Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = polymerization-induced self-assembly (PISA)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3591 KiB  
Article
Novel HSA-PMEMA Nanomicelles Prepared via Site-Specific In Situ Polymerization-Induced Self-Assembly for Improved Intracellular Delivery of Paclitaxel
by Yang Chen, Shuang Liang, Binglin Chen, Fei Jiao, Xuliang Deng and Xinyu Liu
Pharmaceutics 2025, 17(3), 316; https://doi.org/10.3390/pharmaceutics17030316 - 1 Mar 2025
Viewed by 958
Abstract
Background/Objectives: Paclitaxel (PTX) is a potent anticancer drug that is poorly soluble in water. To enhance its delivery efficiency in aqueous environments, amphiphilic polymer micelles are often used as nanocarriers for PTX in clinical settings. However, the hydrophilic polymer segments on the [...] Read more.
Background/Objectives: Paclitaxel (PTX) is a potent anticancer drug that is poorly soluble in water. To enhance its delivery efficiency in aqueous environments, amphiphilic polymer micelles are often used as nanocarriers for PTX in clinical settings. However, the hydrophilic polymer segments on the surface of these micelles may possess potential immunogenicity, posing risks in clinical applications. To address this issue, nanomicelles based on human serum albumin (HSA)–hydrophobic polymer conjugates constructed via site-specific in situ polymerization-induced self-assembly (SI-PISA) are considered a promising alternative. The HSA shell not only ensures good biocompatibility but also enhances cellular uptake because of endogenous albumin trafficking pathways. Moreover, compared to traditional methods of creating protein–hydrophobic polymer conjugates, SI-PISA demonstrates higher reaction efficiency and better preservation of protein functionality. Methods: We synthesized HSA-PMEMA nanomicelles via SI-PISA using HSA and methoxyethyl methacrylate (MEMA)—a novel hydrophobic monomer with a well-defined and stable chemical structure. The protein activity and the PTX intracellular delivery efficiency of HSA-PMEMA nanomicelles were evaluated. Results: The CD spectra of HSA and HSA-PMEMA exhibited similar shapes, and the relative esterase-like activity of HSA-PMEMA was 94% that of unmodified HSA. Flow cytometry results showed that Cy7 fluorescence intensity in cells treated with HSA-PMEMA-Cy7 was approximately 1.35 times that in cells treated with HSA-Cy7; meanwhile, HPLC results indicated that, under the same conditions, the PTX loading per unit protein mass on HSA-PMEMA was approximately 1.43 times that of HSA. These collectively contributed to a 1.78-fold overall PTX intracellular delivery efficiency of HSA-PMEMA compared to that of HSA. Conclusions: In comparison with HSA, HSA-PMEMA nanomicelles exhibit improved cellular uptake and higher loading efficiency for PTX, effectively promoting the intracellular delivery of PTX. Tremendous potential lies in these micelles for developing safer and more efficient next-generation PTX formulations for tumor treatment. Full article
(This article belongs to the Special Issue Advanced Materials Science and Technology in Drug Delivery)
Show Figures

