Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = polymer-assisted metal deposition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3666 KB  
Article
Development and Experimental Validation of a Filament-Assisted Chemical Vapor Deposition (FACVD) Reactor Using a Plastic Chamber
by Him Chan Kang, Jeong Heon Lee and Jae B. Kwak
Coatings 2025, 15(10), 1213; https://doi.org/10.3390/coatings15101213 - 15 Oct 2025
Viewed by 695
Abstract
This study explored the feasibility of using a plastic vacuum chamber for the Filament-Assisted Chemical Vapor Deposition (FACVD) of polymer thin films. Traditional chemical vapor deposition (CVD) methods often require high vacuum and elevated temperatures, which limit their use for heat-sensitive and flexible [...] Read more.
This study explored the feasibility of using a plastic vacuum chamber for the Filament-Assisted Chemical Vapor Deposition (FACVD) of polymer thin films. Traditional chemical vapor deposition (CVD) methods often require high vacuum and elevated temperatures, which limit their use for heat-sensitive and flexible substrates. FACVD enables polymer deposition under mild vacuum and temperature conditions, providing an opportunity to utilize plastic vacuum chambers as cost-effective and easily machinable alternatives to metallic chambers. In this study, a custom-designed acrylic chamber was fabricated and integrated into an FACVD system. Glycidyl methacrylate (GMA) and tert-butyl peroxide (TBPO) were considered as the monomer and initiator, respectively, for creating thin films under a low-temperature and moderate-vacuum deposition process. Polymeric film (pGMA) contains reactive epoxy groups that allow versatile post-polymerization modifications and are widely applied in coatings and biomedical fields. Preliminary experiments demonstrated the successful growth of pGMA thin films, with Fourier-transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) confirming the characteristic polymer features, including the disappearance of the C=C stretching band as direct evidence of polymerization. Ellipsometry determines a uniformity of film thickness of approximately 85% for the 4-inch wafers’ area, with deposition rates in the range of 18–26 nm/h. These results highlight the potential of polymer-based chambers as cost-effective and versatile alternatives to advanced vapor-phase polymerization processes. Full article
Show Figures

Figure 1

33 pages, 7442 KB  
Review
Transparent Electrodes Based on Crack-Templated Metallic Networks for Next-Generation Optoelectronics
by Eleonora Sofia Cama, Mariacecilia Pasini, Francesco Galeotti and Umberto Giovanella
Materials 2025, 18(13), 3091; https://doi.org/10.3390/ma18133091 - 30 Jun 2025
Cited by 2 | Viewed by 1615
Abstract
Transparent conductive electrodes (TCEs) are essential components in modern optoelectronic devices, including organic light-emitting diodes and solar cells, sensors, and flexible displays. Indium tin oxide has been the dominant material for TCEs due to its high transparency and conductivity. However, its brittleness, high [...] Read more.
Transparent conductive electrodes (TCEs) are essential components in modern optoelectronic devices, including organic light-emitting diodes and solar cells, sensors, and flexible displays. Indium tin oxide has been the dominant material for TCEs due to its high transparency and conductivity. However, its brittleness, high cost, and increasingly limited availability pose significant challenges for electronics. Crack-template (CT)-assisted fabrication has emerged as a promising technique to develop metal mesh-based TCEs with superior mechanical flexibility, high conductivity, and excellent optical transmittance. This technique leverages the spontaneous formation of random and continuous microcrack networks in sacrificial templates, followed by metal deposition (e.g., Cu, Ag, Al, etc.), to produce highly conductive, scalable, and low-cost electrodes. Various crack formation strategies, including controlled drying of polymer suspensions, mechanical strain engineering, and thermal processing, have been explored to tailor electrode properties. Recent studies have demonstrated that crack-templated TCEs can achieve transmittance values exceeding 85% and sheet resistances below 10 Ω/sq, with mesh line widths as low as ~40 nm. Moreover, these electrodes exhibit enhanced stretchability and robustness under mechanical deformation, outperforming ITO in bend and fatigue tests. This review aims to explore recent advancements in CT engineering, highlighting key fabrication methods, performance metrics across different metals and substrates, and presenting examples of its applications in optoelectronic devices. Additionally, it will examine current challenges and future prospects for the widespread adoption of this emerging technology. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Graphical abstract

