Ag-Nanowire Bundles with Gap Hot Spots Synthesized in Track-Etched Membranes as Effective SERS-Substrates
Abstract
:1. Introduction
2. Experimental
2.1. Ag-NWs Synthesis
2.2. Microscopy
2.3. SERS Spectroscopy
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Radziuk, D.; Moehwald, H. Prospects for plasmonic hot spots in single molecule SERS towards the chemical imaging of live cells. Phys. Chem. Chem. Phys. 2015, 17, 21072–21093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Etchegoin, P.G.; Le Ru, E.C. A perspective on single molecule SERS: Current status and future challenges. Phys. Chem. Chem. Phys. 2008, 10, 6079–6089. [Google Scholar] [CrossRef] [PubMed]
- Anger, P.; Bharadwaj, P.; Novotny, L. Enhancement and quenching of single-molecule fluorescence. Phys. Rev. Lett. 2006, 96, 113002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, M.; Wang, J.; Kurtz, J.; Mallouk, T.E.; Chan, M.H. Electrochemical Growth of Single-Crystal Metal Nanowires via a Two-Dimensional Nucleation and Growth Mechanism. Nano. Lett. 2003, 3, 919–923. [Google Scholar] [CrossRef]
- Zhang, W.; Caldarola, M.; Lu, X.; Orrit, M. Plasmonic Enhancement of Two-Photon-Excited Luminescence of Single Quantum Dots by Individual Gold Nanorods. Acs Photonics 2018, 5, 2960–2968. [Google Scholar] [CrossRef]
- Naumova, N.L.; Vasil’eva, I.A.; Osad’ko, I.S.; Naumov, A.V. Study of Vibronic Interactions in Impurity Centers by Conjugate Fluorescence and Absorption Spectra with a Poorly Resolved Vibrational Structure. Opt. Spectrosc. 2005, 98, 535–542. [Google Scholar] [CrossRef]
- Naumov, A.V. Low-temperature spectroscopy of organic molecules in solid matrices: From the Shpol’skii effect to laser luminescent spectromicroscopy for all effectively emitting single molecules. Physics-Uspekhi 2013, 56, 605–622. [Google Scholar] [CrossRef]
- Karimullin, K.R.; Arzhanov, A.I.; Eremchev, I.Y.; Kulnitskiy, B.A.; Surovtsev, N.V.; Naumov, A.V. Combined photon-echo, luminescence and Raman spectroscopies of layered ensembles of colloidal quantum dots. Laser Phys. 2019, 29, 124009. [Google Scholar] [CrossRef]
- Naumov, A.V.; Gorshelev, A.A.; Gladush, M.G.; Anikushina, T.A.; Golovanova, A.V.; Kohler, J.; Kador, L. Micro-Refractometry and Local-Field Mapping with Single Molecules. Nano. Lett. 2018, 18, 6129–6134. [Google Scholar] [CrossRef]
- Gladush, M.G.; Anikushina, T.A.; Gorshelev, A.A.; Plakhotnik, T.V.; Naumov, A.V. Dispersion of Lifetimes of Excited States of Single Molecules in Organic Matrices at Ultralow Temperatures. J. Exp. Theor. Phys. 2019, 128, 655–663. [Google Scholar] [CrossRef]
- Vladimirova, Y.V.; Klimov, V.V.; Pastukhov, V.M.; Zadkov, V.N. Modification of two-level-atom resonance fluorescence near a plasmonic nanostructure. Phys. Rev. A 2012, 85, 85. [Google Scholar] [CrossRef]
- Klimov, V. Nanoplasmonics; Pan Stanford: Boca Raton, FL, USA, 2014. [Google Scholar]
- Kuttner, C. Plasmonics in Sensing: From Colorimetry to SERS Analytics. In Plasmonics; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Škantárová, L.; Oriňák, A.; Oriňáková, R.; Lofaj, F. 4-Aminothiophenol Strong SERS Signal Enhancement at Electrodeposited Silver Surface. Nano-Micro Lett. 2012, 4, 184–188. [Google Scholar] [CrossRef] [Green Version]