Graphical abstract

11 pages, 2558 KiB  
Article
Self-Assembled Protein–Polymer Nanoparticles via Photoinitiated Polymerization-Induced Self-Assembly for Targeted and Enhanced Drug Delivery in Cancer Therapy
by Gayathri R. Ediriweera, Yixin Chang, Wenting Yang, Andrew K. Whittaker and Changkui Fu
Molecules 2025, 30(4), 856; https://doi.org/10.3390/molecules30040856 - 13 Feb 2025
Cited by 2 | Viewed by 1520
Abstract
Protein–polymer bioconjugates offer numerous advantages in biomedical applications by integrating the benefits of functional proteins and tunable synthetic polymers. Developing drug-loaded protein–polymer nanoparticles, with a receptor-targeting protein forming the nanoparticle shell, would be ideal for the targeted delivery of drugs to cancer cells [...] Read more.
Protein–polymer bioconjugates offer numerous advantages in biomedical applications by integrating the benefits of functional proteins and tunable synthetic polymers. Developing drug-loaded protein–polymer nanoparticles, with a receptor-targeting protein forming the nanoparticle shell, would be ideal for the targeted delivery of drugs to cancer cells that overexpress specific receptors for more effective cancer therapy. In this study, we report the synthesis of reduction-responsive protein–polymer nanoparticles by a photoinitiated polymerization-induced self-assembly (photo-PISA) approach. Anti-cancer drugs can be efficiently encapsulated at high concentrations within the nanoparticles during the photo-PISA process. These protein–polymer nanoparticles present transferrin (Tf) on their surfaces, capable of targeting the overexpressed Tf receptors found on cancer cells. It was found that the nanoparticles demonstrate enhanced cellular uptake and delivery of the anti-cancer drug, curcumin, to cancer cells via Tf receptor-mediated endocytosis, compared to the control PEGylated nanoparticles that lack targeting capability. Moreover, the nanoparticles can release the encapsulated curcumin in response to a reducing environment, a characteristic of cancer cells compared to health cells. Consequently, the synthesized protein–polymer nanoparticles are more effective in inducing cancer cell death compared to the control nanoparticles, demonstrating their potential as an effective and targeted drug delivery system for cancer therapy. Full article
(This article belongs to the Special Issue Advances in Functional Polymers and Their Applications)
Show Figures

Figure 1

16 pages, 11740 KiB  
Article
Protein Cage-like Vesicles Fabricated via Polymerization-Induced Microphase Separation of Amphiphilic Diblock Copolymers
by Eri Yoshida
Materials 2025, 18(3), 727; https://doi.org/10.3390/ma18030727 - 6 Feb 2025
Viewed by 725
Abstract
Highly symmetric protein cages represent one of the most artistic architectures formed by biomolecules. However, the underlying reasons for the formation of some of these architectures remain unknown. The present study aims to investigate the significance behind their morphological formation by fabricating protein [...] Read more.
Highly symmetric protein cages represent one of the most artistic architectures formed by biomolecules. However, the underlying reasons for the formation of some of these architectures remain unknown. The present study aims to investigate the significance behind their morphological formation by fabricating protein cage-like vesicles using a synthetic polymer. The vesicles were synthesized by combining polymerization-induced self-assembly (PISA) with polymerization-induced microphase separation (PIMS), employing an amphiphilic poly(methacrylic acid)-block-poly(n-butyl methacrylate-random-cyclohexyl methacrylate-random-methacrylic acid) diblock copolymer, PMAA-b-P(BMA-r-CMA-r-MAA). The copolymer, with a 60 mol% molar ratio of CMA to the BMA units, produced clathrin-like vesicles with angular windows in their shell, resulting from the segregation of the hard CMA units from the soft BMA matrix in the hydrophobic phase of the vesicle. These vesicles were highly stable against rising temperatures. In contrast, the vesicles with a 30 mol% CMA ratio dissociated upon heating to 50 °C into triskelion-like segments due to intramolecular microphase separation. These findings indicate that designing synthetic polymers can mimic living organ morphologies, aiding in elucidating their morphological significance and inspiring the development of new materials utilizing these morphologies. Full article
Show Figures

Graphical abstract

67 pages, 14854 KiB  
Review
Modern Trends in Polymerization-Induced Self-Assembly
by Natalia S. Serkhacheva, Nickolay I. Prokopov, Evgenii A. Lysenko, Elena Yu. Kozhunova and Elena V. Chernikova
Polymers 2024, 16(10), 1408; https://doi.org/10.3390/polym16101408 - 15 May 2024
Cited by 2 | Viewed by 4110
Abstract
Polymerization-induced self-assembly (PISA) is a powerful and versatile technique for producing colloidal dispersions of block copolymer particles with desired morphologies. Currently, PISA can be carried out in various media, over a wide range of temperatures, and using different mechanisms. This method enables the [...] Read more.
Polymerization-induced self-assembly (PISA) is a powerful and versatile technique for producing colloidal dispersions of block copolymer particles with desired morphologies. Currently, PISA can be carried out in various media, over a wide range of temperatures, and using different mechanisms. This method enables the production of biodegradable objects and particles with various functionalities and stimuli sensitivity. Consequently, PISA offers a broad spectrum of potential commercial applications. The aim of this review is to provide an overview of the current state of rational synthesis of block copolymer particles with diverse morphologies using various PISA techniques and mechanisms. The discussion begins with an examination of the main thermodynamic, kinetic, and structural aspects of block copolymer micellization, followed by an exploration of the key principles of PISA in the formation of gradient and block copolymers. The review also delves into the main mechanisms of PISA implementation and the principles governing particle morphology. Finally, the potential future developments in PISA are considered. Full article
(This article belongs to the Special Issue Recent Advances in the Self-Assembly of Block Copolymers)
Show Figures

