Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (77)

Search Parameters:
Keywords = polyaniline nanofiber

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 5173 KB  
Article
Morphology-Controlled Polyaniline Nanofibers via Rapid Polymerization for Enhanced Supercapacitor Performance
by Sami Ur Rahman, Shehna Farooq, Narasimharao Kitchamsetti, Muhammad Sajid, Salma Gul, Fahad Farooq, Muhammad Rafiq, Irum Fatima and Humaira Razzaq
Nanoenergy Adv. 2025, 5(3), 11; https://doi.org/10.3390/nanoenergyadv5030011 - 29 Aug 2025
Viewed by 952
Abstract
Polyaniline (PANI) nanofibers (NFs) were synthesized via two chemical oxidative polymerization approaches: a rapid mixing process and a conventional stirred tank method. PANI is a promising electrode material for supercapacitors due to its conductivity, stability, and pseudocapacitive redox behavior. The rapid mixing route [...] Read more.
Polyaniline (PANI) nanofibers (NFs) were synthesized via two chemical oxidative polymerization approaches: a rapid mixing process and a conventional stirred tank method. PANI is a promising electrode material for supercapacitors due to its conductivity, stability, and pseudocapacitive redox behavior. The rapid mixing route proved especially effective, as fast polymerization promoted homogeneous nucleation and yielded thin, uniform, and interconnected NFs, whereas conventional stirring produced thicker, irregular fibers through heterogeneous nucleation. Structural characterization (FTIR, UV-Vis, XRD, XPS, TGA) confirmed that both samples retained the typical emeraldine form of PANI, but morphological analyses (SEM, BET) revealed that only the rapid process preserved nanofiber uniformity and porosity. This morphological control proved decisive for electrochemical behavior: symmetric supercapacitor devices fabricated from rapidly synthesized NFs delivered higher specific capacitances (378.8 F g−1 at 1 A g−1), improved rate capability, and superior cycling stability (90.33% retention after 3000 cycles) compared to devices based on conventionally prepared NFs. These findings demonstrate that rapid polymerization offers a simple and scalable route to morphology-engineered PANI electrodes with enhanced performance. Full article
Show Figures

Graphical abstract

14 pages, 2050 KB  
Article
Electrospun PANI/PEO-Luffa Cellulose/TiO2 Nanofibers: A Sustainable Biocomposite for Conductive Applications
by Gözde Konuk Ege, Merve Bahar Okuyucu and Özge Akay Sefer
Polymers 2025, 17(14), 1989; https://doi.org/10.3390/polym17141989 - 20 Jul 2025
Viewed by 724
Abstract
Herein, electrospun nanofibers composed of polyaniline (PANI), polyethylene oxide (PEO), and Luffa cylindrica (LC) cellulose, reinforced with titanium dioxide (TiO2) nanoparticles, were synthesized via electrospinning to investigate the effect of TiO2 nanoparticles on PANI/PEO/LC nanocomposites and the effect of conductivity [...] Read more.
Herein, electrospun nanofibers composed of polyaniline (PANI), polyethylene oxide (PEO), and Luffa cylindrica (LC) cellulose, reinforced with titanium dioxide (TiO2) nanoparticles, were synthesized via electrospinning to investigate the effect of TiO2 nanoparticles on PANI/PEO/LC nanocomposites and the effect of conductivity on nanofiber morphology. Cellulose extracted from luffa was added to the PANI/PEO copolymer solution, and two different ratios of TiO2 were mixed into the PANI/PEO/LC biocomposite. The morphological, vibrational, and thermal characteristics of biocomposites were systematically investigated using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). As anticipated, the presence of TiO2 enhanced the electrical conductivity of biocomposites, while the addition of Luffa cellulose further improved the conductivity of the cellulose-based nanofibers. FTIR analysis confirmed chemical interactions between Luffa cellulose and PANI/PEO matrix, as evidenced by the broadening of the hydroxyl (OH) absorption band at 3500–3200 cm−1. Additionally, the emergence of characteristic peaks within the 400–1000 cm−1 range in the PANI/PEO/LC/TiO2 spectra signified Ti–O–Ti and Ti–O–C vibrations, confirming the incorporation of TiO2 into the biocomposite. SEM images of the biocomposites reveal that the thickness of nanofibers decreases by adding Luffa to PANI/PEO nanofibers because of the nanofibers branching. In addition, when blending TiO2 nanoparticles with the PANI/PEO/LC biocomposite, this increment continued and obtained thinner and smother nanofibers. Furthermore, the incorporation of cellulose slightly improved the crystallinity of the nanofibers, while TiO2 contributed to the enhanced crystallinity of the biocomposite according to the XRD and DCS results. Similarly, the TGA results supported the DSC results regarding the increasing thermal stability of the biocomposite nanofibers with TiO2 nanoparticles. These findings demonstrate the potential of PANI/PEO/LC/TiO2 nanofibers for advanced applications requiring conductive and structurally optimized biomaterials, e.g., for use in humidity or volatile organic compound (VOC) sensors, especially where flexibility and environmental sustainability are required. Full article
Show Figures