17 pages, 8128 KB  
Article
Tuning Polymer–Metal Interfaces via Solvent-Engineered Electroless Nickel Coatings on Functional Fibres
by Chenyao Wang, Heng Zhai, Xuzhao Liu, David Lewis, Yuhao Huang, Ling Ai, Xinyi Guan, Hugh Gong, Xuqing Liu and Anura Fernando
Polymers 2025, 17(12), 1693; https://doi.org/10.3390/polym17121693 - 18 Jun 2025
Cited by 1 | Viewed by 1007
Abstract
Electroless nickel deposition (ELD) on polymer substrates enables the fabrication of flexible, conductive fibres for wearable and functional textiles. However, achieving uniform, low-defect coatings on synthetic fibres such as nylon-6,6 remains challenging due to their chemical inertness, hydrophobicity, and poor interfacial compatibility with [...] Read more.
Electroless nickel deposition (ELD) on polymer substrates enables the fabrication of flexible, conductive fibres for wearable and functional textiles. However, achieving uniform, low-defect coatings on synthetic fibres such as nylon-6,6 remains challenging due to their chemical inertness, hydrophobicity, and poor interfacial compatibility with metal coatings. This study presents a solvent-assisted approach using dimethyl sulfoxide (DMSO) in a conventional aqueous ELD bath to control both polymer–metal interfacial chemistry and nickel coating microstructure. The modified surface supports dense catalytic sites, triggering spatially uniform Ni nucleation. The combination of scanning electron microscopy and transmission electron microscopy confirms the difference in coarse grains with fully aqueous baths to a nanocrystalline shell with DMSO-modified baths. This refined microstructure relieves residual stress and anchors firmly to the swollen polymer, delivering +7 °C higher onset decomposition temperature and 45% lower creep strain at 50 °C compared with aqueous controls. The fabric strain sensor fabricated by 1 wt.% DMSO-modified ELD shows a remarkable sensitivity against strain, demonstrating a 1400% resistance change under 200% stain. Electrochemical impedance and polarisation tests confirm a two-fold rise in charge transfer resistance and negligible corrosion current drift after accelerated ageing. By clarifying how a polar aprotic co-solvent couples polymer swelling with metal growth kinetics, the study introduces a scalable strategy for tuning polymer–metal interfaces and advances solvent-assisted ELD as a route to mechanically robust, thermally stable, and corrosion-resistant conductive textiles. Full article
(This article belongs to the Special Issue Polymer Modification for Soft Matter and Flexible Devices)
Show Figures

Figure 1

12 pages, 5446 KB  
Article
Durable Metallized Liquid Crystal Polymer Fibers Enable Flexible and Tough Electrical Heaters
by Yajie Zhang, Xinting Huang, Jiachi Zhou, Wenlin Liang, Xinxin Li and Chuang Zhu
Polymers 2025, 17(8), 1087; https://doi.org/10.3390/polym17081087 - 17 Apr 2025
Viewed by 1070
Abstract
Fiber-shaped electrical heaters with high flexibility and excellent adaptability make an ideal candidate for the application of wearable electronics but still suffer from low strength and poor durability. Herein, an all-in-one Joule-heating fiber capable of outstanding mechanical properties, good heating efficiency, and long-term [...] Read more.
Fiber-shaped electrical heaters with high flexibility and excellent adaptability make an ideal candidate for the application of wearable electronics but still suffer from low strength and poor durability. Herein, an all-in-one Joule-heating fiber capable of outstanding mechanical properties, good heating efficiency, and long-term stability is reported by using polymer-assisted metal deposition to firmly coat Cu nanoparticles on high-performance liquid crystal polymer (LCP) fibers. Taking advantage of LCP, the resultant fibers exhibit a satisfying temperature threshold (up to 200 °C) and immense strength (2.94 GPa). By virtue of dense and continuous Cu film, these fibers show low electrical resistance (5.51 Ω/cm) and an ultrafast response rate (12.6 °C·s−1) at low supplied voltages (0.5–3.5 V). Benefiting from the levodopa/polyethyleneimine interface design, such fibers maintain nearly constant resistance after repeatable bending, folding, and even washing (50 cycles). Based on the above-mentioned merits, a wearable patch with a Joule-heating function is knitted by using as-made fibers to offer therapeutic benefits for human body joints. This work demonstrates prospective potential for enriching the challenging applications of fiber-shaped electrical heating systems. Full article
(This article belongs to the Special Issue Preparation and Application of Functionalized Polymer Fabrics)
Show Figures

