theℜRef CSLE with the simple-pole density function has only two 
basic solutions and as a result its TRDC s  can be specified by a single series of Maya dia-
grams [1]. As proven by the author [1], these TR D C s   can be constructed using only 
Wronskians of Routh polynomials. If the polynomial Wronskian in question does not have 
real zeros, then the eigenfunctions of the transformed RCSLE are expressible in terms of 
a finite exceptional orthogonal polynomial (EOP) sequence in Quesne’s terms [17]. 

While the exceptional orthogonal polynomial systems (X-OPSs) have attracted the 
broad attention of both mathematicians and physicists (see, e.g., [36–40] and the references 
therein), nearly all of the cited works overlook the revolutionary discovery [23] of the Dar-
boux–Crum nets of rational potentials composed of TRDC s  of the three TSI potentials: 

s of the R‑Routh and R‑Bessel
polynomials. In this paper, we thoroughly discussed the EOP sequences composed ofW
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s
of the R‑Routh polynomials, and we refer the reader to the similar analysis presented by us
in [46] for EOP sequences composed of W
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(DBCs) at the ends of the quantization interval. One can then take advantage of powerful 
theorems proven in [30] for zeros of principal solutions of SLEs solved under the DBCs at 
singular ends. 

The next important development was the reformulation of the conventional super-
symmetric (SUSY) theory of exactly solvable rational potentials in terms of the so-called 
[31] ‘generalized Darboux transformations‘ (GDTs) introduced by Rudyak and Zakhariev 
[32] at the end of the last century. Since various authors give completely different meaning 
to the latter term, we (for the reason scrupulously explained in Section 2) prefer to refer to 
the mentioned operations as Liouville–Darboux transformations’ (LDTs). 

In a sharp contrast with Quesne’s breakthrough paper [17] starting from a rational 
SUSY partner of the Scarf II potential, then converting the corresponding Schrödinger 
equation to the RCSLE, we directly apply a rational LDT (RLDT) to the ℜRef  CSLE and 
then convert the resultant RCSLE to its prime form. We then prove that the rational Liou-
ville–Darboux transforms )(RLD sT  of the eigenfunctions of the prime ℜRef  SLE obey 
the DBCs and thereby represent the eigenfunctions of the transformed RSLE. Moreover, 
it is proven that the new SLE may not have any other eigenfunctions, which implies that 
the Dirichlet problem in question is exactly solvable. This important result is commonly 
taken for granted in conventional SUSY quantum mechanics [5,6]. 

The concept of the translational form-invariance of RCSLEs is based on the existence 
of the so-called [1] ‘basic solutions’ such that their analytical continuations into the com-
plex plane remain finite in any regular point. The RCSLE is referred to as TFI iff the LDT 
using one of these basic solutions as the transformation function (TF) simply shifts each 
of the translational parameters by one. 

Both JRef   and LRef   CSLEs with simple-pole density functions have a quartet of 
basic solutions, and as a result, their rational Darboux–Crum [33,34] transforms ( TRDC s
) are specified by two series of Maya diagrams [35], so the corresponding exceptional DPSs 
(X-DPSs) are formed by pseudo-Wronskians of Jacobi or Laguerre polynomials with the 
same absolute values of the polynomial indexes (as well as with the same absolute value 
of the argument in the latter case). (In following [36–38], we term the given DPS ‘excep-
tional’ if it either does not start from a constant or lacks the first-order polynomials and 
thereby does not obey the prerequisites of the Bochner theorem [24].) We direct the reader 
to the recent review article by Durán [39] for a detailed discussion of this non-trivial issue, 
as well as for relevant references. 

On other hand, theℜRef CSLE with the simple-pole density function has only two 
basic solutions and as a result its TRDC s  can be specified by a single series of Maya dia-
grams [1]. As proven by the author [1], these TR D C s   can be constructed using only 
Wronskians of Routh polynomials. If the polynomial Wronskian in question does not have 
real zeros, then the eigenfunctions of the transformed RCSLE are expressible in terms of 
a finite exceptional orthogonal polynomial (EOP) sequence in Quesne’s terms [17]. 

While the exceptional orthogonal polynomial systems (X-OPSs) have attracted the 
broad attention of both mathematicians and physicists (see, e.g., [36–40] and the references 
therein), nearly all of the cited works overlook the revolutionary discovery [23] of the Dar-
boux–Crum nets of rational potentials composed of TRDC s  of the three TSI potentials: 

s of R‑Jacobi polynomials represent a more
challenging problem, since the corresponding TFI CSLE has two pairs of the basic solutions.
As a result, one needs two series of Maya diagrams [35] to specify all the possible RDC
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s
of this RCSLE. To construct the full net of the EOP sequences composed of RDCTs of R‑
Jacobi polynomials, one has to implement a more complicated algorithm, which consists
of two steps:
(i) Quasi‑rational representation of eigenfunctions in terms of either pseudo‑Wronskians

[35] or polynomial determinants [45];
(ii) Removal of zeros of the polynomial component of the resultant q‑RS at the singular

points of the Jacobi‑reference (
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Note that the logarithmic derivatives of both functions, ,2 o[ ; ]± η λφi j  and [ ]i  ηρ  , 

behave as follows with large values of η: 
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Keeping in mind the asymptotic behavior of the density function with large values 
of | |η , 
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the analysis of the right-hand side of (50) with large values of | |η shows that 
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We have thus proven that the RLDT in question does not change the ExpDiff of the 
CSLE at infinity—the common feature of the Fuchsian CSLEs with the density functions 
decreasing as 21 / η  with large values of | |η . 