Figure 1

12 pages, 2165 KB  
Article
Flexible Piezoresistive Sensors Based on PANI/rGO@PDA/PVDF Nanofiber for Wearable Biomonitoring
by Hong Pan, Yuxiao Wang, Guangzhong Xie, Chunxu Chen, Haozhen Li, Fang Wu and Yuanjie Su
J. Compos. Sci. 2025, 9(7), 339; https://doi.org/10.3390/jcs9070339 - 30 Jun 2025
Cited by 2 | Viewed by 747
Abstract
Fibrous structure is a promising building block for developing high-performance wearable piezoresistive sensors. However, the inherent non-conductivity of the fibrous polymer remains a bottleneck for highly sensitive and fast-responsive piezoresistive sensors. Herein, we reported a polyaniline/reduced graphene oxide @ polydopamine/poly (vinylidene fluoride) (PANI/rGO@PDA/PVDF) [...] Read more.
Fibrous structure is a promising building block for developing high-performance wearable piezoresistive sensors. However, the inherent non-conductivity of the fibrous polymer remains a bottleneck for highly sensitive and fast-responsive piezoresistive sensors. Herein, we reported a polyaniline/reduced graphene oxide @ polydopamine/poly (vinylidene fluoride) (PANI/rGO@PDA/PVDF) nanofiber piezoresistive sensor (PNPS) capable of versatile wearable biomonitoring. The PNPS was fabricated by integrating rGO sheets and PANI particles into a PDA-modified PVDF nanofiber network, where PDA was implemented to boost the interaction between the nanofiber networks and functional materials, PANI particles were deposited on a nanofiber substrate to construct electroactive nanofibers, and rGO sheets were utilized to interconnect nanofibers to strengthen in-plane charge carrier transport. Benefitting from the synergistic effect of multi-dimensional electroactive materials in piezoresistive membranes, the as-fabricated PNPS exhibits a high sensitivity of 13.43 kPa−1 and a fast response time of 9 ms, which are significantly superior to those without an rGO sheet. Additionally, a wide pressure detection range from 0 to 30 kPa and great mechanical reliability over 12,000 cycles were attained. Furthermore, the as-prepared PNPS demonstrated the capability to detect radial arterial pulses, subtle limb motions, and diverse respiratory patterns, highlighting its potential for wearable biomonitoring and healthcare assessment. Full article
(This article belongs to the Special Issue Polymer Composites and Fibers, 3rd Edition)
Show Figures

