Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (117)

Search Parameters:
Keywords = polymer reprocessing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 4969 KB  
Article
Sustainable Approaches for Carbon Powder-Filled ABS: A Comparative Study of Injection Moulding and Fused Filament Fabrication Technologies
by Vojtech Senkerik, Ales Mizera, Pavel Stoklasek, Lucie Svacinova, Lovre Krstulovic-Opara, Michaela Karhankova, Lukas Miskarik, Petra Bagavac and Miroslav Manas
Polymers 2025, 17(19), 2593; https://doi.org/10.3390/polym17192593 - 25 Sep 2025
Abstract
The recycling of polymer composites remains a significant challenge due to both technical and economic obstacles. This study investigates the recycling potential of acrylonitrile butadiene styrene (ABS) composites filled with carbon powder (CP), employing injection moulding and fused filament fabrication (FFF) technologies. Laboratory-based [...] Read more.
The recycling of polymer composites remains a significant challenge due to both technical and economic obstacles. This study investigates the recycling potential of acrylonitrile butadiene styrene (ABS) composites filled with carbon powder (CP), employing injection moulding and fused filament fabrication (FFF) technologies. Laboratory-based experiments were conducted using ABS reinforced with 0.5, 1.0, and 1.5 wt.% CP to explore the tensile properties of mechanically recycled ABS+CP composites. The results indicate that CP addition positively influences tensile behaviour and that the ABS+CP composite maintains both tensile strength and stiffness after repeated processing. A concentration of 1.5 wt.% CP proved to be the optimal filler amount. The results for re-injection-moulded ABS + 1.5 wt.% CP demonstrate enhancements in tensile strength of approximately 3% and elastic modulus of approximately 15%, relative to virgin ABS. Similarly, such specimens reprocessed via FFF showed an average increase of 12% in tensile strength and of 27% in elastic modulus relative to virgin ABS across all three printing orientations (X, Y, and Z). These findings suggest improved interfacial adhesion and filler dispersion upon recycling. The study confirms the practical feasibility of ABS composite recycling and highlights their potential for structural and decorative use due to their appealing granite-like appearance. Full article
(This article belongs to the Special Issue 3D Printing and Molding Study in Polymeric Materials)
Show Figures

Figure 1

15 pages, 2036 KB  
Article
Effect of Degradation During Multiple Primary Mechanical Recycling Processes on the Physical Properties and Biodegradation of Commercial PLA-Based Water Bottles
by Cristina Muñoz-Shugulí, Diana Morán, Eliezer Velásquez, José Manuel López-Vilariño and Carol López-de-Dicastillo
Polymers 2025, 17(18), 2542; https://doi.org/10.3390/polym17182542 - 20 Sep 2025
Viewed by 298
Abstract
For sustainable development aligned with circular economy principles, the recycling of biopolymers such as polylactic acid (PLA) is of growing interest. In this study, the effect of primary recycling through repeated mechanical reprocessing was investigated. PLA water bottle preforms were subjected to six [...] Read more.
For sustainable development aligned with circular economy principles, the recycling of biopolymers such as polylactic acid (PLA) is of growing interest. In this study, the effect of primary recycling through repeated mechanical reprocessing was investigated. PLA water bottle preforms were subjected to six consecutive extrusion cycles, and changes in its molecular structure and physical properties were evaluated. Structural analysis revealed a progressive degradation, evidenced by a great reduction in the molar mass and increase in the melt flow index, attributed both to the chain scission derived from the thermal degradation and shear stresses of the extrusion process, and hydrolysis at the ester linkage of the polymer. Recycled samples exhibited a darkening of the color and a continuous decrease in thermal stability. After six reprocessing cycles, PLA crystallinity increased from 6.9 to 39.5%, the cold crystallization process disappeared, and molecular weight reduced by up to 40%. Barrier properties were highly affected after reprocessing and by the increase in relative humidity. Biodegradation tests revealed that crystallinity affected considerably the biodegradation rate of PLA. Although the molecular weight was considerably reduced during reprocessing, the biodegradation was slowed down. These findings provide insights into the limitations and potential of mechanically recycled PLA for future material applications. Full article
Show Figures