Substituting the logarithmic derivative 

Ref) CSLE in the finite plane.
Another complication comes from the fact that the classification of these q‑RSs cannot

be unambiguously performed using only Cases I, II, and III introduced by Quesne [76] for
the t‑PT potential and isotonic oscillator (types a,b, andd, respectively, in our terms [51,77]).
Since the h‑PT potential has a finite discrete energy spectrum, the sequence of q‑RSs starting
from the finite subset of eigenfunctions ends with the infinitely many solutions vanishing
only at the origin. This is in addition to the conventional infinite ‘primary’ sequence (ã)
of q‑RSs formed by the classical Jacobi polynomials, where the tilde indicates that each q‑
RS vanishes at the lower end of the quantization interval (1,∞). (Since all the zeros of the
classical Jacobi polynomials lie between −1 and +1 the q‑RSs of this type may not have
zero on the interval (1,∞).) The crucial distinction between these two sequences of the Case
I q‑RSs is that the ‘secondary’ sequence labelled by us as ã′ does not start from a basic
solution [76].

The EOP sequences constructed using the primary TFs of type ãwere discovered in the
celebrated paper by Odake and Sasaki [78] and were more cautiously examined in [79,80].
Since the corresponding eigenfunctions are formed by the Wronskians of the q‑RSs com‑
posed of classical Jacobi polynomials and R‑Jacobi polynomials, the polynomial sequences
used for their construction turned out to be biorthogonal [81]. The q‑RSs of this type were
also used in [23] for the construction of multi‑index EOP sequences.

The secondary sequence of the q‑RSs of type ã′ can be used to generate multi‑indexed
X‑DPSs composed of the Wronskians of the Jacobi polynomials. If all the seed solutions lie
below the lowest‑energy level, then the generated X‑DPS contains a finite EOP sequence
forming a complete set of the eigenfunctions for the isospectral CSLE constructed in such
a way. Again, one can refine the enhanced Adler theorem for this particular case and then
construct the RDC net of EOP sequences formed by the WTs of the R‑Jacobi polynomials,
by analogy with the analysis presented in Section 3.5. However, to construct finite EOP
sequences using a mixture of the nodeless q‑RSs of types ã and ã′, one needs to make use of
the pseudo‑Wronskians formally introduced by G
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35. Gȯmez-Ullate, D.; Grandati, Y.; Milson, R. Shape invariance and equivalence relations for pseudo-Wronskians of Laguerre and 

Jacobi polynomials. J. Phys. A 2018, 51, 345201. https://doi.org/10.1088/1751-8121/aace4b. 
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mez‑Ullate et al. [35] in connection with
the eigenfunctions of the rationally extended t‑PT potentials quantized via multi‑indexed
X‑Jacobi OPSs. A re‑examination of the arguments presented in [35] reveals that the cited
authors discuss all possible X‑Jacobi DPSs rather than their infinite orthogonal subsystems.

In addition to the Case I Jacobi polynomials with no zeros on the interval (1,∞), the
mentioned pseudo‑Wronskians can include all the Jacobi polynomials associated with the
Case II q‑RSs below the lowest‑energy level. One can also add the pairs of R‑Jacobi polyno‑
mials of sequential degrees (again, after a more careful examination of the corresponding
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version of the enhanced Adler theorem). We plan to address these perplexing issues in an
upcoming study.
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Appendix A. Routh DPS as a Supplementary Real‑Field Reduction of Complex
Jacobi Polynomials

The purpose of this Appendix is to summarize some general properties of the real DPS
discovered by Routh in the revolutionary treatise [18] overlooked by mathematicians for
more than a century. Although after being brought back to life in Ismail’s monograph [82],
Routh’ paper was cited in numerous papers, those references are not sufficiently accurate
in most cases.

In particular, contrary to the statement originally made by Ismail and later repeated
by several authors, Routh [18] did not consider polynomial solutions in a complex plane.
This novel and important step in the theory of Routh polynomials was made in [83] nearly
a century after the publication of Routh’ paper [18]. Namely, Cryer related the monic poly‑
nomials generated via the Rodrigues formula,

ℜ̂(αR+i αI)
m (x) =

1
Km(αR) ω(x;αR,αI)

dm

dmx
[(x2 + 1)

m
ω(x;αR,αI)] , (A1)

to Jacobi polynomials with complex conjugated indexes and an imaginary argument as fol‑
low:

ℜ(αR+i αI)
m (x) := (−i)m P(αR+i αI, αR−i αI)

m (ix) (A2)