Figure 1

19 pages, 2394 KB  
Article
Three-Dimensional Printed MXene@PANI Hierarchical Architecture for High-Performance Micro-Supercapacitors
by Anyi Zhang, Yiming Wang, Haidong Yu and Yabin Zhang
Materials 2025, 18(10), 2277; https://doi.org/10.3390/ma18102277 - 14 May 2025
Cited by 1 | Viewed by 868
Abstract
The advent of the Internet of Things has boosted portable and wearable miniature electronics, especially micro-supercapacitors (MSCs) with excellent integrated performance as well as high-power density and a long lifetime. However, the rational design of electrode material formulations and the construction of three-dimensional [...] Read more.
The advent of the Internet of Things has boosted portable and wearable miniature electronics, especially micro-supercapacitors (MSCs) with excellent integrated performance as well as high-power density and a long lifetime. However, the rational design of electrode material formulations and the construction of three-dimensional (3D) structured electrodes with scalable and cost-effective fabrication remains an arduous task for improving the energy density of MSCs to meet all industrial sector requirements, such as the mass-production of microscale structures, a lasting power supply, and safety. To address these challenges, combining the respective capacitance merits of MXenes and polyaniline (PANI), we propose a constructing strategy for the preparation of a 3D MXene@PANI hierarchical architecture consisting of one-dimensional (1D) PANI nanofibers grown on two-dimensional (2D) Ti3C2 MXene nanosheets via extrusion-based 3D printing. Such a 3D architecture not only achieves a high loading mass of MSC electrodes prior to conventional planar MSCs for abundant active site exposure, but it also overcomes the restacking of MXene nanosheets accounting for sluggish ionic kinetics. These features enable the resulting MSCs to deliver excellent electrochemical properties, including a high volumetric capacitance of 1638.3 mF/cm3 and volumetric energy density of 328.2 mWh/cm3. This power supply ability is further demonstrated by lighting up a blue bulb or powering an electronic thermometer. This study provides a promising design strategy of the architecture of MXene@PANI composites for high-performance MSCs with 3D printing technology. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Graphical abstract

13 pages, 3903 KB  
Article
Polyaniline-Coated Electrospun Polyacrylonitrile Nanofibers for Effective Short-Chain PFAS (GenX) Removal from Water
by Israt Jahan, Easmin Ara Tani, Harsh V. Patel, Renzun Zhao and Lifeng Zhang
Fibers 2025, 13(4), 42; https://doi.org/10.3390/fib13040042 - 9 Apr 2025
Viewed by 1117
Abstract
A 6-carbon short-chain per- and polyfluoroalkyl substance (PFAS), GenX, also known as hexafluoropropylene oxide dimer acid (HFPO-DA) and its ammonium salt, has been manufactured in recent years as a replacement for perfluorooctanoic acid (PFOA), a traditional long-chain PFAS, due to the increasing environmental [...] Read more.
A 6-carbon short-chain per- and polyfluoroalkyl substance (PFAS), GenX, also known as hexafluoropropylene oxide dimer acid (HFPO-DA) and its ammonium salt, has been manufactured in recent years as a replacement for perfluorooctanoic acid (PFOA), a traditional long-chain PFAS, due to the increasing environmental regulation of PFAS compounds in recent years. GenX has received significant attention because of the fact that it is more toxic than people originally thought, and it is now one of the six PFAS compounds that are placed under legally enforceable restrictions in drinking water, i.e., 10 ppt, by the United States Environmental Protection Agency (US EPA). In this research, we extended the use of polyacrylonitrile (PAN) nanofibers from electrospinning for GenX removal from water by coating them with polyaniline (PANI) through in situ polymerization. The obtained PANI-coated electrospun PAN nanofibrous adsorbent (PANI-ESPAN) demonstrated excellent GenX adsorption capability and could remove nearly all GenX (>98%) from a 100 ppb aqueous solution. This research provided valuable insights into short-chain PFAS remediation from water by designing and developing high-performance adsorbent materials. Full article
Show Figures