Figure 1

22 pages, 5572 KB  
Article
Design of Vitrimers with Simultaneous Degradable and Dynamic Crosslinkers: Mechanical and Thermal Behavior Based on Transesterification Reactions Between β-Amino Esters and Hydroxylated Acrylate/Methacrylate Monomers
by Naroa Ayensa, Felipe Reviriego, Helmut Reinecke, Alberto Gallardo, Carlos Elvira and Juan Rodríguez-Hernández
Polymers 2025, 17(18), 2448; https://doi.org/10.3390/polym17182448 - 10 Sep 2025
Viewed by 392
Abstract
In recent years, efforts have focused on developing repairable, malleable, and recyclable thermoset materials to reduce the growing volume of polymer waste and extend the lifetime of existing polymeric materials. Specifically, associative covalent adaptable networks (CANs), also known as vitrimers, have received considerable [...] Read more.
In recent years, efforts have focused on developing repairable, malleable, and recyclable thermoset materials to reduce the growing volume of polymer waste and extend the lifetime of existing polymeric materials. Specifically, associative covalent adaptable networks (CANs), also known as vitrimers, have received considerable attention. In this work, photopolymerizable vitrimers were prepared by combining crosslinkers containing β-amino esters in their structure with hydroxylated acrylate or methacrylate monomers, with the aim of reprocessing these materials through the activation of transesterification reactions. The network design and photopolymerization conditions were optimized to ensure the successful formation of the vitrimers. Tunable mechanical and thermal properties were achieved by varying their chemical composition. Furthermore, the reprocessing ability of these materials was confirmed through thermal treatments. Additionally, these vitrimers exhibited the ability to undergo hydrolysis in basic aqueous media, providing an alternative pathway for recycling. Full article
(This article belongs to the Special Issue Latest Progress on Polymer Synthesis with Multifunctional Monomers)
Show Figures

Graphical abstract

22 pages, 6771 KB  
Article
Enhancing Through-Thickness Electrical Conductivity in Recycled Carbon Fiber-Reinforced Polymer Composites Using Machining Waste
by Denise Bellisario, Fabrizio Quadrini, Francesco Napolitano and Pietro Russo
J. Compos. Sci. 2025, 9(8), 451; https://doi.org/10.3390/jcs9080451 - 21 Aug 2025
Viewed by 580
Abstract
CFRP (carbon fiber-reinforced polymer) production in Europe is approximately 10,000 metric tons annually, and according to the UK authorities, approximately 35% of end-of-life CFRP waste is currently landfilled. The authors propose a novel recycling process for industrial CFRP waste particles to produce the [...] Read more.
CFRP (carbon fiber-reinforced polymer) production in Europe is approximately 10,000 metric tons annually, and according to the UK authorities, approximately 35% of end-of-life CFRP waste is currently landfilled. The authors propose a novel recycling process for industrial CFRP waste particles to produce the core of a sandwich CFRP panel through the direct molding method. Industrial CFRP powder from grinding operations was collected, sieved and molded into square panels with and without external skins of virgin CFRP prepreg. Thermogravimetric (TGA) and differential scanning calorimetry (DSC) analysis revealed thermal activation (~70 °C), indicating potential for reprocessing. This study proposes a novel recycling route that directly molds industrial CFRP grinding waste into the core of sandwich structures, with or without virgin CFRP prepreg skins. Key findings: thermal re-processability was confirmed through TGA and DSC, showing activation near 70 °C; electrical conductivity reached 0.045 S/cm through the thickness in sandwich panels, with recycled cores maintaining comparable conductivity (0.04 S/cm); mechanical performance was improved significantly with prepreg skins, as evidenced by three-point bending tests showing enhanced stiffness and strength. These results demonstrate the potential of recycled CFRP waste in multifunctional structural applications, supporting circular economy goals in composite materials engineering. Full article
(This article belongs to the Special Issue Carbon Fiber Composites, 4th Edition)
Show Figures