= (i)m P(αR−i αI, αR+i αI)
m (x/i), (A3)

denoted in the monograph [82] by the symbolic expression Pm(x; a, b), namely,

ℜ(αR+i αI)
m (x) ≡ Pm(x;αR,αI) in Ismails notation. (A4)

Here,
ω(x;αR,αI) ≡ (x2 + 1)

αRe2αI arctan x (A5)

stands for weight function (20.1.3) in [82] and the leading coefficient of the polynomial

ℜ(αR+i αI)
m (x) = Km(αR) ℜ̂

(αR+i αI)
m (x) (A6)

is given by the conventional formula

Km(αR) ≡ (2αR + 2m)m
m! 2m

=
⟨2αR +m+ 1⟩m

m! 2m
, (A7)

with (α)m and ⟨α⟩m standing for the falling and rising [84] factorials, respectively. Note
that this leading coefficient differs from 0 iff

αR ̸= −1/2(m+ k) for 1 ≤ k ≤ m (A8)

It directly follows from (4.22.3) in [85] that Routh polynomial (A2) turns (up to a constant
multiplier) into the Routh polynomial of degree k− 1 if inequality (A8) fails. Alternatively,
monic polynomials (A1) coincidewith the polynomials (Pm(x;ν,N)) in themonograph [26]
with N = −αR − 1, ν = αI as follows:

Pm(x;αI,−αR − 1) ≡ ℜ̂(αR+i αI)
m (x) (A9)
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In our papers, we prefer to adopt the notation of this monograph to make use of the
formulas listed in §9.9 in [26], with N changed for an arbitrary real number. (A similar
suggestion was previously put forward in [86], although with the lower bound of −1/2 for
N). Note that Jordaan and Toókos [87] use the term ‘pseudo‑Jacobi polynomial’ in exactly
the sameway aswe use ‘Routh polynomials’ here but adopt Ismail’s formula (A4), not (A9),
for their precise definition.

We thus use the term ‘pseudo‑Jacobi polynomials’ for monic polynomials (A6) as a
synonym for Routh (not R‑Routh!) polynomials, assuming that−2a is not a negative integer
with an absolute value between n + 1 and 2n. We define the R‑Routh polynomials via (3.5)
and (3.6) in [17] as follows:

R(−2b,1−a)
n (x) = (−i)n P(−a−ib,−a+ib)

n (ix) ≡ ℜ(−a−ib)
n (x)

for n < a − 1/2
. (A10)

Note that the notation adopted by us from [17] differs from (97) in [14], as well as from
the definition of ‘Romanovski polynomials’ in [13]. The polynomial degree is necessarily
equal to n, since n+ k ≤ 2n < 2a for 1 ≤ k ≤ n.

Appendix B. Quesne Representation for Solvable RDTs of Gendenshtein (Scarf II)
Potential

Let us explicitly relate representation (50) of the RefPF of RCSLE (46) to its alternative
form originally suggested in [17] and therefore referred by us as ‘Quesne representation’.
It serves as a starting point for the subnet of the RDCTs of the ℜRef CSLE (1) using q‑RSs
+,2j as the seed functions [17]. As pointed to in another innovative paper [23] published
in the same year, the Liouville potentials associated with the latter subnet simply repre‑
sent another form of the Krein–Adler [71,88] net of the rationally deformed Gendenshtein
(Scarf II) potentials. In particular, the rationally deformed Scarf II potentials constructed
by Quesne [17] can instead be converted to their Krein–Adler form, taking advantage of
representation (166) of Routh polynomials as Wronskians of R‑Routh polynomials of the
sequential degrees starting from 1.

First, making use of (42), (43) and (51), let us re‑write RefPF (50) as follows:

iI
o[η; λo| ± , 2j] = iI

o[η; λo] + 2
√

iρ♢ [η] d
dη

ldiϕ[η;±λo−1/2]√
iρ♢ [η]

+2
√

iρ♢ [η] d
dη

ldℜ(±λo)
2j (η)√
iρ♢ [η]

.
(A11)

Taking into account that

−ldiρ♢ [η] = ld (η2 + 1) =
1

η− i
+

1
η+ i

(A12)

ld iϕ[η; λ] =
1 + λ

2(η+ i)
+

1 + λ∗
2(η− i)

(A13)

and
2
•
ld iϕ[η; λ] = − 1 + λ

(η+ i)2 − 1 + λ∗
(η− i)2 , (A14)

we can then represent the second summand in sum (A11) as

2
√

iρ♢ [η] d
dη

ld iϕ[η;λ]√
iρ♢ [η]

= 2
•
ld iϕ[η; λ]− ldiρ♢ [η]ld iϕ[η; λ]

= − λ+1
2(η+i)2 − λ∗+1

2(η−i)2 +
Reλ+1
η2+1 .