Graphical abstract

20 pages, 5573 KB  
Article
New Gold(I) Complexes as Potential Precursors for Gas-Assisted Methods: Structure, Volatility, Thermal Stability, and Electron Sensitivity
by Aleksandra Butrymowicz-Kubiak, Tadeusz M. Muzioł, Piotr Madajski and Iwona B. Szymańska
Molecules 2025, 30(1), 146; https://doi.org/10.3390/molecules30010146 - 2 Jan 2025
Cited by 2 | Viewed by 1618
Abstract
We report the synthesis and characterization of new, user-friendly gold(I) [Au4(μ-(NH)2CC2F5)4]n coordination polymer and [Au2Cl2(NH2(NH=)CC2F5)2]n complex. These compounds were [...] Read more.
We report the synthesis and characterization of new, user-friendly gold(I) [Au4(μ-(NH)2CC2F5)4]n coordination polymer and [Au2Cl2(NH2(NH=)CC2F5)2]n complex. These compounds were investigated for potential application as precursors in chemical vapor deposition (CVD) and focused electron/ion beam-induced deposition (FEBID/FIBID), which are additive methods to produce nanomaterials. Single-crystal X-ray diffraction, elemental analysis, and infrared spectroscopy were used to determine the complexes’ composition and structure. We studied their thermal stability and volatility using thermal analysis and variable-temperature infrared spectroscopy (VT IR) and by conducting sublimation experiments. The gold(I) amidinate [Au2(μ-(NH)2CC2F5)2]n sublimates at 413 K under 10−2 mbar pressure. The electron-induced decomposition of the complexes’ molecules in the gas phase and of their thin layers on silicon substrates was analyzed using electron impact mass spectrometry (EI MS) and microscopy studies (SEM/EDX), respectively, to provide insights for FEBID and FIBID precursor design. The [Au2Cl2(NH2(NH=)CC2F5)2]n hydrogen chloride molecules evolved during heating, with the formation of gold(I) amidinate. The obtained results revealed that the new gold(I) amidinate may be a promising source of metal for nanomaterial fabrication by gas-assisted methods. Full article
Show Figures

Graphical abstract

28 pages, 7558 KB  
Review
Electrocatalysis in MOF Films for Flexible Electrochemical Sensing: A Comprehensive Review
by Suyuan Zhang, Min Wang, Xusheng Wang, Jun Song and Xue Yang
Biosensors 2024, 14(9), 420; https://doi.org/10.3390/bios14090420 - 28 Aug 2024
Cited by 16 | Viewed by 5082
Abstract
Flexible electrochemical sensors can adhere to any bendable surface with conformal contact, enabling continuous data monitoring without compromising the surface’s dynamics. Among various materials that have been explored for flexible electronics, metal–organic frameworks (MOFs) exhibit dynamic responses to physical and chemical signals, offering [...] Read more.
Flexible electrochemical sensors can adhere to any bendable surface with conformal contact, enabling continuous data monitoring without compromising the surface’s dynamics. Among various materials that have been explored for flexible electronics, metal–organic frameworks (MOFs) exhibit dynamic responses to physical and chemical signals, offering new opportunities for flexible electrochemical sensing technologies. This review aims to explore the role of electrocatalysis in MOF films specifically designed for flexible electrochemical sensing applications, with a focus on their design, fabrication techniques, and applications. We systematically categorize the design and fabrication techniques used in preparing MOF films, including in situ growth, layer-by-layer assembly, and polymer-assisted strategies. The implications of MOF-based flexible electrochemical sensors are examined in the context of wearable devices, environmental monitoring, and healthcare diagnostics. Future research is anticipated to shift from traditional microcrystalline powder synthesis to MOF thin-film deposition, which is expected to not only enhance the performance of MOFs in flexible electronics but also improve sensing efficiency and reliability, paving the way for more robust and versatile sensor technologies. Full article
Show Figures