Figure 1

12 pages, 4279 KB  
Article
Dynamic Ester-Linked Vitrimers for Reprocessable and Recyclable Solid Electrolytes
by Xiaojuan Shi, Hui Zhang and Hongjiu Hu
Polymers 2025, 17(14), 1991; https://doi.org/10.3390/polym17141991 - 21 Jul 2025
Viewed by 521
Abstract
Traditional covalently cross-linked solid-state electrolytes exhibit desirable mechanical durability but suffer from limited processability and recyclability due to their permanent network structures. Incorporating dynamic covalent bonds offers a promising solution to these challenges. In this study, we report a reprocessable and recyclable polymer [...] Read more.
Traditional covalently cross-linked solid-state electrolytes exhibit desirable mechanical durability but suffer from limited processability and recyclability due to their permanent network structures. Incorporating dynamic covalent bonds offers a promising solution to these challenges. In this study, we report a reprocessable and recyclable polymer electrolyte based on a dynamic ester bond network, synthesized from commercially available materials. Polyethylene glycol diglycidyl ether (PEGDE) and glutaric anhydride (GA) were cross-linked and cured in the presence of benzyl dimethylamine (BDMA), forming an ester-rich polymer backbone. Subsequently, 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) was introduced as a transesterification catalyst to facilitate network rearrangement. Lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) was incorporated to establish efficient ion transport pathways. By tuning the cross-linking density and catalyst ratio, the electrolyte achieved an ionic conductivity of 1.89 × 10−5 S/cm at room temperature along with excellent reprocessability. Full article
(This article belongs to the Special Issue Recycling and Circularity of Polymeric Materials)
Show Figures

Graphical abstract

20 pages, 3330 KB  
Article
Impact of Multiple Mechanical Recycling Cycles via Semi-Industrial Twin-Screw Extrusion on the Properties of Polybutylene Succinate (PBS)
by Vito Gigante, Laura Aliotta, Luigi Botta, Irene Bavasso, Alessandro Guzzini, Serena Gabrielli, Fabrizio Sarasini, Jacopo Tirillò and Andrea Lazzeri
Polymers 2025, 17(14), 1918; https://doi.org/10.3390/polym17141918 - 11 Jul 2025
Viewed by 900
Abstract
This study investigates the effects of repeated mechanical recycling on the structural, thermal, mechanical, and aesthetic properties of poly(butylene succinate) (PBS), a commercially available bio-based and biodegradable aliphatic polyester. PBS production scraps were subjected to five consecutive recycling cycles through semi-industrial extrusion compounding [...] Read more.
This study investigates the effects of repeated mechanical recycling on the structural, thermal, mechanical, and aesthetic properties of poly(butylene succinate) (PBS), a commercially available bio-based and biodegradable aliphatic polyester. PBS production scraps were subjected to five consecutive recycling cycles through semi-industrial extrusion compounding followed by injection molding to simulate realistic mechanical reprocessing conditions. Melt mass-flow rate (MFR) analysis revealed a progressive increase in melt fluidity. Initially, the trend of viscosity followed the melt flow rate; however, increasing the reprocessing number (up to 5) resulted in a partial recovery of viscosity, which was caused by chain branching mechanisms. The phenomenon was also confirmed by data of molecular weight evaluation. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) confirmed the thermal stability of the polymer, with minimal shifts in glass transition, crystallization, and degradation temperatures during the reprocessing cycles. Tensile tests revealed a slight reduction in strength and stiffness, but an increase in elongation at break, indicating improved ductility. Impact resistance declined moderately from 8.7 to 7.3 kJ/m2 upon reprocessing; however, it exhibited a pronounced reduction to 1.8 kJ/m2 at −50 °C, reflecting brittle behavior under sub-ambient conditions. Despite these variations, PBS maintained excellent color stability (ΔE < 1), ensuring aesthetic consistency while retaining good mechanical and thermal properties. Full article
Show Figures