(A15)

Setting
λ = ±λo − 1/2 (A16)
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and also taking into account that

1/4[iO
o(±λo + 1)− iO

o(λo)] = 1/2 ± a, (A17)

we finally come to the expression

iI
o[η; λo| ± , 2j] = iI

o[η; λo ± 1] + 2Q[η;η2j(±λo)]+
ld(η2 + 1) ld ℜ(±λo)

2j [η],
(A18)

adopted by us from [17], where

Q[η;η2j] := l
•
d Π2j[η;η2j] (A19)

= −
2j

∑
k=1

(η− η2j;k)
−2 (A20)

is nothing but an alternative form of the Quesne PF [17]

Q[η;η2j] :=

••
Π2j [η;η2j]

Π2j[η;η2j]
−

•
Π 2

2j[η;η2j]

Π2
2j[η;η2j]

. (A21)

Note that the representation of the Routh polynomial in monomial form (62) is the
direct consequence of the fact that the polynomial zeros are regular points of theℜRef CSLE
(1) and, as a result, all simple. (In [60], we erroneously referred to (A18) as Quesne’s ‘partial’
decomposition of the RefPF, wrongly assuming that the Quesne PF defined via (A19) has
summands with simple poles.) We also take into account that PF (A21) is related to PF (63)
via the following elementary formula:

Q[η;η2j] =
⌢
Q[η;η2j] + 1/2

••
Π2j [η;η2j]

Π2j[η;η2j]
. (A22)

Making use of Routh Equation (23), it is convenient to represent PF (A22) in a slightly
different form as follows:

2Q[η;η2j(±λo)] = 2
⌢
Q[η;η2j(±λo)]− 2η

η2+1 ld ℜ(±λo)
2j [η]+

− 2ℜ(±λo)
1 [η]

η2+1 ld ℜ(±λo)
2j [η] + iε±,0(a)−iε±,2j(a)

η2+1 ,
(A23)

Substituting (A23) into (A18) then brings us back to RefPF (61).
Combining (A11) and (A18) for j = 0, we come the following form‑invariance condition:

iI
o[η; λo|±, 0] = iI

o[η; λo ± 1]

= iI
o[η; λo] + 2

√
iρ♢ [η] d

dη
ldiϕ[η;±λo−1/2]√

iρ♢ [η]
,

(A24)

which has already been used by us to prove (157).
The examination of the PF appearing in (4.25) in [17], with

g(A,B)
m (η) ≡ ℜ(A−1/2+i B)

2j [η] (A25)
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in our notation, reveals that it is nothing but PF (A21). Note that Quesne changed themean‑
ing of parameter A in subsection IVB in [17] compared with its definition in the preceding
subsection IIIB (cf. her Equations (3.12) and (4.12) in [17]), i.e.,

A = a + 1/2 (A26)

in any formula for the rational SUSY partner of the ‘Scarf II’ potential.
The corresponding Liouville potentials take the following form:

iV[η; λo|+ , 2j] = iVG[η; λo + 1 ]− 2(η2 + 1)Q[η;η2j(λo)]− 2ηld ℜ(λo)
2j [η] (A27)

Taking into account (A25) and (A26), we confirm that potential (A27) precisely matches
Quesne’s expression (4.11) in [17]. As a matter of fact, the simplified Formula (61) for the
RefPF of RCSLE (46) was inspired by her work.

In her analysis, Quesne implicitly assumes that all the Routh polynomials of even de‑
grees do not have real roots, which is, indeed, true, since all the q‑RSs in question lie below
the lowest‑energy level. It is very possible that Quesne intuitively realized that this is a di‑
rect consequence of the disconjugacy theorem, keeping in mind that her study with Gran‑
dati [59] on applications of the disconjugacy theorem to the theory of rational potentials
solvable by multi‑indexed Jacobi and Laguerre X‑OPSs.

Adopting the technique developed in [35] for the X‑OPSs, we can convert the eigen‑
functions of RCSLE (46) for the TF |+, 2j) to the following quasi‑rational form:

iϕc,n+1[η; λo|+, 2j] = − iϕc,0[η;λo]√
η2+1 ℜ(λo)

2j (η)
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,0 o
,n 1 o 2 n 1( )2
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[ ; ]
[ ; | , 2 ] [ ; 2 ]

1 ( )
n;+,i

i a ib | ,+ + +λ
η λ

η λ + = − η + −
η + ℜ η

φ
φ P j

j

j jc
c  

o
,0 o

2 n 1( )
2

[ ; 1]
[ ; 2 ]

( )
n;+,i a ib | ,+ +λ

η λ +
≡ − η + −

ℜ η

φ
P j

j
jc (n ≥ 0), 

(A28)

with the polynomial component represented by the pseudo-Wronskian polynomials 

( , ) ( )
n 2

2 n 1
( , ) ( )
n 2

1
+

2
1

2 1R [ ] [ ]
[ ; 2 ] :

R [ ]

n;+

[ ]

,

b a a ib

b a a ib
a ib | ,

•

− +

+
− +

−

−
+

η ℜ η
η + − =

η η

P

S

j
j

j

j , (A29)

where, by definition, 

( ) 1 1[ ]: (1 ) (1 )2 +1
a ib a ib a ibi i+ − − + +η = + η − η ×jS  

d ( )(1 ) (1 ) [ ]2d
i i a iba ib a ib ++ −+ η − η ℜ η

η
 
  j  

(A30)

( ) ( 1 ) ( )2( 1) [ ] 2 [ ] [ ]12 2
a iba ib a ib• + − + += η + ℜ η − ℜ η ℜ ηj j . (A31)