Graphical abstract

15 pages, 4091 KiB  
Article
Synthesis of Thermo-Responsive Monofunctionalized Diblock Copolymer Worms
by Xuan Xue, Feifei Wang, Minhao Shi and Faez Iqbal Khan
Polymers 2023, 15(23), 4590; https://doi.org/10.3390/polym15234590 - 30 Nov 2023
Viewed by 1830
Abstract
Poly(glycerol monomethacrylate)-block-poly(2-hydroxypropyl methacrylate) (PGMA-PHPMA) with worm-like morphology is a typical example of reversible addition–fragmentation chain transfer (RAFT) dispersion polymerized thermo-responsive copolymer via polymerization-induced self-assembly (PISA) in aqueous solution. Chain transfer agents (CTAs) are the key component in controlling RAFT, the structures [...] Read more.
Poly(glycerol monomethacrylate)-block-poly(2-hydroxypropyl methacrylate) (PGMA-PHPMA) with worm-like morphology is a typical example of reversible addition–fragmentation chain transfer (RAFT) dispersion polymerized thermo-responsive copolymer via polymerization-induced self-assembly (PISA) in aqueous solution. Chain transfer agents (CTAs) are the key component in controlling RAFT, the structures of which determine the end functional groups of the polymer chain. It is therefore of interest to monofunctionalize the polymers via CTA moiety, for bioactive functionality conjugation and in the meantime maintain the precisely controlled morphology of the copolymers and the related property. In this work, a newly designed CTA 5-(2-(tert-butoxycarbonylamino) ethylamino)-2-cyano-5-oxopentan-2-yl benzodithioate (t-Boc CPDB) was synthesized and used for the RAFT polymerization of PGMA45-PHPMA120. Subsequently, PGMA45-PHPMA120 copolymers with primary amine, maleimide, and reduced L-glutathione (a tripeptide) monofunctionalized terminals were synthesized via deprotection and conjugation reactions. These monofunctionalized copolymers maintain worm-like morphology and thermo-responsive property in aqueous solution (10% w/v), as confirmed by the transmission electron microscopy (TEM) images, and the observation of the phase transition behavior in between 4 °C and room temperature (~20 °C), respectively. Summarily, a range of thermo-responsive monofunctionalized PGMA45-PHPMA120 diblock copolymer worms were successfully synthesized, which are expected to offer potential biomedical applications, such as in polymer therapeutics, drug delivery, and diagnostics. Full article
(This article belongs to the Special Issue Protein-Based Biopolymer)
Show Figures

Figure 1

25 pages, 3004 KiB  
Review
Nanoscale Self-Assemblies from Amphiphilic Block Copolymers as Proficient Templates in Drug Delivery
by Dhruvi Patel, Ketan Kuperkar, Shin-ichi Yusa and Pratap Bahadur
Drugs Drug Candidates 2023, 2(4), 898-922; https://doi.org/10.3390/ddc2040045 - 22 Nov 2023
Cited by 15 | Viewed by 3101
Abstract
This review article emphasizes the current enlargements in the formation and properties of the various nanostructured aggregates resulting from the self-assembly of a variety of block copolymers (BCPs) in an aqueous solution. The development of the different polymerization techniques which produce polymers with [...] Read more.
This review article emphasizes the current enlargements in the formation and properties of the various nanostructured aggregates resulting from the self-assembly of a variety of block copolymers (BCPs) in an aqueous solution. The development of the different polymerization techniques which produce polymers with a desired predetermined molecular weight and low polydispersity is investigated with regard to their technological and biomedical applications; in particular, their applications as vehicles for drug delivery systems are considered. The solution behavior of amphiphilic BCPs and double-hydrophilic block copolymers (DHBCs), with one or both blocks being responsive to any stimulus, is discussed. Polyion complex micelles (PICMs)/polymersomes obtained from the electrostatic interaction of a polyelectrolyte-neutral BCP with oppositely charged species are also detailed. Lastly, polymerization-induced self-assembly (PISA), which forms nanoscale micellar aggregates with controlled size/shape/surface functionality, and the crystallization-driven self-assembly of semicrystalline BCPs facilitated when one block of the BCP is crystallizable, are also revealed. The scalability of the copolymeric micelles in the drug delivery systems and pharmaceutical formations that are currently being used in clinical trials, research, or preclinical testing is emphasized as these micelles could be used in the future to create novel nanomedicines. The updated literature and the future perspectives of BCP self-assembly are considered. Full article
(This article belongs to the Section Preclinical Research)
Show Figures