Figure 1

34 pages, 338 KB  
Article
Systemic Gaps in Circular Plastics: A Role-Specific Assessment of Quality and Traceability Barriers in Australia
by Benjamin Gazeau, Atiq Zaman, Roberto Minunno and Faiz Shaikh
Sustainability 2025, 17(14), 6323; https://doi.org/10.3390/su17146323 - 10 Jul 2025
Viewed by 556
Abstract
The effective adoption of quality assurance and traceability systems is increasingly recognised as a critical enabler of circular economy (CE) outcomes in the plastics sector. This study examines the factors that influence the implementation of such systems within Australia’s recycled plastics industry, with [...] Read more.
The effective adoption of quality assurance and traceability systems is increasingly recognised as a critical enabler of circular economy (CE) outcomes in the plastics sector. This study examines the factors that influence the implementation of such systems within Australia’s recycled plastics industry, with a focus on how these factors vary by company size, supply chain role, and adoption of CE strategy. Recycled plastics are defined here as post-consumer or post-industrial polymers that have been reprocessed for reintegration into manufacturing applications. A mixed-methods survey was conducted with 65 stakeholders across the Australian plastics value chain, comprising recyclers, compounders, converters, and end-users. Respondents assessed a structured set of regulatory, technical, economic, and systemic factors, identifying whether each currently operates as an enabler or barrier in their organisational context. The analysis employed a comparative framework adapted from a 2022 European study, enabling a cross-regional interpretation of patterns and a comparison between CE-aligned and non-CE firms. The results show that firms with CE strategies report greater alignment with innovation-oriented enablers such as digital traceability, standardisation, and closed-loop models. However, these firms also express heightened sensitivity to systemic weaknesses, particularly in areas such as infrastructure limitations, inconsistent material quality, and data fragmentation. Small- and medium-sized enterprises (SMEs) highlighted compliance costs and operational uncertainty as primary barriers, while larger firms frequently cited frustration with regulatory inconsistency and infrastructure underperformance. These findings underscore the need for differentiated policy mechanisms that account for sectoral and organisational disparities in capacity, scale, and readiness for traceability. The study also cautions against the direct transfer of European circular economy models into the Australian context without consideration of local structural, regulatory, and geographic complexities. Full article
17 pages, 4084 KB  
Article
Biomass-Based Nanocomposites of Polydithioacetals Derived from Vanillin with Cellulose Nanocrystals: Synthesis, Thermomechanical and Reprocessing Properties
by Lei Li, Xibin Shen, Jianglu Teng, Bo Zhao and Sixun Zheng
Polymers 2025, 17(13), 1764; https://doi.org/10.3390/polym17131764 - 26 Jun 2025
Viewed by 483
Abstract
Bio-based polydithioacetal nanocomposites were synthesized to address the critical need for materials that simultaneously achieve enhanced thermomechanical properties and excellent reprocessing capabilities. Using vanillin and cellulose nanocrystals (CNCs) as starting materials, linear polydithioacetals (PDTAs) were prepared via acid-catalyzed polycondensation of vanillin with various [...] Read more.
Bio-based polydithioacetal nanocomposites were synthesized to address the critical need for materials that simultaneously achieve enhanced thermomechanical properties and excellent reprocessing capabilities. Using vanillin and cellulose nanocrystals (CNCs) as starting materials, linear polydithioacetals (PDTAs) were prepared via acid-catalyzed polycondensation of vanillin with various dithiols including 1,6-hexanedithiol, 1,10-decanedithiol, 3,6-dioxa-1,8-octanedithiol and 2,2′-thiodiethanethiol. These PDTAs were then crosslinked with a diepoxide (i.e., diglycidyl ether of bisphenol A, DGEBA) via the reaction of phenolic hydroxyl groups of PDTAs with epoxide groups of DGEBA. To create the nanocomposites, cellulose nanocrystals (CNCs) were surface-functionalized with thiol groups and then incorporated as the reinforcing nanofillers of the networks. The results of morphological observation showed that the fine dispersion of CNCs in the polymer matrix was attained. Owing to the incorporation of CNCs, the nanocomposites displayed improved thermomechanical properties. Compared to the network without CNCs, the nanocomposite containing 20 wt% CNCs exhibited an increase of more than tenfold in modulus and threefold in tensile strength. In addition, the nanocomposites exhibited excellent reprocessing properties, attributable to the dynamic exchange of dithioacetal bonds. This work presents a promising strategy for developing bio-based nanocomposites that have not only improved thermomechanical properties but also excellent reprocessing (or recycling) properties. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

