Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (143)

Search Parameters:
Keywords = polymer hybrid hydrogels

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4467 KiB  
Review
Structuring the Future of Cultured Meat: Hybrid Gel-Based Scaffolds for Edibility and Functionality
by Sun Mi Zo, Ankur Sood, So Yeon Won, Soon Mo Choi and Sung Soo Han
Gels 2025, 11(8), 610; https://doi.org/10.3390/gels11080610 - 3 Aug 2025
Viewed by 106
Abstract
Cultured meat is emerging as a sustainable alternative to conventional animal agriculture, with scaffolds playing a central role in supporting cellular attachment, growth, and tissue maturation. This review focuses on the development of gel-based hybrid biomaterials that meet the dual requirements of biocompatibility [...] Read more.
Cultured meat is emerging as a sustainable alternative to conventional animal agriculture, with scaffolds playing a central role in supporting cellular attachment, growth, and tissue maturation. This review focuses on the development of gel-based hybrid biomaterials that meet the dual requirements of biocompatibility and food safety. We explore recent advances in the use of naturally derived gel-forming polymers such as gelatin, chitosan, cellulose, alginate, and plant-based proteins as the structural backbone for edible scaffolds. Particular attention is given to the integration of food-grade functional additives into hydrogel-based scaffolds. These include nanocellulose, dietary fibers, modified starches, polyphenols, and enzymatic crosslinkers such as transglutaminase, which enhance mechanical stability, rheological properties, and cell-guidance capabilities. Rather than focusing on fabrication methods or individual case studies, this review emphasizes the material-centric design strategies for building scalable, printable, and digestible gel scaffolds suitable for cultured meat production. By systemically evaluating the role of each component in structural reinforcement and biological interaction, this work provides a comprehensive frame work for designing next-generation edible scaffold systems. Nonetheless, the field continues to face challenges, including structural optimization, regulatory validation, and scale-up, which are critical for future implementation. Ultimately, hybrid gel-based scaffolds are positioned as a foundational technology for advancing the functionality, manufacturability, and consumer readiness of cultured meat products, distinguishing this work from previous reviews. Unlike previous reviews that have focused primarily on fabrication techniques or tissue engineering applications, this review provides a uniquely food-centric perspective by systematically evaluating the compositional design of hybrid hydrogel-based scaffolds with edibility, scalability, and consumer acceptance in mind. Through a comparative analysis of food-safe additives and naturally derived biopolymers, this review establishes a framework that bridges biomaterials science and food engineering to advance the practical realization of cultured meat products. Full article
(This article belongs to the Special Issue Food Hydrocolloids and Hydrogels: Rheology and Texture Analysis)
Show Figures

Figure 1

22 pages, 1268 KiB  
Review
Natural Polymer-Based Hydrogel Platforms for Organoid and Microphysiological Systems: Mechanistic Insights and Translational Perspectives
by Yeonoh Cho, Jungmok You and Jong Hun Lee
Polymers 2025, 17(15), 2109; https://doi.org/10.3390/polym17152109 - 31 Jul 2025
Viewed by 379
Abstract
Organoids and microphysiological systems (MPSs) have emerged as physiologically relevant platforms that recapitulate key structural and functional features of human organs, tissues, and microenvironments. As one of the essential components that define the success of these systems, hydrogels play the central role of [...] Read more.
Organoids and microphysiological systems (MPSs) have emerged as physiologically relevant platforms that recapitulate key structural and functional features of human organs, tissues, and microenvironments. As one of the essential components that define the success of these systems, hydrogels play the central role of providing a three-dimensional, biomimetic scaffold that supports cell viability, spatial organization, and dynamic signaling. Natural polymer-based hydrogels, derived from materials such as collagen, gelatin, hyaluronic acid, and alginate, offer favorable properties including biocompatibility, degradability, and an extracellular matrix-like architecture. This review presents recent advances in the design and application of such hydrogels, focusing on crosslinking strategies (physical, chemical, and hybrid), the viscoelastic characteristics, and stimuli-responsive behaviors. The influence of these materials on cellular processes, such as stemness maintenance, differentiation, and morphogenesis, is critically examined. Furthermore, the applications of organoid culture and dynamic MPS platforms are discussed, highlighting their roles in morphogen delivery, barrier formation, and vascularization. Current challenges and future perspectives toward achieving standardized, scalable, and translational hydrogel systems are also addressed. Full article
Show Figures