Figure 1

17 pages, 3715 KiB  
Article
Synthesis of Multifunctional Polymersomes Prepared by Polymerization-Induced Self-Assembly
by Hien Phan, Robert Cavanagh, Philippa Jacob, Damien Destouches, Francis Vacherot, Benedetta Brugnoli, Steve Howdle, Vincenzo Taresco and Benoit Couturaud
Polymers 2023, 15(14), 3070; https://doi.org/10.3390/polym15143070 - 17 Jul 2023
Cited by 10 | Viewed by 3332
Abstract
Polymersomes are an exciting modality for drug delivery due to their structural similarity to biological cells and their ability to encapsulate both hydrophilic and hydrophobic drugs. In this regard, the current work aimed to develop multifunctional polymersomes, integrating dye (with hydrophobic Nile red [...] Read more.
Polymersomes are an exciting modality for drug delivery due to their structural similarity to biological cells and their ability to encapsulate both hydrophilic and hydrophobic drugs. In this regard, the current work aimed to develop multifunctional polymersomes, integrating dye (with hydrophobic Nile red and hydrophilic sulfo-cyanine5-NHS ester as model drugs) encapsulation, stimulus responsiveness, and surface-ligand modifications. Polymersomes constituting poly(N-2-hydroxypropylmethacrylamide)-b-poly(N-(2-(methylthio)ethyl)acrylamide) (PHPMAm-b-PMTEAM) are prepared by aqueous dispersion RAFT-mediated polymerization-induced self-assembly (PISA). The hydrophilic block lengths have an effect on the obtained morphologies, with short chain P(HPMAm)16 affording spheres and long chain P(HPMAm)43 yielding vesicles. This further induces different responses to H2O2, with spheres fragmenting and vesicles aggregating. Folic acid (FA) is successfully conjugated to the P(HPMAm)43, which self-assembles into FA-functionalized P(HPMAm)43-b-P(MTEAM)300 polymersomes. The FA-functionalized P(HPMAm)43-b-P(MTEAM)300 polymersomes entrap both hydrophobic Nile red (NR) and hydrophilic Cy5 dye. The NR-loaded FA-linked polymersomes exhibit a controlled release of the encapsulated NR dye when exposed to 10 mM H2O2. All the polymersomes formed are stable in human plasma and well-tolerated in MCF-7 breast cancer cells. These preliminary results demonstrate that, with simple and scalable chemistry, PISA offers access to different shapes and opens up the possibility of the one-pot synthesis of multicompartmental and responsive polymersomes. Full article
(This article belongs to the Special Issue Stimuli-Responsive Polymeric Nanoparticles)
Show Figures