31 pages, 4730 KB  
Review
A Review on the Role of Crosslinked Polymers in Renewable Energy: Complex Network Analysis of Innovations in Sustainability
by Ulises Martín Casado, Facundo Ignacio Altuna and Luis Alejandro Miccio
Sustainability 2025, 17(10), 4736; https://doi.org/10.3390/su17104736 - 21 May 2025
Cited by 1 | Viewed by 1180
Abstract
As the global push for renewable energy intensifies, the materials used in the generation, transmission, and storage of renewable energy systems have come under scrutiny due to their environmental impact. In particular, crosslinked polymers are extensively utilized in these systems because of their [...] Read more.
As the global push for renewable energy intensifies, the materials used in the generation, transmission, and storage of renewable energy systems have come under scrutiny due to their environmental impact. In particular, crosslinked polymers are extensively utilized in these systems because of their excellent thermal, mechanical, and electrical properties. However, their non-recyclable nature and significant waste generation at the end of their service life present severe sustainability challenges. This review employs a citation network-based methodology to analyze the role of crosslinked polymers in renewable energy systems, with a focus mainly on two critical applications: (1) production, specifically in the manufacturing of wind turbine blades; and (2) transmission, where they are integral to high-voltage cable insulation. Our complex network analysis reveals the major themes within the field of sustainability, providing a structured approach to understanding the lifecycle challenges of crosslinked polymers. The first part explores the primary polymers used, their typical lifespans, and the environmental burden of generated waste. We then describe both traditional recycling strategies and innovative approaches, such as supercritical water processing and thermoplasticizing technologies, which offer potential solutions to mitigate these impacts. Finally, we highlight emerging reprocessable materials, including vitrimers, ionomers, and specialty thermoplastic alternatives, which provide recyclability while maintaining performance. This comprehensive assessment emphasizes the urgent need for innovation in polymer science to achieve a circular economy for renewable energy systems. Full article
(This article belongs to the Special Issue Resource Sustainability: Sustainable Materials and Green Engineering)
Show Figures

Figure 1

28 pages, 17687 KB  
Review
Research Status and Potential Direction for Thermoplastic Shape Memory Polymers and Composites: A Review
by Shuai Yang, Yang He, Zijian Song and Yingchun Li
Polymers 2025, 17(10), 1360; https://doi.org/10.3390/polym17101360 - 15 May 2025
Cited by 3 | Viewed by 1080
Abstract
Shape memory polymers (SMPs), due to the programmable deformation and recovery ability, exhibit widespread potential in fields of biomedical devices, smart actuators, and engineering structures. Thermoplastic SMPs, which possess the intrinsic linear molecular chain structures, are able to be processed through diverse methods, [...] Read more.
Shape memory polymers (SMPs), due to the programmable deformation and recovery ability, exhibit widespread potential in fields of biomedical devices, smart actuators, and engineering structures. Thermoplastic SMPs, which possess the intrinsic linear molecular chain structures, are able to be processed through diverse methods, in addition to being re-processed after process-forming, compared with thermoset SMPs. The environmental recycling characteristics for thermoplastic SMPs describe their wide use potential and prospect. In this paper, a comprehensive description of mechanism, matrix polymers, actuations, and applications for thermoplastic SMPs and composites was reviewed. Furthermore, two promising potential developing directions, 4D printing metamaterial and dynamic covalent networks, were proposed. The multifunctionality and enhanced performances of thermoplastic SMPs and composites exhibited excellent application value, which is significant for future advancements. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

27 pages, 4974 KB  
Systematic Review
Engineering Innovations for Polyvinyl Chloride (PVC) Recycling: A Systematic Review of Advances, Challenges, and Future Directions in Circular Economy Integration
by Alexander Chidara, Kai Cheng and David Gallear
Machines 2025, 13(5), 362; https://doi.org/10.3390/machines13050362 - 28 Apr 2025
Cited by 2 | Viewed by 2871
Abstract
Polyvinyl chloride (PVC) recycling poses significant engineering challenges and opportunities, particularly regarding material integrity, energy efficiency, and integration into circular manufacturing systems. This systematic review evaluates recent advancements in mechanical innovations, tooling strategies, and intelligent technologies reshaping PVC recycling. An emphasis is placed [...] Read more.
Polyvinyl chloride (PVC) recycling poses significant engineering challenges and opportunities, particularly regarding material integrity, energy efficiency, and integration into circular manufacturing systems. This systematic review evaluates recent advancements in mechanical innovations, tooling strategies, and intelligent technologies reshaping PVC recycling. An emphasis is placed on machinery-driven solutions—including high-efficiency shredders, granulators, extrusion moulders, and advanced sorting systems employing hyperspectral imaging and robotics. This review further explores chemical recycling technologies, such as pyrolysis, gasification, and supercritical fluid extraction, for managing contamination and additive removal. The integration of Industry 4.0 technologies, notably digital twins and artificial intelligence, is highlighted for its role in predictive maintenance, real-time quality assurance, and process optimisation. A combined PRISMA approach and ontological mapping are applied to classify technological pathways and lifecycle optimisation strategies. Critical engineering constraints—including thermal degradation, additive leaching, and feedstock heterogeneity—are examined alongside emerging innovations, like additive manufacturing and microwave-assisted depolymerisation, offering scalable, low-emission solutions. Regulatory instruments, such as REACH and Extended Producer Responsibility (EPR), are analysed for their influence on machinery compliance and design standards. Drawing from sustainable manufacturing frameworks, this study also promotes energy efficiency, eco-designs, and modular integration in recycling systems. This paper concludes by proposing a digitally optimized, machinery-integrated recycling model aligned with circular economy principles to support the development of future-ready PVC reprocessing infrastructures. This review serves as a comprehensive resource for researchers, practitioners, and policymakers, advancing sustainable polymer recycling. Full article
Show Figures