Figure 1

23 pages, 8054 KB  
Article
Electron Beam Irradiation’s Effect on Polyaniline/LiClO4/CuO Nanocomposite: A Study of Dielectric, Conductivity and Electrochemical Properties
by Yesappa Laxmayyaguddi, Sharanappa Chapi and Nagaraj Nandihalli
Appl. Sci. 2025, 15(7), 4001; https://doi.org/10.3390/app15074001 - 4 Apr 2025
Viewed by 704
Abstract
A straightforward chemical polymerization process was used to create the polyaniline/LiClO4/CuO nanoparticle (PLC) nanocomposite, which was then exposed to varying doses of electron beam (EB) radiation and studied. The FESEM, XRD, FTIR, DSC, TG/DTA, and electrochemical measurements with higher EB doses [...] Read more.
A straightforward chemical polymerization process was used to create the polyaniline/LiClO4/CuO nanoparticle (PLC) nanocomposite, which was then exposed to varying doses of electron beam (EB) radiation and studied. The FESEM, XRD, FTIR, DSC, TG/DTA, and electrochemical measurements with higher EB doses showed clear changes. The FTIR spectra of the PLC nanocomposite showed variations in the C-N and carbonyl groups at 1341 cm−1 and 1621 cm−1, respectively. After a 120 kGy EB dose, the shape changed from a smooth, uneven surface to a well-connected, nanofiber-like structure, creating pathways for electricity to flow through the polymer matrix. The EB irradiation improved the thermal stability by decreasing the melting temperature, and the XRD and DSC studies reveal that the decrease in crystallinity is attributed to the dominant chain scission mechanism. The enhanced absorption and red shift in the wavelength (from 374 nm to 400 nm) observed in the UV-Visible spectroscopy were caused by electrons transitioning from a lower to a higher energy state, with a progressive drop in the band gaps (Eg) from 2.15 to 1.77 eV following irradiation. The dielectric parameters increased with the temperature and electron beam doses because of the dissociation of the ion aggregates and the emergence of defects and/or disorders in the polymer band gaps. This was triggered by chain scission, discontinuity, and bond breaking in the molecular chains at elevated levels of radiation energy, leading to an augmented charge carrier density and, subsequently, enhanced conductivity. The cyclic voltammetry study revealed an enhanced electrochemical stability at a high scan rate of about 600 mV/s for the PLC nanocomposite with the increase in the EB doses. The I-V characteristics measured at room temperature exhibited nonohmic behavior with an expanded current range, and the electrical conductivity was estimated, using the I-V curve, to be around 1.05 × 10−4 S/cm post 20 kGy EB irradiation. Full article
Show Figures

Figure 1

15 pages, 3144 KB  
Communication
Optimizing Ammonia Detection with a Polyaniline−Magnesia Nano Composite
by Sharanabasava V. Ganachari, Fatheali A. Shilar, Veerabhadragouda B. Patil, T. M. Yunus Khan, C. Ahamed Saleel and Mohammed Azam Ali
Polymers 2024, 16(20), 2892; https://doi.org/10.3390/polym16202892 - 14 Oct 2024
Cited by 2 | Viewed by 2002
Abstract
Polyaniline−magnesia (PANI/MgO) composites with a fibrous nanostructure were synthesized via in situ oxidative polymerization, enabling uniform MgO integration into the polyaniline matrix. These composites were characterized using FTIR spectroscopy to analyze intermolecular bonding, XRD to assess crystallographic structure and phase purity, and SEM [...] Read more.
Polyaniline−magnesia (PANI/MgO) composites with a fibrous nanostructure were synthesized via in situ oxidative polymerization, enabling uniform MgO integration into the polyaniline matrix. These composites were characterized using FTIR spectroscopy to analyze intermolecular bonding, XRD to assess crystallographic structure and phase purity, and SEM to examine surface morphology and topological features. The resulting PANI/MgO nanofibers were utilized to develop ammonia (NH3) gas-sensing probes with evaluations conducted at room temperature. The study addresses the critical challenge of achieving high sensitivity and selectivity in ammonia detection at low concentrations, which is a problem that persists in many existing sensor technologies. The nanofibers demonstrated high selectivity and optimal sensitivity for ammonia detection, which was attributed to the synergistic effects between the polyaniline and MgO that enhance gas adsorption. Furthermore, the study revealed that the MgO content critically influences both the morphology and the sensing performance, with higher MgO concentrations improving sensor response. This work underscores the potential of PANI/MgO composites as efficient and selective ammonia sensors, highlighting the importance of MgO content in optimizing material properties for gas-sensing applications. Full article
(This article belongs to the Collection Progress in Polymer Composites and Nanocomposites)
Show Figures