2j+n+1[η; a + ib|−,n;+,2j]

≡ − iϕc,0[η;λo+1]

ℜ(λo)
2j (η)
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d ( )(1 ) (1 ) [ ]2d
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η
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( ) ( 1 ) ( )2( 1) [ ] 2 [ ] [ ]12 2
a iba ib a ib• + − + += η + ℜ η − ℜ η ℜ ηj j . (A31)

2j+n+1[η; a + ib|−,n;+,2j](n ≥ 0)
(A28)

with the polynomial component represented by the pseudo‑Wronskian polynomials

Symmetry 2024, 16, x FOR PEER REVIEW 36 of 42 
 

 

which has already been used by us to prove (157). 
The examination of the PF appearing in (4.25) in [17], with 

1A B2( )(A ,B )
m 2g ( ) [ ]

i− +
η ≡ ℜ ηj

   (A25)

in our notation, reveals that it is nothing but PF (A21). Note that Quesne changed the 
meaning of parameter A in subsection IVB in [17] compared with its definition in the pre-
ceding subsection IIIB (cf. her Equations (3.12) and (4.12) in [17]), i.e., 

1
2A = a +  (A26)

in any formula for the rational SUSY partner of the ‘Scarf II’ potential. 
The corresponding Liouville potentials take the following form: 

o
G

( )2
o o 2j o 2jV ; | ,2j V ; 2( 1)Q[ ; ( )] 2 [ ]i i ld λη λ + ] = η λ +1]− η + η η λ − η ℜ η[ [  (A27) 

Taking into account (A25) and (A26), we confirm that potential (A27) precisely matches 
Quesne’s expression (4.11) in [17]. As a matter of fact, the simplified Formula (61) for the 
RefPF of RCSLE (46) was inspired by her work. 

In her analysis, Quesne implicitly assumes that all the Routh polynomials of even 
degrees do not have real roots, which is, indeed, true, since all the q-RSs in question lie 
below the lowest-energy level. It is very possible that Quesne intuitively realized that this 
is a direct consequence of the disconjugacy theorem, keeping in mind that her study with 
Grandati [59] on applications of the disconjugacy theorem to the theory of rational poten-
tials solvable by multi-indexed Jacobi and Laguerre X-OPSs. 

Adopting the technique developed in [35] for the X-OPSs, we can convert the eigen-
functions of RCSLE (46) for the TF |+, 2j) to the following quasi-rational form: 

o

,0 o
,n 1 o 2 n 1( )2

2

[ ; ]
[ ; | , 2 ] [ ; 2 ]

1 ( )
n;+,i

i a ib | ,+ + +λ
η λ

η λ + = − η + −
η + ℜ η

φ
φ P j

j

j jc
c  

o
,0 o

2 n 1( )
2

[ ; 1]
[ ; 2 ]

( )
n;+,i a ib | ,+ +λ

η λ +
≡ − η + −

ℜ η

φ
P j

j
jc (n ≥ 0), 

(A28)

with the polynomial component represented by the pseudo-Wronskian polynomials 

( , ) ( )
n 2

2 n 1
( , ) ( )
n 2

1
+

2
1

2 1R [ ] [ ]
[ ; 2 ] :

R [ ]

n;+

[ ]

,

b a a ib

b a a ib
a ib | ,

•

− +

+
− +

−

−
+

η ℜ η
η + − =

η η

P

S

j
j

j

j , (A29)

where, by definition, 

( ) 1 1[ ]: (1 ) (1 )2 +1
a ib a ib a ibi i+ − − + +η = + η − η ×jS  

d ( )(1 ) (1 ) [ ]2d
i i a iba ib a ib ++ −+ η − η ℜ η

η
 
  j  

(A30)

( ) ( 1 ) ( )2( 1) [ ] 2 [ ] [ ]12 2
a iba ib a ib• + − + += η + ℜ η − ℜ η ℜ ηj j . (A31)

2j+n+1[η; a + ib|−,n;+,2j] =:

∣∣∣∣∣∣
R(−2b,1−a)
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2j+1 [η]

•
R
(−2b,1−a)

n [η]
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(a+ib)
2j+1 [η ] := (1 + iη)1−a−ib(1 − iη)1+a+ib×

d
dη

[
(1 + iη)a+ib(1 − iη)a−ibℜ(a+ib)

2j [η]
] (A30)

= (η2 + 1)
•
ℜ (a+ib)

2j [η]− 2ℜ(a−1+ib)
1 [η ]ℜ(a+ib)

2j [η]. (A31)

Applying the complexified version of Gauss’s contiguous relation (E.16) in [79] to the
real‑field reduction represented by Routh polynomials (A2) shows that
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where, by definition, 

( ) 1 1[ ]: (1 ) (1 )2 +1
a ib a ib a ibi i+ − − + +η = + η − η ×jS  

d ( )(1 ) (1 ) [ ]2d
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η
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(A30)

( ) ( 1 ) ( )2( 1) [ ] 2 [ ] [ ]12 2
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(a+ib)
2j+1 [η] = −2(2j+ 1)ℜ(a−1+ib)