Figure 1

9 pages, 1797 KB  
Article
Platinum Metallization of Polyethylene Terephthalate by Supercritical Carbon Dioxide Catalyzation and the Tensile Fracture Strength
by Po-Wei Cheng, Tomoyuki Kurioka, Chun-Yi Chen, Tso-Fu Mark Chang, Wan-Ting Chiu, Hideki Hosoda, Kei Takase, Hiroshi Ishihata, Hiromichi Kurosu and Masato Sone
Materials 2023, 16(6), 2377; https://doi.org/10.3390/ma16062377 - 16 Mar 2023
Cited by 2 | Viewed by 2469
Abstract
Polyethylene terephthalate (PET) is known to be highly inert, and this makes it difficult to be metallized. In addition, Pt electroless plating is rarely reported in the metallization of polymers. In this study, the metallization of biocompatible Pt metal is realized by supercritical [...] Read more.
Polyethylene terephthalate (PET) is known to be highly inert, and this makes it difficult to be metallized. In addition, Pt electroless plating is rarely reported in the metallization of polymers. In this study, the metallization of biocompatible Pt metal is realized by supercritical CO2 (sc-CO2)-assisted electroless plating. The catalyst precursor used in the sc-CO2 catalyzation step is an organometallic compound, palladium (II) acetylacetonate (Pd(acac)2). The electrical resistance is evaluated, and a tape adhesion test is utilized to demonstrate intactness of the Pt layer on the PET film. The electrical resistance of the Pt/PET with 60 min of the Pt deposition time remains at a low level of 1.09 Ω after the adhesion test, revealing positive effects of the sc-CO2 catalyzation step. A tensile test is conducted to evaluate the mechanical strength of the Pt/PET. In-situ electrical resistances of the specimen are monitored during the tensile test. The fracture strength is determined from the stress value when the short circuit occurred. The fracture strength is 33.9 MPa for a specimen with 30 min of the Pt deposition time. As the Pt deposition time increases to 45 min and 60 min, the fracture strengths reach 52.3 MPa and 65.9 MPa, respectively. The promoted fracture strength and the decent electrical conductivity demonstrate the advantages toward biomedical devices. Full article
Show Figures

Figure 1

16 pages, 4288 KB  
Article
Surface Modification Using MAPLE Technique for Improving the Mechanical Performance of Adhesive Joints
by Valentina Dinca, Gabriela Toader, Raluca Gavrila, Oana Brincoveanu, Adrian Dinescu, Edina Rusen, Aurel Diacon and Alexandra Mocanu
Nanomaterials 2023, 13(6), 964; https://doi.org/10.3390/nano13060964 - 7 Mar 2023
Cited by 4 | Viewed by 2329
Abstract
The adhesive bonds that ensure the appropriate mechanical properties for metal joining imply the surface chemical and wetting modification characteristics of the substrates. In this work, matrix-assisted pulsed laser evaporation (MAPLE) was used for the surface modification of Al via the deposition of [...] Read more.
The adhesive bonds that ensure the appropriate mechanical properties for metal joining imply the surface chemical and wetting modification characteristics of the substrates. In this work, matrix-assisted pulsed laser evaporation (MAPLE) was used for the surface modification of Al via the deposition of two chemical compounds, polyvinyl alcohol (PVA) and triethanolamine (TEA), from frozen aqueous solutions. The deposition of the TEA and PVA layers was evidenced by FT-IR, SEM, and AFM analysis. The contact angle measurements evidenced the change in the hydrophilicity of the surface and surface free energies. The performance of the commercial silyl-based polymer adhesive Bison Max Repair Extreme Adhesive® was evaluated by tensile strength measurements. This method led to a change in tensile strength of 54.22% in the case of Al-TEA and 36.34% for Al-PVA compared with the control. This study gives preliminary insights into using MAPLE, for the first time in adhesive applications, as a pretreatment method for Al plates for adhesive bonding reinforcement. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