- Drachev, V.P.; Thoreson, M.D.; Nashine, V.; Khaliullin, E.N.; Ben-Amotz, D.; Davisson, V.J.; Shalaev, V.M. Adaptive silver films for surface-enhanced Raman spectroscopy of biomolecules. J. Raman Spectrosc. 2005, 36, 648–656. [Google Scholar] [CrossRef] [Green Version]
- Matsukovich, A.S.; Nalivaiko, O.Y.; Chizh, K.V.; Gaponenko, S.V. Raman Scattering Enhancement Using Au/SiGe and Au/Ge Nanostructures. J. Appl. Spectrosc. 2019, 86, 72–75. [Google Scholar] [CrossRef]
- Lepeshov, S.I.; Krasnok, A.E.; Belov, P.A.; Miroshnichenko, A.E. Hybrid nanophotonics. Physics-Uspekhi 2018, 61, 1035–1050. [Google Scholar] [CrossRef] [Green Version]
- Kozhina, E.P.; Bedin, S.A.; Razumovskaya, I.V.; Zalygin, A.V. Synthesizing of the SERS-active substrates. J. Phys. Conf. Ser. 2019, 1283. [Google Scholar] [CrossRef] [Green Version]
- Ermushev, A.V.; McHedlishvili, B.V.; Oleĭnikov, V.A.; Petukhov, A.V. Surface enhancement of local optical fields and the lightning-rod effect. Quantum Electron. 1993, 23, 435–440. [Google Scholar] [CrossRef]
- Oleinikov, V.A.P.; Mchedlishvili, B.V. Track etched membrane in the template synthesis of SERS-active nanostructure. Seriya Krit Tekhnologii Membrany 2004, 24, 17–28. [Google Scholar]
- Le Ru, E.C.; Etchegoin, P.G. Quantifying SERS enhancements. Mrs Bull. 2013, 38, 631–640. [Google Scholar] [CrossRef]
- Kumar, C.S.S.R. Raman Spectroscopy for Nanomaterials Characterization; Springer Science & Business Media: Medford, MA, USA, 2012. [Google Scholar] [CrossRef]
- Kozhina, E.P.; Andreev, S.N.; Tarakanov, V.P.; Bedin, S.A.; Doludenko, I.M.; Naumov, A.V. Study of local fields of dendritic nanostructures in hot spots on substrates for giant Raman scattering fabricated by template synthesis. Bull. Russ. Acad. Sci. Phys. 2020, 84, 4. [Google Scholar] [CrossRef]
- Schmidt, M.S.; Hubner, J.; Boisen, A. Large area fabrication of leaning silicon nanopillars for surface enhanced Raman spectroscopy. Adv. Mater. 2012, 24, OP11-18. [Google Scholar] [CrossRef] [PubMed]
- Flerov, G.N.; Barashenkov, V.S. Practical applications of heavy ion beams. Sov. Phys. Uspekhi 1975, 17, 783–793. [Google Scholar] [CrossRef]
- Spohr, R. Ion Tracks and Microtechnology; Bethge, K., Ed.; Vieweg Bertelsmann Publishing Group International: Gütersloh, Germany, 1990. [Google Scholar] [CrossRef]
- Apel, P. Track etching technique in membrane technology. Radiat. Meas. 2001, 34, 559–566. [Google Scholar] [CrossRef]
- Martin, C.R. Membrane-Based Synthesis of Nanomaterials. Chem. Mater. 1996, 8, 1739–1746. [Google Scholar] [CrossRef]
- Martin, C.R. Nanomaterials: A membrane-based synthetic approach. Science 1994, 266, 1961–1966. [Google Scholar] [CrossRef] [PubMed]
- Schönenberger, C.; van der Zande, B.M.I.; Fokkink, L.G.J.; Henny, M.; Schmid, C.; Krüger, M.; Bachtold, A.; Huber, R.; Birk, H.; Staufer, U. Template Synthesis of Nanowires in Porous Polycarbonate Membranes: Electrochemistry and Morphology. J. Phys. Chem. B 1997, 101, 5497–5505. [Google Scholar] [CrossRef]
- Zoski, C.G. (Ed.) Handbook of Electrochemistry; Elsevier: Amsterdam, The Netherlands, 2007; p. 934. [Google Scholar] [CrossRef]
- Bedin, S.A.; Rybalko, O.G.; Polyakov, N.B.; Zagorskii, D.L.; Razumovskaya, A.V.; Bondarenko, G.G.; Oleinikov, V.A. Metal micro- and nanowires fabricated by matrix synthesis and their application in mass spectrometry. Inorg. Mater. Appl. Res. 2010, 1, 359–364. [Google Scholar] [CrossRef]