Figure 1

22 pages, 543 KB  
Article
Eco-Efficiency in the Polymeric Packaging Sector: Production Planning and Control Strategies for Economic and Environmental Gains
by Itamar de Souza Costa, Geraldo Cardoso de Oliveira Neto, Rodrigo Neri Bueno da Silva, Sergio Ricardo Lourenço, Leonardo Ribeiro Rodrigues and Marlene Amorim
Polymers 2025, 17(9), 1131; https://doi.org/10.3390/polym17091131 - 22 Apr 2025
Viewed by 768
Abstract
Production Planning and Control is directly involved with production activities in the polymer packaging industry, aiming to produce more with fewer resources. This reduces polymer scrap, generating positive results in economic and environmental terms. The importance of reducing polymer waste during the extrusion [...] Read more.
Production Planning and Control is directly involved with production activities in the polymer packaging industry, aiming to produce more with fewer resources. This reduces polymer scrap, generating positive results in economic and environmental terms. The importance of reducing polymer waste during the extrusion process and the use of theoretical models and simulation tools, along with recycling and reprocessing practices, emerges as an effective strategy to improve production and minimize environmental impacts. This study aims to evaluate the economic and environmental gains of adopting activities/tools used in production planning and control in the polymer packaging industry. The research method adopted was a case study conducted through semi-structured interviews. It was concluded that polymer scrap in the production system was reduced through actions taken by production planning and control, contributing to the micro-level circular economy, generating significant economic and environmental gains. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Figure 1

31 pages, 4142 KB  
Article
Towards Sustainable Food Packaging: Mechanical Recycling Effects on Thermochromic Polymers Performance
by Colette Breheny, Declan Mary Colbert, Gilberto Bezerra, Joseph Geever and Luke M. Geever
Polymers 2025, 17(8), 1042; https://doi.org/10.3390/polym17081042 - 11 Apr 2025
Cited by 2 | Viewed by 780
Abstract
Integrating thermochromic pigments (TPs) into food packaging offers significant benefits for monitoring temperature variations, improving food safety, and reducing waste. However, the recyclability of such materials remains underexplored, particularly regarding the retention of their optical and mechanical properties after repeated recycling. Addressing this [...] Read more.
Integrating thermochromic pigments (TPs) into food packaging offers significant benefits for monitoring temperature variations, improving food safety, and reducing waste. However, the recyclability of such materials remains underexplored, particularly regarding the retention of their optical and mechanical properties after repeated recycling. Addressing this gap, this research aims to evaluate how mechanical recycling affects key properties of polypropylene (PP) blends containing varying TP concentrations. Three formulations, PP100/TP0 (0% TP), PP98/TP2 (2% TP), and PP92/TP8 (8% TP), were subjected to five recycling cycles, with changes in thermal stability, color transition behavior, mechanical integrity, and surface morphology analyzed. The results indicate that PP100/TP0 maintained its mechanical integrity with minimal degradation (6% absolute crystallinity loss; color difference ΔE*ab = 1.45) across recycling cycles. However, blends containing TPs exhibited progressive deterioration. P98/TP2 displayed moderate reductions in mechanical strength (−10.8%) and thermochromic efficiency (color change ΔE*ab = 6.52), while PP92/TP8 showed significant degradation, including increased activation temperatures (+3.8 °C) and color vibrancy loss (42.9% loss in saturation). These effects were attributed to polymer breakdown, pigment aggregation, and altered crystallinity. Despite the limitations of recyclability, this study provides critical insights into the feasibility of TPs in sustainable, intelligent food packaging. Further research is required to enhance TP stability during reprocessing, ensuring long-term functionality in circular packaging systems. Full article
Show Figures