Figure 1

14 pages, 5194 KiB  
Article
Preparation of Polymer-Based Nano-Assembled Particles with Fe3O4 in the Core
by Jian Wang, Wenjie Zhang, Yating Zhang and Haolin Li
Polymers 2023, 15(11), 2498; https://doi.org/10.3390/polym15112498 - 29 May 2023
Cited by 2 | Viewed by 2418
Abstract
Organic–inorganic nanocomposite particles, possessing defined morphologies, represent the next frontier in advanced materials due to their superior collective performance. In this pursuit of efficient preparation of composite nanoparticles, a series of diblock polymers polystyrene-block-poly(tert-butyl acrylate) (PS-b-Pt [...] Read more.
Organic–inorganic nanocomposite particles, possessing defined morphologies, represent the next frontier in advanced materials due to their superior collective performance. In this pursuit of efficient preparation of composite nanoparticles, a series of diblock polymers polystyrene-block-poly(tert-butyl acrylate) (PS-b-PtBA) were initially synthesized using the Living Anionic Polymerization-Induced Self-Assembly (LAP PISA) technique. Subsequently, the tert-butyl group on the tert-butyl acrylate (tBA) monomer unit in the diblock copolymer, yielded from the LAP PISA process, was subjected to hydrolysis using trifluoroacetic acid (CF3COOH), transforming it into carboxyl groups. This resulted in the formation of polystyrene-block-poly(acrylic acid) (PS-b-PAA) nano-self-assembled particles of various morphologies. The pre-hydrolysis diblock copolymer PS-b-PtBA produced nano-self-assembled particles of irregular shapes, whereas post-hydrolysis regular spherical and worm-like nano-self-assembled particles were generated. Utilizing PS-b-PAA nano-self-assembled particles that containing carboxyl groups as polymer templates, Fe3O4 was integrated into the core region of the nano-self-assembled particles. This was achieved based on the complexation between the carboxyl groups on the PAA segments and the metal precursors, facilitating the successful synthesis of organic–inorganic composite nanoparticles with Fe3O4 as the core and PS as the shell. These magnetic nanoparticles hold potential applications as functional fillers in the plastic and rubber sectors. Full article
Show Figures

Figure 1

11 pages, 4716 KiB  
Article
Phase Diagrams of Polymerization-Induced Self-Assembly Are Largely Determined by Polymer Recombination
by Artem Petrov, Alexander V. Chertovich and Alexey A. Gavrilov
Polymers 2022, 14(23), 5331; https://doi.org/10.3390/polym14235331 - 6 Dec 2022
Cited by 6 | Viewed by 2281
Abstract
In the current work, atom transfer radical polymerization-induced self-assembly (ATRP PISA) phase diagrams were obtained by the means of dissipative particle dynamics simulations. A fast algorithm for determining the equilibrium morphology of block copolymer aggregates was developed. Our goal was to assess how [...] Read more.
In the current work, atom transfer radical polymerization-induced self-assembly (ATRP PISA) phase diagrams were obtained by the means of dissipative particle dynamics simulations. A fast algorithm for determining the equilibrium morphology of block copolymer aggregates was developed. Our goal was to assess how the chemical nature of ATRP affects the self-assembly of diblock copolymers in the course of PISA. We discovered that the chain growth termination via recombination played a key role in determining the ATRP PISA phase diagrams. In particular, ATRP with turned off recombination yielded a PISA phase diagram very similar to that obtained for a simple ideal living polymerization process. However, an increase in the recombination probability led to a significant change of the phase diagram: the transition between cylindrical micelles and vesicles was strongly shifted, and a dependence of the aggregate morphology on the concentration was observed. We speculate that this effect occurred due to the simultaneous action of two factors: the triblock copolymer architecture of the terminated chains and the dispersity of the solvophobic blocks. We showed that these two factors affected the phase diagram weakly if they acted separately; however, their combination, which naturally occurs during ATRP, affected the ATRP PISA phase diagram strongly. We suggest that the recombination reaction is a key factor leading to the complexity of experimental PISA phase diagrams. Full article
(This article belongs to the Collection Design and Synthesis of Polymers)
Show Figures