18 pages, 7947 KB  
Article
Flexible and Robust Triboelectric Nanogenerators with Chemically Prepared Metal Electrodes and a Plastic Contact Interface Based on Low-Cost Pressure-Sensitive Adhesive
by Shuai-Chen Wang, Binbin Zhang, Lijing Kang, Cunman Liang, Dongdong Chen, Guoqiang Liu and Xuyun Guo
Sensors 2023, 23(4), 2021; https://doi.org/10.3390/s23042021 - 10 Feb 2023
Cited by 6 | Viewed by 4615
Abstract
Triboelectric nanogenerators (TENGs) are devices that can harvest energy from mechanical motions; such devices can be used to power wearable sensors and various low-power electronics. To increase the lifetime of the device, scientists mainly use the method of making TENG in a hard [...] Read more.
Triboelectric nanogenerators (TENGs) are devices that can harvest energy from mechanical motions; such devices can be used to power wearable sensors and various low-power electronics. To increase the lifetime of the device, scientists mainly use the method of making TENG in a hard skeleton to simplify the complex possible relative movements between two triboelectric parts. However, the hard skeletons cannot be embedded in soft and lightweight clothing. To make matters worse, the materials used in the garments must be able to withstand high mechanical forces when worn, such as the pressure of more than 100 KPa exerted by body pressure or everyday knocks. Notably, the TENGs are usually made of fragile materials, such as vacuum-evaporated metal electrodes and nano-sized coatings, on the contact interface; these electrodes and coatings often chip or wear off under the action of external loads. In this work, we succeeded in creating a thin, light-weight, but extremely robust garment-integrated triboelectric nanogenerator (G-TENG) that can be embedded in clothing and pass the water wash test. First, we chemically deposited a durable electrode with flexible properties for G-TENG using a novel technique called polymer-assisted metal deposition (PAMD). The as-formed metal electrodes are firmly bonded to the plastic substrate by a sub-10 nm adhesive polymer brush and can withstand a pressure of 22.5 MPa and a tear force of 0.7 MPa. We then removed the traditionally used fragile nanoparticle materials and the non-durable poly-dimethylsiloxane (PDMS) layer at the triboelectric interface, and then used a cost-effective, durable and slightly flowable pressure-sensitive adhesive to form a plastic contact interface. Such a soft plastic interface can ensure full contact of the triboelectric materials, which is excellent in complex environments and ultimately improves the power generation efficiency of the devices. The as-formed low-cost energy harvesting device could become an industry standard for future smart clothing. Full article
(This article belongs to the Special Issue Sensors for Health and Environment Monitoring)
Show Figures

Figure 1

12 pages, 1947 KB  
Article
Metallization of Recycled Glass Fiber-Reinforced Polymers Processed by UV-Assisted 3D Printing
by Alessia Romani, Paolo Tralli, Marinella Levi, Stefano Turri and Raffaella Suriano
Materials 2022, 15(18), 6242; https://doi.org/10.3390/ma15186242 - 8 Sep 2022
Cited by 9 | Viewed by 3119
Abstract
An ever-growing amount of composite waste will be generated in the upcoming years. New circular strategies based on 3D printing technologies are emerging as potential solutions although 3D-printed products made of recycled composites may require post-processing. Metallization represents a viable way to foster [...] Read more.
An ever-growing amount of composite waste will be generated in the upcoming years. New circular strategies based on 3D printing technologies are emerging as potential solutions although 3D-printed products made of recycled composites may require post-processing. Metallization represents a viable way to foster their exploitation for new applications. This paper shows the use of physical vapor deposition sputtering for the metallization of recycled glass fiber-reinforced polymers processed by UV-assisted 3D printing. Different batches of 3D-printed samples were produced, post-processed, and coated with a chromium metallization layer to compare the results before and after the metallization process and to evaluate the quality of the finishing from a qualitative and quantitative point of view. The analysis was conducted by measuring the surface gloss and roughness, analyzing the coating morphology and thickness through the Scanning Electron Microscopy (SEM) micrographs of the cross-sections, and assessing its adhesion with cross-cut tests. The metallization was successfully performed on the different 3D-printed samples, achieving a good homogeneity of the coating surface. Despite the influence of the staircase effect, these results may foster the investigation of new fields of application, as well as the use of different polymer-based composites from end-of-life products, i.e., carbon fiber-reinforced polymers. Full article
(This article belongs to the Special Issue Emerging Materials for Additive Manufacturing)
Show Figures