Graphical abstract

11 pages, 4615 KB  
Article
Simulating Industrial Recycling of Biodegradable Irrigation Pipe Scraps into Sustainable Monopolymer Blends
by Vincenzo Titone, Erica Gea Rodi, Antonino Oliveri, Carmelo Giuffrè, Luigi Botta and Francesco Paolo La Mantia
Macromol 2025, 5(1), 14; https://doi.org/10.3390/macromol5010014 - 18 Mar 2025
Cited by 1 | Viewed by 863
Abstract
Recently, many industries are adopting closed-loop recycling models to recover and reuse production scrap in order to reduce waste, conserve resources, and minimize environmental impact. In this scenario, this paper aims to simulate such a model using biodegradable pipe scrap, with the objective [...] Read more.
Recently, many industries are adopting closed-loop recycling models to recover and reuse production scrap in order to reduce waste, conserve resources, and minimize environmental impact. In this scenario, this paper aims to simulate such a model using biodegradable pipe scrap, with the objective of studying how the concentration of recycled biodegradable pipe scrap affects mechanical and rheological properties and to evaluate the effectiveness of this approach. Firstly, irrigation pipes were subjected to multiple extrusions to evaluate their thermal and mechanical stability under repeated processing. Subsequently, blends of virgin polymer and biodegradable irrigation pipe scraps (monopolymer blends) were prepared following an industrial approach. All systems were fully characterized through mechanical and rheological tests. The results obtained showed that multiple extrusions had a significant impact on the mechanical and rheological properties of the pipe, while the presence of reprocessed pipe in the blend only minimally affected the characteristics of the virgin biopolymer, demonstrating the effectiveness of this approach. Full article
Show Figures

Figure 1

29 pages, 5006 KB  
Article
Comparative Life Cycle Assessment of Recyclable Polyhydroxyurethanes Synthesized from Five- and Six-Membered Carbonates
by Pauline Bron, Olivier Talon, Camille Bakkali-Hassani, Lourdes Irusta, Haritz Sardon, Vincent Ladmiral and Sylvain Caillol
Macromol 2025, 5(1), 12; https://doi.org/10.3390/macromol5010012 - 15 Mar 2025
Viewed by 2391
Abstract
Polyhydroxyurethanes (PHUs) synthesized from cyclic carbonates are promising alternatives to conventional polyurethanes due to their advantageous isocyanate-free synthesis and reprocessability characteristics. While many studies focus on PHUs derived from five-membered cyclic carbonates (5CCs) for more sustainable synthesis routes, PHUs from six-membered cyclic carbonates [...] Read more.
Polyhydroxyurethanes (PHUs) synthesized from cyclic carbonates are promising alternatives to conventional polyurethanes due to their advantageous isocyanate-free synthesis and reprocessability characteristics. While many studies focus on PHUs derived from five-membered cyclic carbonates (5CCs) for more sustainable synthesis routes, PHUs from six-membered cyclic carbonates (6CCs) exhibit enhanced reactivity towards amines. Their reprocessability is facilitated by the presence of hydroxyl groups along the polymer chain, enabling transcarbamoylation reactions. However, since non-catalyzed transcarbamoylation is typically a sluggish reaction, catalysts are often required to enhance network reprocessability. This study presents a life cycle assessment (LCA) of PHU-5CC and PHU-6CC syntheses, with catalysts, for recycling applications targeting end-of-life scenarios. Environmental impact categories, including climate change, particulate matter, fossil resource depletion, mineral and metal resource use and freshwater eutrophication, were evaluated. Sensitivity analyses were also conducted to assess key variables. Our results indicate that PHUs from 6CCs show a higher environmental footprint due to their solvent-intensive synthesis process. Despite the increased reactivity and shorter reaction times associated with the 6CC monomer, these benefits do not fully offset the environmental impacts of the synthesis process. In conclusion, this study highlights potential improvements for future PHU synthesis, such as solvent-free processes, metal-free catalysts and optimized reaction monitoring. Full article
Show Figures

Graphical abstract

Back to TopTop