Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (41)

Search Parameters:
Keywords = poly-β-hydroxybutyrate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2238 KB  
Article
N, N-Dimethyl-4-Aminopyridine- and Aluminum Isopropoxide-Catalysed Ring-Opening Polymerizations of β-Butyrolactone for the Antimicrobial Oligohydroxybutyrate
by Qi Bao, Pui-Kin So, Siu Lun Leung, Polly Hang-Mei Leung and Xiaoming Tao
Int. J. Mol. Sci. 2026, 27(2), 999; https://doi.org/10.3390/ijms27020999 - 19 Jan 2026
Viewed by 168
Abstract
Infectious pathogens pose serious threats to public health, necessitating the development of more antimicrobials. In this study, oligohydroxybutyrates were obtained through the catalyzed polymerization of β-butyrolactone using N, N-dimethyl-4-aminopyridine (DMAP) and aluminum isopropoxide [Al(OiPr)3] and applied [...] Read more.
Infectious pathogens pose serious threats to public health, necessitating the development of more antimicrobials. In this study, oligohydroxybutyrates were obtained through the catalyzed polymerization of β-butyrolactone using N, N-dimethyl-4-aminopyridine (DMAP) and aluminum isopropoxide [Al(OiPr)3] and applied as sustainable antimicrobial agents. The poly3-hydroxybutyrate (PHB) oligomers exhibited broad-spectrum antibacterial activities against both Gram-negative (E. coli) and Gram-positive (S. aureus) model bacteria. Additionally, PHB oligomers displayed robust (inhibiting rate: >95%) and rapid (action time: <20 min) antiviral activity against three notorious single-stranded RNA viruses, that is, influenza A virus (H1N1 and H3N2) and coronavirus (SARS-CoV-2). In particular, a comprehensive set of advanced experimental characterizations, including FT-IR, 1H- and 13C-NMR, and H-ESI-MS/MS, was applied to analyze their chemical structures. The results confirmed the loss of terminal hydroxyl groups in the PHB intermediate and end products associated with theoretical calculations. These findings will also help provide deep insight into the major chain growth mechanism during the synthesis of PHB. The structural variations, which were treated as unwanted side reactions, were identified as a pivotal factor by deactivating the terminal hydroxy during chain growth. Their effective sterilization properties and degradability endowed the as-prepared PHB oligomers with a promising biomedical potential, including for use as disinfectants, sanitizers, and antiseptics. Full article
Show Figures

Graphical abstract

19 pages, 1815 KB  
Article
Selected-Wavelength Illumination for Enhanced Hydrogen and Poly-β-hydroxybutyrate Production from Second Cheese Whey by Rhodopseudomonas palustris
by Luca Bernabò, Giulia Daly, Viola Galli, Simona Guerrini, Carlo Viti, Lisa Granchi and Alessandra Adessi
Microorganisms 2026, 14(1), 32; https://doi.org/10.3390/microorganisms14010032 - 22 Dec 2025
Viewed by 408
Abstract
Second cheese whey (SCW), a major by-product of ricotta cheese production, poses significant environmental challenges due to its high organic load. Biohydrogen (bio-H2) and poly-β-hydroxybutyrate (PHB) production offer a sustainable reuse of SCW, that provides ideal nutrients for microbial growth. This [...] Read more.
Second cheese whey (SCW), a major by-product of ricotta cheese production, poses significant environmental challenges due to its high organic load. Biohydrogen (bio-H2) and poly-β-hydroxybutyrate (PHB) production offer a sustainable reuse of SCW, that provides ideal nutrients for microbial growth. This study aimed to convert SCW into Bio-H2 and PHB using a 5-liter tubular bioreactor in a sequential lactic fermentation and photofermentation system. Two lighting conditions were tested: white LED (WL) and selected LED (SL). Optimal results were achieved with a co-inoculum of Lactococcus lactis MK L84 and Lacticaseibacillus paracasei MK L49 at pH 4.5–5.5, followed by photofermentation with Rhodopseudomonas palustris 42OL under SL condition. The process yielded an average of 0.47 L of H2 per liter of substrate and 1.66% wPHB/wCDW. This approach successfully transformed dairy waste into high-value products, promoting circular economy principles. Full article
(This article belongs to the Special Issue Microbial Bioprocesses)
Show Figures