2j+1 [η], (A32)

which gives
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2j+1 [η]R(−2b,1−a)

n [η]
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2j [η ]
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R (−2b,1−a)

n [η] .
(A33)
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Taking into account (166) and comparing (A28) with (170), we conclude that the EOP
sequence in question must be another representation for the EOP sequence composed of
the Wronskians of the R‑Routh polynomials as follows:

ˆ
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2ｊ+n+1[η; a + ib|−,n;+,2ｊ] = i
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2 n 1 n 2
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− +− − −

+ η + − = η ℜ ηi
b a a iba |ibW j jj  (84)

is the polynomial of degree 2 n 1+ −j , with the R-Routh polynomial defined via (A10) in 
Appendix A. One can directly verify that q-RSs (74) of prime SLEs (68) obey the DBCs iff 

1
2n a< − . 

By analogy with (37), we conclude that q-RSs (74) are normalizable with the weight 

[ ]i w η/  as follows: 

2ｊ+n+1[η; a − 2ｊ− 1 + ib| −
...1 : 2ｊ,n]. (A34)

In particular, the latter relation for n = 0 turns into (166) with 2j1 substituted by 2j + 1.
More specifically, representation (166) of monic Routh polynomials as Wronskians of

R‑Routh polynomials of sequential degrees converted to their monic form is the direct con‑
sequence of the fact that the conjugated Young diagrams in this case are represented by
rows and columns of the same length.

Quesne apparently used the complexified version of Gauss’s contiguous relation
(22.8.1) in [89] which brings us to her Equation (4.18) in [17], with α = −2b, β− 1 = −a,
ν = n, and m =2j, namely,
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+ (n−a)2+b2
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in our notation.

Appendix C. Enhanced Adler Theorem
The purpose of this Appendix is to extend Adler’s Lemma 1 [71] to the eigenfunctions

of prime SLE (122), namely,

Enhanced Adler Theorem.   The Wronskian of two sequential eigenfunctions of prime SLE (122)
preserves its sign on the real axis.

Asdemonstrated in Section 3.4, the proof of Theorem6 for an arbitrarypartition formed
by segments of even lengths represents a more challenging problem. We thus postpone for
future studies the discussion of the exact solvability of the Dirichlet problem obtained by
means of the second‑order DCT of the generic SLEwith two ‘juxtaposed’ [66–68] eigenfunc‑
tions used as the seed functions.

Proof of EnhancedAdler Theorem.  We thuswant to confirm that theWronskian, iWN,N+1

[η; λo| −
...Мp], of two sequential eigenfunctions, i /ψc,N[η; λo| −

...Мp] and i /ψc,N+1[η; λo| −
...Мp], of prime SLE (122) solved under DBCs (124) does not have real zeros. It was already
been demonstrated in [30] that the eigenfunctions in question have N and N + 1 interlacing
simple zeros (ηN,k and ηN+1,k′ ) (k = 1, …, N and k’ = 1, …, N + 1 accordingly), i.e.,

ηN+1,1 < ηN,1 < ηN+1,2 < . . . < ηN+1,N < ηN,N < ηN+1,N+1. (A36)

The common important feature of all solutions of second‑order linear ODEs is that the
solution itself and its first derivative may not vanish at the same regular point.
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This implies that the eigenfunctionsi /ψc,N[η; λo| −
...Мp] and i /ψc,N+1[η; λo| −

...Мp] have
nonzero first derivatives at their nodes. Furthermore, each function and its first derivative
must have opposite sings at two sequential nodes as follows:

/ψc,N+κ[ηN+1−κ,k; λo| −
...Мp] /ψc,N+κ[ηN+1−κ,k+1; λo| −

...Мp] < 0
(κ = 0, 1)

(A37)

and
•
/ψc,N+κ[ηN+κ,k; λo| −

...Мp]
•
/ψc,N+κ[ηN+κ,k+1; λo| −

...Мp] < 0
(κ = 0, 1),

(A38)

respectively.
Let us, in following [30], introduce the
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and using DBCs (124) coupled with asymptotic relation (136), one finds that g -W (A39) 
vanishes at infinity as follows: 

N ,N 1 o p
| |

[ ; | ] 0,−+
η → ∞

η λ =ilim MW  
(A41)

Without loss of generality, we can choose both eigenfunctions to have the same sign 
within the interval N 1,1( , )+−∞ η , which assures that the derivative of the g -W [30], 

N ,N 1 o p ,N +1 ,N[ ; | ] [ ( ) ( )] [ ]
•

−+ η λ = − ε − ε η ×/i ia a wW c cM  

,N o p ,N + 1 o p[ ; | ] [ ; | ] ,− −η λ η λψ ψ/ / c cM M  
(A42)

is negative there. Keeping in mind (A41), this should also be true for the g -W; therefore, 

−W

iWN,N+1[η; λo| −
...Мp] := (η2 + 1)

1/2

iWN,N+1[η; λo| −
...Мp] (A39)

and generalize Adler’s arguments [71] by proving that the
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+ 1 accordingly), i.e., 

... .N 1,2 N 1,N N 1,N 1N N N1,1 ,1 ,N< < <+ + + ++η < η < η η η < η  (A36)

The common important feature of all solutions of second-order linear ODEs is that 
the solution itself and its first derivative may not vanish at the same regular point. 