Figure 1

63 pages, 4971 KiB  
Review
Electrochemical Nanosensors Applied to the Assay of Some Food Components—A Review
by Aurelia Magdalena Pisoschi, Florin Iordache, Loredana Stanca, Petronela Mihaela Rosu, Nicoleta Ciocirlie, Ovidiu Ionut Geicu, Liviu Bilteanu and Andreea Iren Serban
Chemosensors 2025, 13(8), 272; https://doi.org/10.3390/chemosensors13080272 - 23 Jul 2025
Viewed by 600
Abstract
Nanomaterials’ special features enable their extensive application in chemical and biochemical nanosensors for food assays; food packaging; environmental, medicinal, and pharmaceutical applications; and photoelectronics. The analytical strategies based on novel nanomaterials have proved their pivotal role and increasing interest in the assay of [...] Read more.
Nanomaterials’ special features enable their extensive application in chemical and biochemical nanosensors for food assays; food packaging; environmental, medicinal, and pharmaceutical applications; and photoelectronics. The analytical strategies based on novel nanomaterials have proved their pivotal role and increasing interest in the assay of key food components. The choice of transducer is pivotal for promoting the performance of electrochemical sensors. Electrochemical nano-transducers provide a large active surface area, enabling improved sensitivity, specificity, fast assay, precision, accuracy, and reproducibility, over the analytical range of interest, when compared to traditional sensors. Synthetic routes encompass physical techniques in general based on top–down approaches, chemical methods mainly relying on bottom–up approaches, or green technologies. Hybrid techniques such as electrochemical pathways or photochemical reduction are also applied. Electrochemical nanocomposite sensors relying on conducting polymers are amenable to performance improvement, achieved by integrating redox mediators, conductive hydrogels, and molecular imprinting polymers. Carbon-based or metal-based nanoparticles are used in combination with ionic liquids, enhancing conductivity and electron transfer. The composites may be prepared using a plethora of combinations of carbon-based, metal-based, or organic-based nanomaterials, promoting a high electrocatalytic response, and can accommodate biorecognition elements for increased specificity. Nanomaterials can function as pivotal components in electrochemical (bio)sensors applied to food assays, aiming at the analysis of bioactives, nutrients, food additives, and contaminants. Given the broad range of transducer types, detection modes, and targeted analytes, it is important to discuss the analytical performance and applicability of such nanosensors. Full article
(This article belongs to the Special Issue Electrochemical Sensor for Food Analysis)
Show Figures

Graphical abstract

35 pages, 1038 KiB  
Review
Hydrogels in Cardiac Surgery: Versatile Platforms for Tissue Repair, Adhesion Prevention, and Localized Therapeutics
by Seok Beom Hong, Jin-Oh Jeong and Hoon Choi
Gels 2025, 11(7), 564; https://doi.org/10.3390/gels11070564 - 21 Jul 2025
Viewed by 539
Abstract
Hydrogels have emerged as multifunctional biomaterials in cardiac surgery, offering promising solutions for myocardial regeneration, adhesion prevention, valve engineering, and localized drug and gene delivery. Their high water content, biocompatibility, and mechanical tunability enable close emulation of the cardiac extracellular matrix, supporting cellular [...] Read more.
Hydrogels have emerged as multifunctional biomaterials in cardiac surgery, offering promising solutions for myocardial regeneration, adhesion prevention, valve engineering, and localized drug and gene delivery. Their high water content, biocompatibility, and mechanical tunability enable close emulation of the cardiac extracellular matrix, supporting cellular viability and integration under dynamic physiological conditions. In myocardial repair, injectable and patch-forming hydrogels have been shown to be effective in reducing infarct size, promoting angiogenesis, and preserving contractile function. Hydrogel coatings and films have been designed as adhesion barriers to minimize pericardial adhesions after cardiotomy and improve reoperative safety. In heart valve and patch engineering, hydrogels contribute to scaffold design by providing bio-instructive, mechanically resilient, and printable matrices that are compatible with 3D fabrication. Furthermore, hydrogels serve as localized delivery platforms for small molecules, proteins, and nucleic acids, enabling sustained or stimuli-responsive release while minimizing systemic toxicity. Despite these advances, challenges such as mechanical durability, immune compatibility, and translational scalability persist. Ongoing innovations in smart polymer chemistry, hybrid composite design, and patient-specific manufacturing are addressing these limitations. This review aims to provide an integrated perspective on the application of hydrogels in cardiac surgery. The relevant literature was identified through a narrative search of PubMed, Scopus, Web of Science, Embase, and Google Scholar. Taken together, hydrogels offer a uniquely versatile and clinically translatable platform for addressing the multifaceted challenges of cardiac surgery. Hydrogels are poised to redefine clinical strategies in cardiac surgery by enabling tailored, bioresponsive, and functionally integrated therapies. Full article
(This article belongs to the Special Issue Recent Advances in Hydrogels for Tissue Engineering Applications)
Show Figures