Figure 1

21 pages, 20880 KB  
Article
Ceramic Nanotubes—Conducting Polymer Assemblies with Potential Application as Chemosensors for Breath Ammonia Detection in Chronic Kidney Disease
by Alexandru Florentin Trandabat, Romeo Cristian Ciobanu, Oliver Daniel Schreiner, Thomas Gabriel Schreiner and Sebastian Aradoaei
Chemosensors 2024, 12(9), 198; https://doi.org/10.3390/chemosensors12090198 - 23 Sep 2024
Cited by 1 | Viewed by 1630
Abstract
This paper describes the process of producing chemosensors based on hybrid nanostructures obtained from Al2O3, as well as ZnO ceramic nanotubes and the following conducting polymers: poly(3-hexylthiophene), polyaniline emeraldine-base (PANI-EB), and poly(3, 4-ethylenedioxythiophene)-polystyrene sulfonate. The process for creating ceramic [...] Read more.
This paper describes the process of producing chemosensors based on hybrid nanostructures obtained from Al2O3, as well as ZnO ceramic nanotubes and the following conducting polymers: poly(3-hexylthiophene), polyaniline emeraldine-base (PANI-EB), and poly(3, 4-ethylenedioxythiophene)-polystyrene sulfonate. The process for creating ceramic nanotubes involves three steps: creating polymer fiber nets using poly(methyl methacrylate), depositing ceramic films onto the nanofiber nets using magnetron deposition, and heating the nanotubes to 600 °C to burn off the polymer support completely. The technology for obtaining hybrid nanostructures from ceramic nanotubes and conducting polymers is drop-casting. AFM analysis emphasized a higher roughness, mainly in the case of PANI-EB, for both nanotube types, with a much larger grain size dimension of over 5 μm. The values of the parameter Rku were close or slightly above 3, indicating, in all cases, the formation of layers predominantly characterized by peaks and not by depressions, with a Gaussian distribution. An ink-jet printer was used to generate chemiresistors from ceramic nanotubes and PANI-EB structures, and the metallization was made with commercial copper ink for printed electronics. Calibration curves were experimentally generated for both sensing structures across a wider range of NH3 concentrations in air, reaching up to 5 ppm. A 0.5 ppm detection limit was established. The curve for the ZnO:PANI-EB structure presented high linearity and lower resistance values. The sensor could be used in medical diagnosis for the analysis of breath ammonia and biomarkers for predicting CKD in stages higher than 1. The threshold value of 1 ppm represents a feasible value for the presented sensor, which can be defined as a simple, low-value and robust device for individual use, beneficial at the patient level. Full article
(This article belongs to the Section Materials for Chemical Sensing)
Show Figures

Figure 1

18 pages, 10963 KB  
Article
Label-Free Electrochemical Dopamine Biosensor Based on Electrospun Nanofibers of Polyaniline/Carbon Nanotube Composites
by Chanaporn Kaewda and Saengrawee Sriwichai
Biosensors 2024, 14(7), 349; https://doi.org/10.3390/bios14070349 - 18 Jul 2024
Cited by 6 | Viewed by 2703
Abstract
The development of conducting polymer incorporated with carbon materials-based electrochemical biosensors has been intensively studied due to their excellent electrical, optical, thermal, physical and chemical properties. In this work, a label-free electrochemical dopamine (DA) biosensor based on polyaniline (PANI) and its aminated derivative, [...] Read more.
The development of conducting polymer incorporated with carbon materials-based electrochemical biosensors has been intensively studied due to their excellent electrical, optical, thermal, physical and chemical properties. In this work, a label-free electrochemical dopamine (DA) biosensor based on polyaniline (PANI) and its aminated derivative, i.e., poly(3-aminobenzylamine) (PABA), composited with functionalized multi-walled carbon nanotubes (f-CNTs), was developed to utilize a conducting polymer as a transducing material. The electrospun nanofibers of the composites were fabricated on the surface of fluorine-doped tin oxide (FTO)-coated glass substrate under the optimized condition. The PANI/f-CNTs and PABA/f-CNTs electrospun nanofibers were characterized by attenuated total reflectance–Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), which confirmed the existence of f-CNTs in the composites. The electroactivity of the electrospun nanofibers was investigated in phosphate buffer saline solution using cyclic voltammetry (CV) before being employed for label-free electrochemical detection of DA using differential pulse voltammetry (DPV). The sensing performances including sensitivity, selectivity, stability, repeatability and reproducibility of the fabricated electrospun nanofiber films were also electrochemically evaluated. The electrochemical DA biosensor based on PANI/f-CNTs and PABA/f-CNTs electrospun nanofibers exhibited a sensitivity of 6.88 µA·cm−2·µM−1 and 7.27 µA·cm−2·µM−1 in the linear range of 50–500 nM (R2 = 0.98) with a limit of detection (LOD) of 0.0974 µM and 0.1554 µM, respectively. The obtained DA biosensor showed great stability, repeatability and reproducibility with precious selectivity under the common interferences, i.e., glucose, ascorbic acid and uric acid. Moreover, the developed electrochemical DA biosensor also showed the good reliability under detection of DA in artificial urine. Full article
(This article belongs to the Special Issue Biomaterials for Biosensing Applications)
Show Figures