Figure 1

11 pages, 1868 KB  
Article
Polymer-Assisted Metal Deposited Wood-Based Composites with Antibacterial and Conductive Properties
by Fangning Shen, Yu Yang, Zhuangzhuang Chu and Zhuohong Yang
Coatings 2022, 12(8), 1161; https://doi.org/10.3390/coatings12081161 - 11 Aug 2022
Cited by 1 | Viewed by 1927
Abstract
Compressible metallic porous materials (CMPMs) have great potential for development in the energy and environmental fields. However, the scale-up preparation of CMPMs with stable metal layers, excellent elasticity, and multifunctionality remains exceedingly challenging. In this study, we designed a novel strategy with the [...] Read more.
Compressible metallic porous materials (CMPMs) have great potential for development in the energy and environmental fields. However, the scale-up preparation of CMPMs with stable metal layers, excellent elasticity, and multifunctionality remains exceedingly challenging. In this study, we designed a novel strategy with the aid of polymer-assisted metal deposition to synthesize metallic porous wood (Ni-PW) with a hierarchical cellular structure and excellent elasticity. Our approach can produce highly compressible MPW using intrinsically porous delignified wood with only 15.16% strain loss under a large compressive strain of 40% after 1000 loading-unloading cycles and 129.4 μm of the average porous size of the Ni-PW measured by mercury injection method. The resulting Ni-PW displays excellent antibacterial properties for Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) and electric conductivity (Resistance < 7 ty), which renders great potential in energy and environmental applications. This research provides a new insight into the fabrication of CMPMs in a cost-effective (~56.5 ¥ m−2) and scalable way. Full article
(This article belongs to the Section Bioactive Coatings and Biointerfaces)
Show Figures

Figure 1

19 pages, 7498 KB  
Article
Implant Surfaces Containing Bioglasses and Ciprofloxacin as Platforms for Bone Repair and Improved Resistance to Microbial Colonization
by Irina Negut, Carmen Ristoscu, Tatiana Tozar, Mihaela Dinu, Anca Constantina Parau, Valentina Grumezescu, Claudiu Hapenciuc, Marcela Popa, Miruna Silvia Stan, Luminita Marutescu, Ion N. Mihailescu and Mariana Carmen Chifiriuc
Pharmaceutics 2022, 14(6), 1175; https://doi.org/10.3390/pharmaceutics14061175 - 30 May 2022
Cited by 15 | Viewed by 3266
Abstract
Coatings are an attractive and challenging selection for improving the bioperformance of metallic devices. Composite materials based on bioglass/antibiotic/polymer are herein proposed as multifunctional thin films for hard tissue implants. We deposited a thin layer of the polymeric material by matrix-assisted pulsed laser [...] Read more.
Coatings are an attractive and challenging selection for improving the bioperformance of metallic devices. Composite materials based on bioglass/antibiotic/polymer are herein proposed as multifunctional thin films for hard tissue implants. We deposited a thin layer of the polymeric material by matrix-assisted pulsed laser evaporation—MAPLE onto Ti substrates. A second layer consisting of bioglass + antibiotic was applied by MAPLE onto the initial thin film. The antimicrobial activity of MAPLE-deposited thin films was evaluated on Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, and Pseudomonas aeruginosa standard strains. The biocompatibility of obtained thin films was assessed on mouse osteoblast-like cells. The results of our study revealed that the laser-deposited coatings are biocompatible and resistant to microbial colonization and biofilm formation. Accordingly, they can be considered viable candidates for biomedical devices and contact surfaces that would otherwise be amenable to contact transmission. Full article
(This article belongs to the Special Issue Pharmaceutical Formulations with Antimicrobial Properties)
Show Figures

Figure 1

14 pages, 4658 KB  
Article
Laser-Assisted Selective Fabrication of Copper Traces on Polymers by Electroplating
by Vitalij Fiodorov, Karolis Ratautas, Zenius Mockus, Romualdas Trusovas, Lina Mikoliūnaitė and Gediminas Račiukaitis
Polymers 2022, 14(4), 781; https://doi.org/10.3390/polym14040781 - 17 Feb 2022
Cited by 24 | Viewed by 4642
Abstract
The selective deposition of metals on dielectric materials is widely used in the electronic industry, making electro-conductive connections between circuit elements. We report a new low-cost laser-assisted method for the selective deposition of copper tracks on polymer surfaces by electroplating. The technique uses [...] Read more.
The selective deposition of metals on dielectric materials is widely used in the electronic industry, making electro-conductive connections between circuit elements. We report a new low-cost laser-assisted method for the selective deposition of copper tracks on polymer surfaces by electroplating. The technique uses a laser for the selective modification of the polymer surface. The electrical conductivity of some polymers could be increased due to laser irradiation. Polyimide samples were treated using nanosecond and picosecond lasers working at a 1064 nm wavelength. An electro-conductive graphene-like layer was formed on the polymer surface after the laser treatment with selected parameters, and the copper layer thickness of 5–20 µm was deposited on the modified surface by electroplating. The selective laser-assisted electroplating technology allows the fabrication of copper tracks on complex shape dielectric materials. The technology could be used in the manufacturing of molded interconnect devices (MID). Full article
(This article belongs to the Topic Application of Graphene-Based Materials)
Show Figures