Graphical abstract

21 pages, 5567 KiB  
Review
Amphiphilic Block Copolymers: Their Structures, and Self-Assembly to Polymeric Micelles and Polymersomes as Drug Delivery Vehicles
by Ketan Kuperkar, Dhruvi Patel, Leonard Ionut Atanase and Pratap Bahadur
Polymers 2022, 14(21), 4702; https://doi.org/10.3390/polym14214702 - 3 Nov 2022
Cited by 171 | Viewed by 18962
Abstract
Self-assembly of amphiphilic block copolymers display a multiplicity of nanoscale periodic patterns proposed as a dominant tool for the ‘bottom-up’ fabrication of nanomaterials with different levels of ordering. The present review article focuses on the recent updates to the self-association of amphiphilic block [...] Read more.
Self-assembly of amphiphilic block copolymers display a multiplicity of nanoscale periodic patterns proposed as a dominant tool for the ‘bottom-up’ fabrication of nanomaterials with different levels of ordering. The present review article focuses on the recent updates to the self-association of amphiphilic block copolymers in aqueous media into varied core-shell morphologies. We briefly describe the block copolymers, their types, microdomain formation in bulk and micellization in selective solvents. We also discuss the characteristic features of block copolymers nanoaggregates viz., polymer micelles (PMs) and polymersomes. Amphiphilic block copolymers (with a variety of hydrophobic blocks and hydrophilic blocks; often polyethylene oxide) self-assemble in water to micelles/niosomes similar to conventional nonionic surfactants with high drug loading capacity. Double hydrophilic block copolymers (DHBCs) made of neutral block-neutral block or neutral block-charged block can transform one block to become hydrophobic under the influence of a stimulus (physical/chemical/biological), and thus induced amphiphilicity and display self-assembly are discussed. Different kinds of polymer micelles (viz. shell and core-cross-linked, core-shell-corona, schizophrenic, crew cut, Janus) are presented in detail. Updates on polymerization-induced self-assembly (PISA) and crystallization-driven self-assembly (CDSA) are also provided. Polyion complexes (PICs) and polyion complex micelles (PICMs) are discussed. Applications of these block copolymeric micelles and polymersomes as nanocarriers in drug delivery systems are described. Full article
(This article belongs to the Special Issue Polymers and Drug Delivery Systems II)
Show Figures

Graphical abstract

13 pages, 13431 KiB  
Article
The Effect of Topology on Block Copolymer Nanoparticles: Linear versus Star Block Copolymers in Toluene
by Yuan Zhang, Peng Wang, Nan Li, Chunyan Guo and Sumin Li
Polymers 2022, 14(17), 3691; https://doi.org/10.3390/polym14173691 - 5 Sep 2022
Cited by 7 | Viewed by 2541
Abstract
Linear and star block copolymer (BCP) nanoparticles of (polystyrene-block-poly(4-vinylpyridine))n (PS-b-P4VP)n with arm numbers of 1, 2, 3, and 4 were prepared by two methods of polymerization-induced self-assembly (PISA) and general self-assembly of block copolymers in the low-polar [...] Read more.
Linear and star block copolymer (BCP) nanoparticles of (polystyrene-block-poly(4-vinylpyridine))n (PS-b-P4VP)n with arm numbers of 1, 2, 3, and 4 were prepared by two methods of polymerization-induced self-assembly (PISA) and general self-assembly of block copolymers in the low-polar organic solvent, toluene. The effect of the arm number on the size and/or morphology of the (PS-b-P4VP)n nanoassemblies synthesized by the two methods in toluene and on the polymerization kinetics was investigated in detail. Our results show that in toluene, a low-polar solvent, the topology not only affected the morphology of the BCP nanoparticles prepared by PISA, but also influenced the BCP nanoparticles synthesized through general self-assembly. Full article
(This article belongs to the Special Issue Advances and Applications of Block Copolymers)
Show Figures