Figure 1

22 pages, 1258 KiB  
Review
Advances in Cryopreservation Strategies for 3D Biofabricated Constructs: From Hydrogels to Bioprinted Tissues
by Kaoutar Ziani, Laura Saenz-del-Burgo, Jose Luis Pedraz and Jesús Ciriza
Int. J. Mol. Sci. 2025, 26(14), 6908; https://doi.org/10.3390/ijms26146908 - 18 Jul 2025
Viewed by 303
Abstract
The cryopreservation of three-dimensional (3D) biofabricated constructs is a key enabler for their clinical application in regenerative medicine. Unlike two-dimensional (2D) cultures, 3D systems such as encapsulated cell spheroids, molded hydrogels, and bioprinted tissues present specific challenges related to cryoprotectant (CPA) diffusion, thermal [...] Read more.
The cryopreservation of three-dimensional (3D) biofabricated constructs is a key enabler for their clinical application in regenerative medicine. Unlike two-dimensional (2D) cultures, 3D systems such as encapsulated cell spheroids, molded hydrogels, and bioprinted tissues present specific challenges related to cryoprotectant (CPA) diffusion, thermal gradients, and ice formation during freezing and thawing. This review examines the current strategies for preserving 3D constructs, focusing on the role of biomaterials as cryoprotective matrices. Natural polymers (e.g., hyaluronic acid, alginate, chitosan), protein-based scaffolds (e.g., silk fibroin, sericin), and synthetic polymers (e.g., polyethylene glycol (PEG), polyvinyl alcohol (PVA)) are evaluated for their ability to support cell viability, structural integrity, and CPA transport. Special attention is given to cryoprotectant systems that are free of dimethyl sulfoxide (DMSO), and to the influence of hydrogel architecture on freezing outcomes. We have compared the efficacy and limitations of slow freezing and vitrification protocols and review innovative approaches such as temperature-controlled cryoprinting, nano-warming, and hybrid scaffolds with improved cryocompatibility. Additionally, we address the regulatory and manufacturing challenges associated with developing Good Manufacturing Practice (GMP)-compliant cryopreservation workflows. Overall, this review provides an integrated perspective on material-based strategies for 3D cryopreservation and identifies future directions to enable the long-term storage and clinical translation of engineered tissues. Full article
(This article belongs to the Special Issue Rational Design and Application of Functional Hydrogels)
Show Figures