This implies that the eigenfunctions pN, o[ ; | ]−η λψ/ i c M   and pN+1, o[ ; | ]−η λψ/ i c M  

have nonzero first derivatives at their nodes. Furthermore, each function and its first de-
rivative must have opposite sings at two sequential nodes as follows: 

N N N N, + +1 ,k o p , + +1 ,k 1 o p[ ; | ] [ ; | ] 0− −κ −κ κ −κ +η λ η λ <ψ ψ/ / c cM M  

( 0,1)κ =  
(A37)

and 

p pN NN N+ ,k o + ,k 1 o, + , +[ ; | ] [ ; | ] 0
• •

− −κ κ +κ κη λ η λ <ψ ψ/ / c cM M  

( 0,1)κ = , 
(A38)

respectively. 
Let us, in following [30], introduce the g -W 

1
22

N,N 1 o p N,N 1 o p[ ; | ] : ( 1) [ ; | ]W− −+ +η λ = η + η λ i iW M M  (A39)

and generalize Adler’s arguments [71] by proving that the g -W sign is preserved on the 
real axis. Indeed, representing g -W (C4) as 

N,N 1 o p ,N o p ,N+1 o p[ ; | ] [ ; | ] [ ; | ]− − −+ η λ = η λ η λ ×ψ ψ/ /  i i iW c cM M M  

{ }1
22

,N+1 o p ,N o p( 1) [ ; | ] [ ; | ]− −η + η λ − η λψ ψ/ / i ild ldc cM M  
(A40)

and using DBCs (124) coupled with asymptotic relation (136), one finds that g -W (A39) 
vanishes at infinity as follows: 

N ,N 1 o p
| |

[ ; | ] 0,−+
η → ∞

η λ =ilim MW  
(A41)

Without loss of generality, we can choose both eigenfunctions to have the same sign 
within the interval N 1,1( , )+−∞ η , which assures that the derivative of the g -W [30], 

N ,N 1 o p ,N +1 ,N[ ; | ] [ ( ) ( )] [ ]
•

−+ η λ = − ε − ε η ×/i ia a wW c cM  

,N o p ,N + 1 o p[ ; | ] [ ; | ] ,− −η λ η λψ ψ/ / c cM M  
(A42)

is negative there. Keeping in mind (A41), this should also be true for the g -W; therefore, 

−W (C4) as

iWN,N+1[η; λo| −
...Мp] = i /ψc,N[η; λo| −

...Мp]i /ψc,N+1[η; λo| −
...Мp]×

(η2 + 1)
1/2
{

ldi /ψc,N+1[η; λo| −
...Мp]− ldi /ψc,N[η; λo| −

...Мp]

} (A40)

and using DBCs (124) coupled with asymptotic relation (136), one finds that
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N ,N 1 o p
| |

[ ; | ] 0,−+
η → ∞
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Without loss of generality, we can choose both eigenfunctions to have the same sign 
within the interval N 1,1( , )+−∞ η , which assures that the derivative of the g -W [30], 

N ,N 1 o p ,N +1 ,N[ ; | ] [ ( ) ( )] [ ]
•

−+ η λ = − ε − ε η ×/i ia a wW c cM  

,N o p ,N + 1 o p[ ; | ] [ ; | ] ,− −η λ η λψ ψ/ / c cM M  
(A42)

is negative there. Keeping in mind (A41), this should also be true for the g -W; therefore, 

− W (A39)
vanishes at infinity as follows:

lim
|η|→∞

iWN,N+1[η; λo| −
...Мp] = 0, (A41)

Without loss of generality, we can choose both eigenfunctions to have the same sign
within the interval (−∞,ηN+1,1), which assures that the derivative of the
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•

−+ η λ = − ε − ε η ×/i ia a wW c cM  

,N o p ,N + 1 o p[ ; | ] [ ; | ] ,− −η λ η λψ ψ/ / c cM M  
(A42)

is negative there. Keeping in mind (A41), this should also be true for the g -W; therefore, 

−W [30],

i

•
WN,N+1[η; λo| −

...Мp] = −[εc,N+1(a)− εc,N(a)] iw[η]×

/ψc,N[η; λo| −
...Мp] /ψc,N+1[η; λo| −

...Мp],
(A42)

is negative there. Keeping in mind (A41), this should also be true for the
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Without loss of generality, we can choose both eigenfunctions to have the same sign 
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,N o p ,N + 1 o p[ ; | ] [ ; | ] ,− −η λ η λψ ψ/ / c cM M  
(A42)

is negative there. Keeping in mind (A41), this should also be true for the g -W; therefore, 

−W; therefore,

WN,N+1[ηN+1,1; λo| −
...Мp] =

√
η2
N+1,1 + 1×

/ψc,N[ηN+1,1; λo| −
...Мp]

•
/ψc,N+1[ηN+1,1; λo| −

...Мp] < 0.
(A43)

Note that, in contrast with Adler’s arguments in support of his Lemma 1, the right‑
hand side of (A42) contains η‑dependent weight (30), which further complicates the expres‑
sion for the second derivative of the
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is negative there. Keeping in mind (A41), this should also be true for the g -W; therefore, 

−W compared with (13) in [71]. For this reason we
have to slightly modify the proof of the lemma.