Figure 1

23 pages, 4301 KiB  
Article
RAFT Emulsion Polymerization of Styrene Using a Poly((N,N-dimethyl acrylamide)-co-(N-isopropyl acrylamide)) mCTA: Synthesis and Thermosensitivity
by Katharina Nieswandt, Prokopios Georgopanos, Martin Held, Evgeni Sperling and Volker Abetz
Polymers 2022, 14(1), 62; https://doi.org/10.3390/polym14010062 - 24 Dec 2021
Cited by 19 | Viewed by 6189
Abstract
Thermoresponsive poly((N,N-dimethyl acrylamide)-co-(N-isopropyl acrylamide)) (P(DMA-co-NIPAM)) copolymers were synthesized via reversible addition−fragmentation chain transfer (RAFT) polymerization. The monomer reactivity ratios were determined by the Kelen–Tüdős method to be rNIPAM = 0.83 and rDMA = [...] Read more.
Thermoresponsive poly((N,N-dimethyl acrylamide)-co-(N-isopropyl acrylamide)) (P(DMA-co-NIPAM)) copolymers were synthesized via reversible addition−fragmentation chain transfer (RAFT) polymerization. The monomer reactivity ratios were determined by the Kelen–Tüdős method to be rNIPAM = 0.83 and rDMA = 1.10. The thermoresponsive properties of these copo-lymers with varying molecular weights were characterized by visual turbidimetry and dynamic light scattering (DLS). The copolymers showed a lower critical solution temperature (LCST) in water with a dependence on the molar fraction of DMA in the copolymer. Chaotropic and kosmotropic salt anions of the Hofmeister series, known to affect the LCST of thermoresponsive polymers, were used as additives in the aqueous copolymer solutions and their influence on the LCST was demonstrated. Further on, in order to investigate the thermoresponsive behavior of P(DMA-co-NIPAM) in a confined state, P(DMA-co-NIPAM)-b-PS diblock copolymers were prepared via polymerization induced self-assembly (PISA) through surfactant-free RAFT mediated emulsion polymerization of styrene using P(DMA-co-NIPAM) as the macromolecular chain transfer agent (mCTA) of the polymerization. As confirmed by cryogenic transmission electron microscopy (cryoTEM), this approach yielded stabilized spherical micelles in aqueous dispersions where the PS block formed the hydrophobic core and the P(DMA-co-NIPAM) block formed the hydrophilic corona of the spherical micelle. The temperature-dependent behavior of the LCST-type diblock copolymers was further studied by examining the collapse of the P(DMA-co-NIPAM) minor block of the P(DMA-co-NIPAM)-b-PS diblock copolymers as a function of temperature in aqueous solution. The nanospheres were found to be thermosensitive by changing their hydrodynamic radii almost linearly as a function of temperature between 25 °C and 45 °C. The addition of kosmotropic salt anions, as a potentially useful tuning feature of micellar assemblies, was found to increase the hydrodynamic radius of the micelles and resulted in a faster collapse of the micelle corona upon heating. Full article
(This article belongs to the Collection Design and Synthesis of Polymers)
Show Figures

Graphical abstract

14 pages, 4262 KiB  
Article
Synthesis and Characterization of Temperature-Responsive N-Cyanomethylacrylamide-Containing Diblock Copolymer Assemblies in Water
by Nicolas Audureau, Fanny Coumes, Clémence Veith, Clément Guibert, Jean-Michel Guigner, François Stoffelbach and Jutta Rieger
Polymers 2021, 13(24), 4424; https://doi.org/10.3390/polym13244424 - 16 Dec 2021
Cited by 8 | Viewed by 3061
Abstract
We have previously demonstrated that poly(N-cyanomethylacrylamide) (PCMAm) exhibits a typical upper-critical solution temperature (UCST)-type transition, as long as the molar mass of the polymer is limited, which was made possible through the use of reversible addition-fragmentation chain transfer (RAFT) radical polymerization. [...] Read more.
We have previously demonstrated that poly(N-cyanomethylacrylamide) (PCMAm) exhibits a typical upper-critical solution temperature (UCST)-type transition, as long as the molar mass of the polymer is limited, which was made possible through the use of reversible addition-fragmentation chain transfer (RAFT) radical polymerization. In this research article, we use for the first time N-cyanomethylacrylamide (CMAm) in a typical aqueous dispersion polymerization conducted in the presence of poly(N,N-dimethylacrylamide) (PDMAm) macroRAFT agents. After assessing that well-defined PDMAm-b-PCMAm diblock copolymers were formed through this aqueous synthesis pathway, we characterized in depth the colloidal stability, morphology and temperature-responsiveness of the dispersions, notably using cryo-transmission electron microscopy (cryo-TEM), dynamic light scattering (DLS), small angle X-ray scattering (SAXS) and turbidimetry. The combined analyses revealed that stable nanometric spheres, worms and vesicles could be prepared when the PDMAm block was sufficiently long. Concerning the thermoresponsiveness, only diblocks with a PCMAm block of a low degree of polymerization (DPn,PCMAm < 100) exhibited a UCST-type dissolution upon heating at low concentration. In contrast, for higher DPn,PCMAm, the diblock copolymer nano-objects did not disassemble. At sufficiently high temperatures, they rather exhibited a temperature-induced secondary aggregation of primary particles. In summary, we demonstrated that various morphologies of nano-objects could be obtained via a typical polymerization-induced self-assembly (PISA) process using PCMAm as the hydrophobic block. We believe that the development of this aqueous synthesis pathway of novel PCMAm-based thermoresponsive polymers will pave the way towards various applications, notably as thermoresponsive coatings and in the biomedical field. Full article
(This article belongs to the Special Issue Polymerization-Induced Self-Assembly (PISA))
Show Figures