Figure 1

19 pages, 1261 KiB  
Review
Advances in Gelatin-Based Tissue Engineering Using HRP/H2O2
by Marino Basha, Ahmad Aburub, Filippos F. Karageorgos, Georgios Tsoulfas and Aleck H. Alexopoulos
Gels 2025, 11(6), 460; https://doi.org/10.3390/gels11060460 - 16 Jun 2025
Viewed by 712
Abstract
Gelatin, a biocompatible and biodegradable polymer, has garnered considerable attention in tissue engineering (TE) due to its diverse applications enabled by its tunable physical properties. Among the various strategies employed for the fabrication of gelatin-based hydrogels, the use of horseradish peroxidase (HRP) and [...] Read more.
Gelatin, a biocompatible and biodegradable polymer, has garnered considerable attention in tissue engineering (TE) due to its diverse applications enabled by its tunable physical properties. Among the various strategies employed for the fabrication of gelatin-based hydrogels, the use of horseradish peroxidase (HRP) and hydrogen peroxide (H2O2) as a catalytic system has been highlighted as an effective tool for producing hydrogels with highly modifiable properties. Herein, we explore recent progress in the utilization of the HRP/H2O2 catalytic system for the creation of gelatin-based hydrogels, with an emphasis on TE applications. Particular attention has been given to the interplay between variations in the concentration equilibrium of HRP and H2O2 and the fine-tuning of gel properties tailored for various TE applications. Emerging trends, such as in situ gelation and hybrid bioinks, have also been examined through the lens of their prospective applications, extrapolating from the findings in cell cultures and animal models. A comprehensive review of two databases (Scopus and Web of Science) was conducted. The data extracted from each study included the materials used for each application, methods used for material preparation, cells used in the TE application, laboratory animals used, and whether computational/simulation techniques were implemented. The applications included both homopolymeric hydrogels, using only gelatin as the backbone, and copolymeric hydrogels, with ≥2 polymers. Full article
(This article belongs to the Special Issue Gelatin-Based Materials for Tissue Engineering)
Show Figures

Figure 1

38 pages, 5897 KiB  
Review
Future-Oriented Biomaterials Based on Natural Polymer Resources: Characteristics, Application Innovations, and Development Trends
by Oscar Amponsah, Prince Sungdewie Adama Nopuo, Felista Adrehem Manga, Nicole Bianca Catli and Karolina Labus
Int. J. Mol. Sci. 2025, 26(12), 5518; https://doi.org/10.3390/ijms26125518 - 9 Jun 2025
Cited by 1 | Viewed by 1122
Abstract
This review comprehensively explores natural polymer-based materials, focusing on their characteristics, applications, and innovations across different sectors, including medicine, the environment, energy, textiles, and construction. With increasing concern about resource depletion and pollution, biomaterials offer a sustainable alternative to fossil-derived products. The review [...] Read more.
This review comprehensively explores natural polymer-based materials, focusing on their characteristics, applications, and innovations across different sectors, including medicine, the environment, energy, textiles, and construction. With increasing concern about resource depletion and pollution, biomaterials offer a sustainable alternative to fossil-derived products. The review highlights polysaccharide-based and protein-based biomaterials, as well as others, such as polyisoprene, rosin, and hyaluronic acid. Emphasis is laid on their compositions and attractive characteristics, including biocompatibility, biodegradability, and functional versatility. Moreover, the review deeply discusses the ability of natural polymers to form hydrogels, aerogels, films, nanocomposites, etc., enhanced by additives for innovative applications. Future development trends of biomaterials in biomedicine, sustainable materials, environmental biotechnology, and advanced manufacturing are also explored. Their growing potential in these sectors is driven by research advances in emerging technologies such as 3D bioprinting, nanotechnology, and hybrid material innovation, which are proven to enhance the performance, functionality, and scalability of biopolymers. The review suggests several strategies, including improvement in processing techniques and material engineering to overcome limitations associated with biomaterials, thereby reinforcing their suitability and role in a circular and sustainable economy. Full article
(This article belongs to the Special Issue Recent Advances in Polymeric Biomaterials)
Show Figures

Graphical abstract

31 pages, 4568 KiB  
Review
Stimuli-Responsive DNA Hydrogel Design Strategies for Biomedical Applications
by Minhyuk Lee, Minjae Lee, Sungjee Kim and Nokyoung Park
Biosensors 2025, 15(6), 355; https://doi.org/10.3390/bios15060355 - 4 Jun 2025
Viewed by 1062
Abstract
Hydrogels are three-dimensional network structures composed of hydrophilic polymers that can swell in water and are very similar to soft tissues such as connective tissue or the extracellular matrix. DNA hydrogels are particularly notable for biomedical applications due to their high biocompatibility, physiological [...] Read more.
Hydrogels are three-dimensional network structures composed of hydrophilic polymers that can swell in water and are very similar to soft tissues such as connective tissue or the extracellular matrix. DNA hydrogels are particularly notable for biomedical applications due to their high biocompatibility, physiological stability, molecular recognition, biodegradability, easy functionalization, and low immunogenicity. Based on these advantages, stimuli-responsive DNA hydrogels that have the property of reversibly changing their structure in response to various microenvironments or molecules are attracting attention as smart nanomaterials that can be applied to biosensing and material transfer, such as in the case of cells and drugs. As DNA nanotechnology advances, DNA can be hybridized with a variety of nanomaterials, from inorganic nanomaterials such as gold nanoparticles (AuNPs) and quantum dots (QDs) to synthetic polymers such as polyacrylamide (PAAm) and poly(N-isopropylacrylamide) (pNIPAM). These hybrid structures exhibit various optical and chemical properties. This review discusses recent advances and remaining challenges in biomedical applications of stimuli-responsive smart DNA hydrogel-based systems. It also highlights various types of hybridized DNA hydrogel, explores various response mechanism strategies of stimuli-responsive DNA hydrogel, and provides insights and prospects for biomedical applications such as biosensing and drug delivery. Full article
(This article belongs to the Special Issue Hydrogel-Based Biosensors: From Design to Applications)
Show Figures