First, one can directly verify that

/ψc,N+1[ηN,1; λo| −
...Мp] < 0,

•
/ψc,N[ηN,1; λo| −

...Мp] < 0, (A44)
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and using DBCs (124) coupled with asymptotic relation (136), one finds that g -W (A39) 
vanishes at infinity as follows: 
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η → ∞
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Without loss of generality, we can choose both eigenfunctions to have the same sign 
within the interval N 1,1( , )+−∞ η , which assures that the derivative of the g -W [30], 

N ,N 1 o p ,N +1 ,N[ ; | ] [ ( ) ( )] [ ]
•

−+ η λ = − ε − ε η ×/i ia a wW c cM  

,N o p ,N + 1 o p[ ; | ] [ ; | ] ,− −η λ η λψ ψ/ / c cM M  
(A42)

is negative there. Keeping in mind (A41), this should also be true for the g -W; therefore, 

−W is necessarily negative at the end of the interval [ηN+1,1,ηN,1] as follows:

WN,N+1[ηN,1; λo| −
...Мp] = −

√
η2
N,1 + 1×

/ψc,N+1[ηN,1; λo| −
...Мp]

•
/ψc,N[ηN,1; λo| −

...Мp] < 0.
(A45)

Therefore, it must preserve its sign within the interval. It then directly follows from (A37)
and (A38) that the
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is negative there. Keeping in mind (A41), this should also be true for the g -W; therefore, 

− W must be also negative at the end of interval [ηN,1,ηN+1,2] and,
hence, must preserve its signwithin the interval (−∞, ηN+1,2]. One can then continue using
(A37) and (A38) for other zeros (A36), including the last one, as follows:

WN,N+1[ηN+1,N+1; λo| −
...Мp] =

√
η2
N+1,N+1 + 1×

/ψc,N[ηN+1,N+1; λo| −
...Мp]

•
/ψc,N+1[ηN+1,N+1; λo| −

...Мp] < 0.
(A46)

Keeping in mind that the derivative of the
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The common important feature of all solutions of second-order linear ODEs is that 
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respectively. 
Let us, in following [30], introduce the g -W 

1
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N,N 1 o p N,N 1 o p[ ; | ] : ( 1) [ ; | ]W− −+ +η λ = η + η λ i iW M M  (A39)

and generalize Adler’s arguments [71] by proving that the g -W sign is preserved on the 
real axis. Indeed, representing g -W (C4) as 

N,N 1 o p ,N o p ,N+1 o p[ ; | ] [ ; | ] [ ; | ]− − −+ η λ = η λ η λ ×ψ ψ/ /  i i iW c cM M M  

{ }1
22

,N+1 o p ,N o p( 1) [ ; | ] [ ; | ]− −η + η λ − η λψ ψ/ / i ild ldc cM M  
(A40)

and using DBCs (124) coupled with asymptotic relation (136), one finds that g -W (A39) 
vanishes at infinity as follows: 

N ,N 1 o p
| |

[ ; | ] 0,−+
η → ∞

η λ =ilim MW  
(A41)

Without loss of generality, we can choose both eigenfunctions to have the same sign 
within the interval N 1,1( , )+−∞ η , which assures that the derivative of the g -W [30], 

N ,N 1 o p ,N +1 ,N[ ; | ] [ ( ) ( )] [ ]
•

−+ η λ = − ε − ε η ×/i ia a wW c cM  

,N o p ,N + 1 o p[ ; | ] [ ; | ] ,− −η λ η λψ ψ/ / c cM M  
(A42)

is negative there. Keeping in mind (A41), this should also be true for the g -W; therefore, 

− W must preserve its sign within the
interval

[
ηN+1,N+1,+∞ ) and the
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and using DBCs (124) coupled with asymptotic relation (136), one finds that g -W (A39) 
vanishes at infinity as follows: 

N ,N 1 o p
| |

[ ; | ] 0,−+
η → ∞

η λ =ilim MW  
(A41)

Without loss of generality, we can choose both eigenfunctions to have the same sign 
within the interval N 1,1( , )+−∞ η , which assures that the derivative of the g -W [30], 

N ,N 1 o p ,N +1 ,N[ ; | ] [ ( ) ( )] [ ]
•

−+ η λ = − ε − ε η ×/i ia a wW c cM  

,N o p ,N + 1 o p[ ; | ] [ ; | ] ,− −η λ η λψ ψ/ / c cM M  
(A42)

is negative there. Keeping in mind (A41), this should also be true for the g -W; therefore, 

− W itself vanishes in the limit η → ∞, we conclude
that the latter must remain negative on the real axis; therefore, this is also true for the con‑
ventional Wronskian of the two eigenfunctions. □
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