Graphical abstract

19 pages, 2947 KiB  
Article
Synthesis of Poly(methacrylic acid)-block-Polystyrene Diblock Copolymers at High Solid Contents via RAFT Emulsion Polymerization
by Iklima Oral, Larissa Grossmann, Elena Fedorenko, Jana Struck and Volker Abetz
Polymers 2021, 13(21), 3675; https://doi.org/10.3390/polym13213675 - 25 Oct 2021
Cited by 12 | Viewed by 5884
Abstract
The combination of polymerization–induced self-assembly (PISA) and reversible–addition fragmentation chain transfer (RAFT) emulsion polymerization offers a powerful technique to synthesize diblock copolymers and polymeric nanoparticles in a controlled manner. The RAFT emulsion diblock copolymerization of styrene and methacrylic acid (MAA) by using a [...] Read more.
The combination of polymerization–induced self-assembly (PISA) and reversible–addition fragmentation chain transfer (RAFT) emulsion polymerization offers a powerful technique to synthesize diblock copolymers and polymeric nanoparticles in a controlled manner. The RAFT emulsion diblock copolymerization of styrene and methacrylic acid (MAA) by using a trithiocarbonate as surfactant and RAFT agent was investigated. The Z-group of the RAFT agent was modified with a propyl-, butyl- and dodecyl- sidechain, increasing the hydrophobicity of the RAFT agent to offer well-controlled polymerization of poly(methacrylic acid)-block-polystyrene (PMAA-b-PS) diblock copolymers at high solid contents between 30–50 wt% in water. The kinetic data of the PMAA homopolymerization with the three different RAFT agents for various solvents was investigated as well as the RAFT emulsion polymerization of the diblock copolymers in pure water. While the polymerization of PMAA-b-PS with a propyl terminus as a Z-group suffered from slow polymerization rates at solid contents above 30 wt%, the polymerization with a dodecyl sidechain as a Z-group led to full conversion within 2 h, narrow molar mass distributions and all that at a remarkable solid content of up to 50 wt%. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Graphical abstract

18 pages, 2994 KiB  
Review
Protein-, (Poly)peptide-, and Amino Acid-Based Nanostructures Prepared via Polymerization-Induced Self-Assembly
by Spyridon Varlas, Georgia L. Maitland and Matthew J. Derry
Polymers 2021, 13(16), 2603; https://doi.org/10.3390/polym13162603 - 5 Aug 2021
Cited by 16 | Viewed by 6140
Abstract
Proteins and peptides, built from precisely defined amino acid sequences, are an important class of biomolecules that play a vital role in most biological functions. Preparation of nanostructures through functionalization of natural, hydrophilic proteins/peptides with synthetic polymers or upon self-assembly of all-synthetic amphiphilic [...] Read more.
Proteins and peptides, built from precisely defined amino acid sequences, are an important class of biomolecules that play a vital role in most biological functions. Preparation of nanostructures through functionalization of natural, hydrophilic proteins/peptides with synthetic polymers or upon self-assembly of all-synthetic amphiphilic copolypept(o)ides and amino acid-containing polymers enables access to novel protein-mimicking biomaterials with superior physicochemical properties and immense biorelevant scope. In recent years, polymerization-induced self-assembly (PISA) has been established as an efficient and versatile alternative method to existing self-assembly procedures for the reproducible development of block copolymer nano-objects in situ at high concentrations and, thus, provides an ideal platform for engineering protein-inspired nanomaterials. In this review article, the different strategies employed for direct construction of protein-, (poly)peptide-, and amino acid-based nanostructures via PISA are described with particular focus on the characteristics of the developed block copolymer assemblies, as well as their utilization in various pharmaceutical and biomedical applications. Full article
Show Figures

Graphical abstract

Back to TopTop