Figure 1

16 pages, 5706 KiB  
Article
In Situ-Prepared Nanocomposite for Water Management in High-Temperature Reservoirs
by Hui Yang, Jian Zhang, Zhiwei Wang, Shichao Li, Qiang Wei, Yunteng He, Luyao Li, Jiachang Zhao, Caihong Xu and Zongbo Zhang
Gels 2025, 11(6), 405; https://doi.org/10.3390/gels11060405 - 29 May 2025
Viewed by 436
Abstract
In the field of enhanced oil recovery (EOR), particularly for water control in high-temperature reservoirs, there is a critical need for effective in-depth water shutoff and conformance control technologies. Polymer-based in situ-cross-linked gels are extensively employed for enhanced oil recovery (EOR), yet their [...] Read more.
In the field of enhanced oil recovery (EOR), particularly for water control in high-temperature reservoirs, there is a critical need for effective in-depth water shutoff and conformance control technologies. Polymer-based in situ-cross-linked gels are extensively employed for enhanced oil recovery (EOR), yet their short gelation time under high-temperature reservoir conditions (e.g., >120 °C) limits effective in-depth water shutoff and conformance control. To address this, we developed a hydrogel system via the in situ cross-linking of polyacrylamide (PAM) with phenolic resin (PR), reinforced by silica sol (SS) nanoparticles. We employed a variety of research methods, including bottle tests, viscosity and rheology measurements, scanning electron microscopy (SEM) scanning, density functional theory (DFT) calculations, differential scanning calorimetry (DSC) measurements, quartz crystal microbalance with dissipation (QCM-D) measurement, contact angle (CA) measurement, injectivity and temporary plugging performance evaluations, etc. The composite gel exhibits an exceptional gelation period of 72 h at 130 °C, surpassing conventional systems by more than 4.5 times in terms of duration. The gelation rate remains almost unchanged with the introduction of SS, due to the highly pre-dispersed silica nanoparticles that provide exceptional colloidal stability and the system’s pH changing slightly throughout the gelation process. DFT and SEM results reveal that synergistic interactions between organic (PAM-PR networks) and inorganic (SS) components create a stacked hybrid network, enhancing both mechanical strength and thermal stability. A core flooding experiment demonstrates that the gel system achieves 92.4% plugging efficiency. The tailored nanocomposite allows for the precise management of gelation kinetics and microstructure formation, effectively addressing water control and enhancing the plugging effect in high-temperature reservoirs. These findings advance the mechanistic understanding of organic–inorganic hybrid gel systems and provide a framework for developing next-generation EOR technologies under extreme reservoir conditions. Full article
Show Figures