Graphical abstract

14 pages, 5581 KB  
Article
Non-Enzymatic Glucose Sensors Composed of Polyaniline Nanofibers with High Electrochemical Performance
by Nebras Sobahi, Md. Mottahir Alam, Mohd Imran, Mohammad Ehtisham Khan, Akbar Mohammad, Taeho Yoon, Ibrahim M. Mehedi, Mohammad A. Hussain, Mohammed J. Abdulaal and Ahmad A. Jiman
Molecules 2024, 29(11), 2439; https://doi.org/10.3390/molecules29112439 - 22 May 2024
Cited by 6 | Viewed by 2210
Abstract
The measurement of glucose concentration is a fundamental daily care for diabetes patients, and therefore, its detection with accuracy is of prime importance in the field of health care. In this study, the fabrication of an electrochemical sensor for glucose sensing was successfully [...] Read more.
The measurement of glucose concentration is a fundamental daily care for diabetes patients, and therefore, its detection with accuracy is of prime importance in the field of health care. In this study, the fabrication of an electrochemical sensor for glucose sensing was successfully designed. The electrode material was fabricated using polyaniline and systematically characterized using scanning electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and UV-visible spectroscopy. The polyaniline nanofiber-modified electrode showed excellent detection ability for glucose with a linear range of 10 μM to 1 mM and a detection limit of 10.6 μM. The stability of the same electrode was tested for 7 days. The electrode shows high sensitivity for glucose detection in the presence of interferences. The polyaniline-modified electrode does not affect the presence of interferences and has a low detection limit. It is also cost-effective and does not require complex sample preparation steps. This makes it a potential tool for glucose detection in pharmacy and medical diagnostics. Full article
(This article belongs to the Section Electrochemistry)
Show Figures

Graphical abstract

12 pages, 4542 KB  
Article
PVA/PANI-DBSA Nanomesh Tactile Sensor for Force Feedback
by Boyi Wang, Rong Du, Yi Liu and Han Song
Polymers 2024, 16(11), 1449; https://doi.org/10.3390/polym16111449 - 21 May 2024
Cited by 2 | Viewed by 1515
Abstract
Touch serves as an important medium for human–environment interaction. The piezoresistive tactile sensor has attracted much attention due to its convenient technology, simple principle, and convenient signal acquisition and analysis. In this paper, conductive beads-on-string polyvinyl alcohol (PVA)/polyaniline doped with dodecyl benzene sulfonic [...] Read more.
Touch serves as an important medium for human–environment interaction. The piezoresistive tactile sensor has attracted much attention due to its convenient technology, simple principle, and convenient signal acquisition and analysis. In this paper, conductive beads-on-string polyvinyl alcohol (PVA)/polyaniline doped with dodecyl benzene sulfonic acid (PANI-DBSA) nanofibers were fabricated via the electrospinning technique. Due to the special nanostructure of PVA-coated PANI-DBSA, the tactile sensor presented a wide measuring range of 12 Pa–121 kPa and appreciable sensitivity of 8.576 kPa−1 at 12 Pa~484 Pa. In addition, the response time and recovery time of the sensor were approximately 500 ms, demonstrating promising prospects in the field of tactile sensing for active upper limb prostheses. Full article
(This article belongs to the Special Issue New Studies on Polymer-Based Sensors)
Show Figures