Figure 1

48 pages, 14162 KB  
Review
Hybrid Nanocomposite Thin Films for Photovoltaic Applications: A Review
by Marcela Socol and Nicoleta Preda
Nanomaterials 2021, 11(5), 1117; https://doi.org/10.3390/nano11051117 - 26 Apr 2021
Cited by 42 | Viewed by 7359
Abstract
Continuing growth in global energy consumption and the growing concerns regarding climate change and environmental pollution are the strongest drivers of renewable energy deployment. Solar energy is the most abundant and cleanest renewable energy source available. Nowadays, photovoltaic technologies can be regarded as [...] Read more.
Continuing growth in global energy consumption and the growing concerns regarding climate change and environmental pollution are the strongest drivers of renewable energy deployment. Solar energy is the most abundant and cleanest renewable energy source available. Nowadays, photovoltaic technologies can be regarded as viable pathways to provide sustainable energy generation, the achievement attained in designing nanomaterials with tunable properties and the progress made in the production processes having a major impact in their development. Solar cells involving hybrid nanocomposite layers have, lately, received extensive research attention due to the possibility to combine the advantages derived from the properties of both components: flexibility and processability from the organic part and stability and optoelectronics features from the inorganic part. Thus, this review provides a synopsis on hybrid solar cells developed in the last decade which involve composite layers deposited by spin-coating, the most used deposition method, and matrix-assisted pulsed laser evaporation, a relatively new deposition technique. The overview is focused on the hybrid nanocomposite films that can use conducting polymers and metal phthalocyanines as p-type materials, fullerene derivatives and non-fullerene compounds as n-type materials, and semiconductor nanostructures based on metal oxide, chalcogenides, and silicon. A survey regarding the influence of various factors on the hybrid solar cell efficiency is given in order to identify new strategies for enhancing the device performance in the upcoming years. Full article
(This article belongs to the Special Issue Thin Films Based on Nanocomposites)
Show Figures

Figure 1

13 pages, 5064 KB  
Article
Ag-Nanowire Bundles with Gap Hot Spots Synthesized in Track-Etched Membranes as Effective SERS-Substrates
by Elizaveta P. Kozhina, Sergey A. Bedin, Natalia L. Nechaeva, Sergey N. Podoynitsyn, Vladimir P. Tarakanov, Stepan N. Andreev, Yuriy V. Grigoriev and Andrey V. Naumov
Appl. Sci. 2021, 11(4), 1375; https://doi.org/10.3390/app11041375 - 3 Feb 2021
Cited by 51 | Viewed by 6708
Abstract
This paper presents a cost-effective approach for the template-assisted electrodeposition fabrication of substrates for surface-enhanced Raman scattering (SERS) with metal nanowires (NWs) grown in pores of polymer track-etched membranes (TM). This technique allows the synthesis of NWs array with its certain surface density [...] Read more.
This paper presents a cost-effective approach for the template-assisted electrodeposition fabrication of substrates for surface-enhanced Raman scattering (SERS) with metal nanowires (NWs) grown in pores of polymer track-etched membranes (TM). This technique allows the synthesis of NWs array with its certain surface density and diameter (from dozen to hundreds of nm). NWs length also may be varied (order of μm) by controlling deposition time. Here we grow vertical Ag-NWs which are leaning towards their nearest neighbors, forming self-assembled bundles whose parameters depend on the NW aspect ratio (length to diameter). We show that in such bundles there are “hot spots” in the nm-gaps between NWs tips. Computer simulations have demonstrated a strong enhancement of the electric field within these hot spots; thus, the Raman signal is markedly amplified for analyte molecules placed directly inside the gaps. We have experimentally proved the potential of this SERS-technique on the example of 4-Mercaptophenylboronic acid (4-MPBA). For 4-MPBA the maximal enhancement of Raman signal was found at NWs length of ~1.6 μm and diameter of ~100 nm. The effect is higher (up to twice) if “wet” substrate is used just immediately after the TM polymer removal so that the tips are brought to lean after analyte exposure. We suggest this new type of nanostructured SERS-substrates as a base of effective sensing of extremely low concentration of analytes. Full article
(This article belongs to the Special Issue Towards Ideal Nanomaterials)
Show Figures

Graphical abstract

Back to TopTop