Figure 1

27 pages, 9099 KiB  
Review
Design Strategies and Emerging Applications of Conductive Hydrogels in Wearable Sensing
by Yingchun Li, Shaozhe Tan, Xuesi Zhang, Zhenyu Li, Jun Cai and Yannan Liu
Gels 2025, 11(4), 258; https://doi.org/10.3390/gels11040258 - 1 Apr 2025
Cited by 5 | Viewed by 1537
Abstract
Conductive hydrogels, integrating high conductivity, mechanical flexibility, and biocompatibility, have emerged as crucial materials driving the evolution of next-generation wearable sensors. Their unique ability to establish seamless interfaces with biological tissues enables real-time acquisition of physiological signals, external stimuli, and even therapeutic feedback, [...] Read more.
Conductive hydrogels, integrating high conductivity, mechanical flexibility, and biocompatibility, have emerged as crucial materials driving the evolution of next-generation wearable sensors. Their unique ability to establish seamless interfaces with biological tissues enables real-time acquisition of physiological signals, external stimuli, and even therapeutic feedback, paving the way for intelligent health monitoring and personalized medical interventions. To fully harness their potential, significant efforts have been dedicated to tailoring the conductive networks, mechanical properties, and environmental stability of these hydrogels through rational design and systematic optimization. This review comprehensively summarizes the design strategies of conductive hydrogels, categorized into metal-based, carbon-based, conductive polymer-based, ionic, and hybrid conductive systems. For each type, the review highlights structural design principles, strategies for conductivity enhancement, and approaches to simultaneously enhance mechanical robustness and long-term stability under complex environments. Furthermore, the emerging applications of conductive hydrogels in wearable sensing systems are thoroughly discussed, covering physiological signal monitoring, mechano-responsive sensing platforms, and emerging closed-loop diagnostic–therapeutic systems. Finally, this review identifies key challenges and offers future perspectives to guide the development of multifunctional, intelligent, and scalable conductive hydrogel sensors, accelerating their translation into advanced flexible electronics and smart healthcare technologies. Full article
(This article belongs to the Special Issue Design of Supramolecular Hydrogels)
Show Figures

Graphical abstract

82 pages, 10440 KiB  
Review
New Trends in Preparation and Use of Hydrogels for Water Treatment
by Teodor Sandu, Anita-Laura Chiriac, Anamaria Zaharia, Tanta-Verona Iordache and Andrei Sarbu
Gels 2025, 11(4), 238; https://doi.org/10.3390/gels11040238 - 24 Mar 2025
Cited by 2 | Viewed by 2100
Abstract
Hydrogel-based wastewater treatment technologies show certain outstanding features, which include exceptional efficiency, sustainability, reusability, and the precise targeting of specific contaminants. Moreover, it becomes possible to minimize the environmental impact when using these materials. Their flexibility, low energy consumption, and adaptability to meet [...] Read more.
Hydrogel-based wastewater treatment technologies show certain outstanding features, which include exceptional efficiency, sustainability, reusability, and the precise targeting of specific contaminants. Moreover, it becomes possible to minimize the environmental impact when using these materials. Their flexibility, low energy consumption, and adaptability to meet specific requirements for different purposes offer significant advantages over traditional methods like activated carbon filtration, membrane filtration, and chemical treatments. Recent advancements in hydrogel technology, including new production methods and hybrid materials, enhance their ability to efficiently adsorb contaminants without altering their biocompatibility and biodegradability. Therefore, innovative materials that are ideal for sustainable water purification were developed. However, these materials also suffer from several limitations, mostly regarding the scalability, long-term stability in real-world systems, and the need for precise functionalization. Therefore, overcoming these issues remains a challenge. Additionally, improving the efficiency and cost-effectiveness of regeneration methods is essential for their practical use. Finally, assessing the environmental impact of hydrogel production, use, and disposal is crucial to ensure these technologies are beneficial in the long run. This review summarizes recent advancements in developing polymer-based hydrogels for wastewater treatment by adsorption processes to help us understand the progress made during recent years. In particular, the studies presented within this work are compared from the point of view of the synthesis method, raw materials used such as synthetic/natural or hybrid networks, and the targeted class of pollutants—dyes or heavy metal ions. In several sections of this paper, discussions regarding the most important properties of the newly emerged adsorbents, e.g., kinetics, the adsorption capacity, and reusability, are also discussed. Full article
(This article belongs to the Special Issue Gels for Water Treatment)
Show Figures