Figure 1

17 pages, 5365 KB  
Article
Electrorheological Effect of Suspensions of Polyaniline Nanoparticles with Different Morphologies
by Jinhua Yuan, Xufeng Hu, Xiaopeng Zhao and Jianbo Yin
Polymers 2023, 15(23), 4568; https://doi.org/10.3390/polym15234568 - 29 Nov 2023
Cited by 11 | Viewed by 1877
Abstract
Polyaniline (PANI) nanospheres, nanofibers, and nanoplates were prepared using the oxidative polymerization method. Scanning electron microscopy (SEM) was used to observe the three morphologies of PANI, and their structure was tested using infrared spectroscopy, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy. The [...] Read more.
Polyaniline (PANI) nanospheres, nanofibers, and nanoplates were prepared using the oxidative polymerization method. Scanning electron microscopy (SEM) was used to observe the three morphologies of PANI, and their structure was tested using infrared spectroscopy, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy. The influence of particle morphology on the electrorheological (ER) effect was studied through rheological experiments and molecular dynamics (MD) simulation. The experimental and simulation results indicate that without applying an electric field, the nanofibers easily form a three-dimensional network structure in the suspension, resulting in yield stress. The three-dimensional network structure of the nanoplate suspension becomes weaker and the PANI nanosphere suspension lacks the ability to form a three-dimensional network structure. After applying an electric field, under the same condition, the yield stress and electric field-induced shear stress increment of PANI nanofibers are the highest, followed by nanoplates, and those of PANI nanospheres are the lowest. This indicates that the ER effect increases with the increase in particle morphology anisotropy. Through three-dimensional visual simulation analysis, it can be concluded that the enhanced ER effect associated with increased particle anisotropy can be attributed to improved stability in the ER chain structure. Full article
Show Figures

Figure 1

5 pages, 851 KB  
Proceeding Paper
Optical Colorimetric Sensing Label for Monitoring Food Freshness
by Nedal Abu-Thabit
Eng. Proc. 2023, 48(1), 16; https://doi.org/10.3390/CSAC2023-14932 - 12 Oct 2023
Cited by 3 | Viewed by 2103
Abstract
The development of optical sensors to monitor food freshness during storage and transportation helps to increase food security and customer satisfaction by preventing the misinterpretation of food date labeling. In this study, a simple, rapid, and low-cost paper-based optical sensing label was fabricated [...] Read more.
The development of optical sensors to monitor food freshness during storage and transportation helps to increase food security and customer satisfaction by preventing the misinterpretation of food date labeling. In this study, a simple, rapid, and low-cost paper-based optical sensing label was fabricated for the visual detection of food spoilage by the naked eye. The filter paper was coated with electrically conductive polyaniline ink. The pH-responsiveness of the coated polyaniline nanofibers allowed for the colorimetric detection of shrimp spoilage through the transition from the doped green emeraldine acid state to the dedoped blue emeraldine base state. The combination of the flexible filter paper as a substrate and the polyaniline ink as an indicator represents a facile approach for the fabrication of a colorimetric optical sensing label for food freshness monitoring applications. Full article
Show Figures