- Zhu, C.; Meng, G.; Zheng, P.; Huang, Q.; Li, Z.; Hu, X.; Wang, X.; Huang, Z.; Li, F.; Wu, N. A Hierarchically Ordered Array of Silver-Nanorod Bundles for Surface-Enhanced Raman Scattering Detection of Phenolic Pollutants. Adv. Mater. 2016, 28, 4871–4876. [Google Scholar] [CrossRef]
- Lee, S.J.; Morrill, A.R.; Moskovits, M. Hot spots in silver nanowire bundles for surface-enhanced Raman spectroscopy. J. Am. Chem. Soc. 2006, 128, 2200–2201. [Google Scholar] [CrossRef]
- Tarakanov, V.P. Code KARAT in simulations of power microwave sources including Cherenkov plasma devices, vircators, orotron, E-field sensor, calorimeter etc. EPJ Web Conf. 2017, 149, 04024. [Google Scholar] [CrossRef]
- Johnson, P.B.; Christy, R.W. Optical Constants of the Noble Metals. Phys. Rev. B 1972, 6, 4370–4379. [Google Scholar] [CrossRef]
- Li, S.; Zhou, Q.; Chu, W.; Zhao, W.; Zheng, J. Surface-enhanced Raman scattering behaviour of 4-mercaptophenyl boronic acid on assembled silver nanoparticles. Phys. Chem. Chem. Phys. 2015, 17, 17638–17645. [Google Scholar] [CrossRef] [PubMed]
- Langer, J.; Jimenez de Aberasturi, D.; Aizpurua, J.; Alvarez-Puebla, R.A.; Auguie, B.; Baumberg, J.J.; Bazan, G.C.; Bell, S.E.J.; Boisen, A.; Brolo, A.G.; et al. Present and Future of Surface-Enhanced Raman Scattering. ACS Nano 2020, 14, 28–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Substrates Type | Length of Ag-NWs, µm | Aspect Ratio (Length/Diameter) | Type of Substrate | Mean Intensity × 103, a.u. | Standard Deviation × 103, a.u. | The Ratio of Intensities Obtained on the “wet” and “dry” Substrates |
---|---|---|---|---|---|---|
Short NWs | 0.6 | 60 | Wet | 1.67 | 0.74 | 1.30 |
Dry | 1.28 | 0.29 | ||||
0.7 | 70 | Wet | 3.77 | 0.92 | 1.17 | |
Dry | 3.23 | 0.78 | ||||
Medium-sized NWs | 1.1 | 110 | Wet | 8.98 | 0.64 | 2.35 |
Dry | 3.82 | 0.52 | ||||
1.6 | 160 | Wet | 20.18 | 1.37 | 1.46 | |
Dry | 13.80 | 1.12 | ||||
2.1 | 210 | Wet | 12.52 | 0.76 | 2.03 | |
Dry | 6.17 | 0.82 | ||||
2.5 | 250 | Wet | 8.91 | 0.37 | 1.44 | |
Dry | 6.43 | 0.39 | ||||
Long NWs | 5 | 500 | Wet | 6.80 | 0.31 | 1.97 |
Dry | 4.99 | 0.34 | ||||
7.7 | 770 | Wet | 5.57 | 0.83 | 1.12 | |
Dry | 3.45 | 0.91 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozhina, E.P.; Bedin, S.A.; Nechaeva, N.L.; Podoynitsyn, S.N.; Tarakanov, V.P.; Andreev, S.N.; Grigoriev, Y.V.; Naumov, A.V. Ag-Nanowire Bundles with Gap Hot Spots Synthesized in Track-Etched Membranes as Effective SERS-Substrates. Appl. Sci. 2021, 11, 1375. https://doi.org/10.3390/app11041375
Kozhina EP, Bedin SA, Nechaeva NL, Podoynitsyn SN, Tarakanov VP, Andreev SN, Grigoriev YV, Naumov AV. Ag-Nanowire Bundles with Gap Hot Spots Synthesized in Track-Etched Membranes as Effective SERS-Substrates. Applied Sciences. 2021; 11(4):1375. https://doi.org/10.3390/app11041375
Chicago/Turabian StyleKozhina, Elizaveta P., Sergey A. Bedin, Natalia L. Nechaeva, Sergey N. Podoynitsyn, Vladimir P. Tarakanov, Stepan N. Andreev, Yuriy V. Grigoriev, and Andrey V. Naumov. 2021. "Ag-Nanowire Bundles with Gap Hot Spots Synthesized in Track-Etched Membranes as Effective SERS-Substrates" Applied Sciences 11, no. 4: 1375. https://doi.org/10.3390/app11041375