Graphical abstract

41 pages, 3049 KiB  
Review
Hydrogel-Based Biointerfaces: Recent Advances, Challenges, and Future Directions in Human–Machine Integration
by Aziz Ullah, Do Youn Kim, Sung In Lim and Hyo-Ryoung Lim
Gels 2025, 11(4), 232; https://doi.org/10.3390/gels11040232 - 23 Mar 2025
Cited by 6 | Viewed by 2504
Abstract
Human–machine interfacing (HMI) has emerged as a critical technology in healthcare, robotics, and wearable electronics, with hydrogels offering unique advantages as multifunctional materials that seamlessly connect biological systems with electronic devices. This review provides a detailed examination of recent advancements in hydrogel design, [...] Read more.
Human–machine interfacing (HMI) has emerged as a critical technology in healthcare, robotics, and wearable electronics, with hydrogels offering unique advantages as multifunctional materials that seamlessly connect biological systems with electronic devices. This review provides a detailed examination of recent advancements in hydrogel design, focusing on their properties and potential applications in HMI. We explore the key characteristics such as biocompatibility, mechanical flexibility, and responsiveness, which are essential for effective and long-term integration with biological tissues. Additionally, we highlight innovations in conductive hydrogels, hybrid and composite materials, and fabrication techniques such as 3D/4D printing, which allow for the customization of hydrogel properties to meet the demands of specific HMI applications. Further, we discuss the diverse classes of polymers that contribute to hydrogel conductivity, including conducting, natural, synthetic, and hybrid polymers, emphasizing their role in enhancing electrical performance and mechanical adaptability. In addition to material design, we examine the regulatory landscape governing hydrogel-based biointerfaces for HMI applications, addressing the key considerations for clinical translation and commercialization. An analysis of the patent landscape provides insights into emerging trends and innovations shaping the future of hydrogel technologies in human–machine interactions. The review also covers a range of applications, including wearable electronics, neural interfaces, soft robotics, and haptic systems, where hydrogels play a transformative role in enhancing human–machine interactions. Thereafter, the review addresses the challenges hydrogels face in HMI applications, including issues related to stability, biocompatibility, and scalability, while offering future perspectives on the continued evolution of hydrogel-based systems for HMI technologies. Full article
(This article belongs to the Special Issue Gel-Based Materials for Sensing and Monitoring)
Show Figures

Graphical abstract

21 pages, 3840 KiB  
Article
Newly Designed Organic-Inorganic Nanocomposite Membrane for Simultaneous Cr and Mn Speciation in Waters
by Penka Vasileva and Irina Karadjova
Gels 2025, 11(3), 205; https://doi.org/10.3390/gels11030205 - 15 Mar 2025
Cited by 1 | Viewed by 743
Abstract
A sol-gel approach was used to prepare a thin hydrogel membrane based on an organic-inorganic polymer matrix embedded with pre-synthesized gold nanoparticles (AuNPs). The organic polymers utilized were poly(vinyl alcohol) (PVA) and poly(ethylene oxide) 400 (PEO) while tetraethoxysilane (TEOS) served as a precursor [...] Read more.
A sol-gel approach was used to prepare a thin hydrogel membrane based on an organic-inorganic polymer matrix embedded with pre-synthesized gold nanoparticles (AuNPs). The organic polymers utilized were poly(vinyl alcohol) (PVA) and poly(ethylene oxide) 400 (PEO) while tetraethoxysilane (TEOS) served as a precursor for the inorganic silica polymer. AuNPs were synthesized using D-glucose as a reducing agent and starch as a capping agent. A mixture of PVA, PEO, pre-hydrolyzed TEOS, and AuNP dispersions was cast and dried at 50 °C to obtain the hybrid hydrogel membrane. The structure, morphology, and optical properties of the nanocomposite membrane were analyzed using TEM, SEM, XRD, and UV-Vis spectroscopy. The newly designed hybrid hydrogel membrane was utilized as an efficient sorbent for the simultaneous speciation analysis of valence species of chromium and manganese in water samples via solid-phase extraction. This study revealed that Cr(III) and Mn(II) could be simultaneously adsorbed onto the PVA/PEO/SiO2/AuNP membrane at pH 9 while Cr(VI) and Mn(VII) remained in solution due to their inability to bind under these conditions. Under optimized parameters, detection limits and relative standard deviations were determined for chromium and manganese species. The developed analytical method was successfully applied for the simultaneous speciation analysis of chromium and manganese in drinking water and wastewater samples. Full article
(This article belongs to the Special Issue Gel-Related Materials: Challenges and Opportunities)
Show Figures