Figure 1

13 pages, 11455 KB  
Article
The Effects of Polyaniline Nanofibers and Graphene Flakes on the Electrical Properties and Mechanical Properties of ABS-like Resin Composites Obtained by DLP 3D Printing
by Somi Jang and Sunghun Cho
Polymers 2023, 15(14), 3079; https://doi.org/10.3390/polym15143079 - 18 Jul 2023
Cited by 9 | Viewed by 2257
Abstract
Three-dimensional printing is regarded as a future-oriented additive manufacturing technology that is making significant contributions to the field of polymer processing. Among the 3D printing methods, the DLP (digital light processing) technique has attracted great interest because it requires a short printing time [...] Read more.
Three-dimensional printing is regarded as a future-oriented additive manufacturing technology that is making significant contributions to the field of polymer processing. Among the 3D printing methods, the DLP (digital light processing) technique has attracted great interest because it requires a short printing time and enables high-quality printing through selective light curing of polymeric materials. In this study, we report a fabrication method for ABS-like resin composites containing polyaniline (PANI) nanofibers and graphene flakes suitable for DLP 3D printing. As-prepared ABS-like resin composite inks employing PANI nanofibers and graphene flakes as co-fillers were successfully printed, obtaining highly conductive and mechanically robust products with the desired shapes and different sizes through DLP 3D printing. The sheet resistance of the 3D-printed composites was reduced from 2.50 × 1015 ohm/sq (sheet resistance of pristine ABS-like resin) to 1.61 × 106 ohm/sq by adding 3.0 wt.% of PANI nanofibers and 1.5 wt.% of graphene flakes. Furthermore, the AP3.0G1.5 sample (the 3D-printed composite containing 3.0 wt.% of PANI nanofibers and 1.5 wt.% of graphene flakes) exhibited 2.63 times (22.23 MPa) higher tensile strength, 1.47 times (553.8 MPa) higher Young’s modulus, and 5.07 times (25.83%) higher elongation at break values compared to the pristine ABS-like resin with a tensile strength of 8.46 MPa, a Young’s modulus of 376.6 MPa, and an elongation at break of 5.09%. Our work suggests the potential use of highly conductive and mechanically robust ABS-like resin composites in the 3D printing industry. This article not only provides optimized DLP 3D printing conditions for the ABS-like resin, which has both the advantages of the ABS resin and the advantages of a thermoplastic elastomer (TPE), but also presents the effective manufacturing process of ABS-like resin composites with significantly improved conductivity and mechanical properties. Full article
Show Figures

Graphical abstract

11 pages, 2196 KB  
Article
Performance Enhancement of Proton Exchange Membrane Fuel Cell through Carbon Nanofibers Grown In Situ on Carbon Paper
by Chang Liu and Shang Li
Molecules 2023, 28(6), 2810; https://doi.org/10.3390/molecules28062810 - 20 Mar 2023
Cited by 13 | Viewed by 3479
Abstract
We developed an integrated gas diffusion layer (GDL) for proton exchange membrane (PEM) fuel cells by growing carbon nanofibers (CNFs) in situ on carbon paper via the electro-polymerization of polyaniline (PANI) on carbon paper followed by a subsequent carbonization treatment process. The CNF/carbon [...] Read more.
We developed an integrated gas diffusion layer (GDL) for proton exchange membrane (PEM) fuel cells by growing carbon nanofibers (CNFs) in situ on carbon paper via the electro-polymerization of polyaniline (PANI) on carbon paper followed by a subsequent carbonization treatment process. The CNF/carbon paper showed a microporous structure and a significantly increased pore volume compared to commercial carbon paper. By utilizing this CNF/carbon paper in a PEM fuel cell, it was found that the cell with CNF/carbon paper had superior performance compared to the commercial GDL at both high and low humidity conditions, and its power density was as high as 1.21 W cm−2 at 100% relative humidity, which is 26% higher than that of a conventional gas diffusion layer (0.9 W cm−2). The significant performance enhancement was attributed to a higher pore volume and porosity of the CNF/carbon paper, which improved gas diffusion in the GDL. In addition, the superior performance of the cell with CNF/carbon paper at low relative humidity demonstrated that it had better water retention than the commercial GDL. This study provides a novel and facile method for the surface modification of GDLs to improve the performance of PEM fuel cells. The CNF/carbon paper with a microporous structure has suitable hydrophobicity and lower through-plane resistance, which makes it promising as an advanced substrate for GDLs in fuel cell applications. Full article
(This article belongs to the Special Issue Energy-Relevant Advanced Materials)
Show Figures

Figure 1

Back to TopTop