Figure 1

17 pages, 4555 KiB  
Article
Preliminary Study on Wearable Smart Socks with Hydrogel Electrodes for Surface Electromyography-Based Muscle Activity Assessment
by Gabriele Rescio, Elisa Sciurti, Lucia Giampetruzzi, Anna Maria Carluccio, Luca Francioso and Alessandro Leone
Sensors 2025, 25(5), 1618; https://doi.org/10.3390/s25051618 - 6 Mar 2025
Cited by 1 | Viewed by 1388
Abstract
Surface electromyography (sEMG) is increasingly important for prevention, diagnosis, and rehabilitation in healthcare. The continuous monitoring of muscle electrical activity enables the detection of abnormal events, but existing sEMG systems often rely on disposable pre-gelled electrodes that can cause skin irritation and require [...] Read more.
Surface electromyography (sEMG) is increasingly important for prevention, diagnosis, and rehabilitation in healthcare. The continuous monitoring of muscle electrical activity enables the detection of abnormal events, but existing sEMG systems often rely on disposable pre-gelled electrodes that can cause skin irritation and require precise placement by trained personnel. Wearable sEMG systems integrating textile electrodes have been proposed to improve usability; however, they often suffer from poor skin–electrode coupling, leading to higher impedance, motion artifacts, and reduced signal quality. To address these limitations, we propose a preliminary model of smart socks, integrating biocompatible hybrid polymer electrodes positioned over the target muscles. Compared with commercial Ag/AgCl electrodes, these hybrid electrodes ensure lower the skin–electrode impedance, enhancing signal acquisition (19.2 ± 3.1 kΩ vs. 27.8 ± 4.5 kΩ for Ag/AgCl electrodes). Moreover, to the best of our knowledge, this is the first wearable system incorporating hydrogel-based electrodes in a sock specifically designed for the analysis of lower limb muscles, which are crucial for evaluating conditions such as sarcopenia, fall risk, and gait anomalies. The system incorporates a lightweight, wireless commercial module for data pre-processing and transmission. sEMG signals from the Gastrocnemius and Tibialis muscles were analyzed, demonstrating a strong correlation (R = 0.87) between signals acquired with the smart socks and those obtained using commercial Ag/AgCl electrodes. Future studies will further validate its long-term performance under real-world conditions and with a larger dataset. Full article
Show Figures

Figure 1

26 pages, 7628 KiB  
Article
Poly(Acrylic Acid)-Sodium Alginate Superabsorbent Hydrogels Synthesized Using Electron-Beam Irradiation—Part III: An Evaluation of Their Degradation in Soil
by Elena Manaila, Ion Cosmin Calina, Marius Dumitru and Gabriela Craciun
Molecules 2025, 30(5), 1126; https://doi.org/10.3390/molecules30051126 - 28 Feb 2025
Cited by 1 | Viewed by 896
Abstract
Global challenges in agriculture, in terms of water and nutrient loss control, require new approaches to maintaining or even increasing crop production. Promising materials, such as superabsorbent hydrogels of hybrid types obtained from natural polymers grafted with synthetic polymers, represent a viable solution [...] Read more.
Global challenges in agriculture, in terms of water and nutrient loss control, require new approaches to maintaining or even increasing crop production. Promising materials, such as superabsorbent hydrogels of hybrid types obtained from natural polymers grafted with synthetic polymers, represent a viable solution to solve these problems and maintain a clean environment. In view of this, two types of hydrogels based on sodium alginate, acrylic acid and polyethylene oxide obtained using 5.5 MeV electron-beam irradiation were subjected to degradation through burial in the soil. Swollen hydrogels in two types of water (distilled and tap) and two types of nutrient solutions (synthetic nutrient solution and 100% natural organic nutrient solution), with different pHs of 5.40, 6.05, 7.45 and 7.66, were buried in soil for 30 and 60 days and then extracted and analyzed in terms of their mass loss, swelling behavior and cross-linking structure. The highest mass losses after both 30 and 60 days were recorded for the hydrogels buried in soils whose humidity was maintained by watering them with the basic solutions (tap water and the organic nutrient solution). Structural modifications associated with the degradation process were highlighted by decreases in the cross-link densities and increases in the mesh sizes and swelling. These results were confirmed using FTIR and SEM techniques. Full article
(This article belongs to the Special Issue Bio-Based Polymers for Sustainable Future)
Show Figures

Graphical abstract

Back to TopTop