Figure 1

19 pages, 2759 KB  
Article
Carbon-Source Effects on Growth and Secondary Metabolism in the Marine Bacteroidota Tenacibaculum mesophilum and Fulvivirga kasyanovii
by Luis Linares-Otoya, Virginia Linares-Otoya, Gladys Galliani-Huamanchumo, Terecita Carrion-Zavaleta, Jose Condor-Goytizolo, Till F. Schäberle, Mayar L. Ganoza-Yupanqui and Julio Campos-Florian
Mar. Drugs 2025, 23(10), 394; https://doi.org/10.3390/md23100394 - 4 Oct 2025
Viewed by 1107
Abstract
Marine Bacteroidota are recognized bacterial producers of bioactive metabolites, yet their biosynthetic potential remains cryptic under standard laboratory conditions. Here, we developed chemically defined media for Fulvivirga kasyanovii 48LL (Cytophagia) and Tenacibaculum mesophilum fLL (Flavobacteriia) to evaluate the effect of environmentally relevant carbon [...] Read more.
Marine Bacteroidota are recognized bacterial producers of bioactive metabolites, yet their biosynthetic potential remains cryptic under standard laboratory conditions. Here, we developed chemically defined media for Fulvivirga kasyanovii 48LL (Cytophagia) and Tenacibaculum mesophilum fLL (Flavobacteriia) to evaluate the effect of environmentally relevant carbon sources on growth and secondary metabolism. F. kasyanovii utilized 31 of 34 tested carbon sources whereas T. mesophilum grew on only five substrates, underscoring a distinct nutritional preferences. Substrate significantly influenced the antibacterial activity of F. kasyanovii extracts. Growth on β-1,3-glucan, glycerol, poly(β-hydroxybutyrate) (PHB), fish gelatin, or pectin resulted in extracts generating the largest inhibition zones (10–13 mm) against Bacillus subtilis or Rossellomorea marisflavi. Genome analysis revealed F. kasyanovii to be enriched in biosynthetic gene clusters (BGCs), notably harboring a ~570 kb genomic island comprising five large NRPS/PKS-type clusters. Quantitative PCR confirmed carbon-source-dependent regulation of these operons: glucose induced BGC1, BGC3, and BGC4, while κ-carrageenan and PHB upregulated BGC2. Conversely, yeast–peptone medium (analogous to standard marine broth) repressed transcription across all active clusters. These findings demonstrate that naturally occurring carbon sources can selectively activate cryptic BGCs and modulate antibacterial activity in F. kasyanovii, suggesting that similar strategy can be used for natural-product discovery in marine Bacteroidota. Full article
(This article belongs to the Special Issue Fermentation Processes for Obtaining Marine Bioactive Products)
Show Figures

Figure 1

17 pages, 3122 KB  
Article
Carbon:Nitrogen Ratio Affects Differentially the Poly-β-hydroxybutyrate Synthesis in Bacillus thuringiensis Isolates from México
by Marco Tulio Romero Sanchez, Shirlley Elizabeth Martínez Tolibia, Laura Jeannette García Barrera, Pavel Sierra Martínez, Jorge Noel Gracida Rodríguez, Valentín López Gayou and Víctor Eric López y López
Polymers 2025, 17(14), 1978; https://doi.org/10.3390/polym17141978 - 18 Jul 2025
Cited by 1 | Viewed by 1058
Abstract
Poly-β-hydroxybutyrate (P(3HB)) represents a suitable alternative for plastic replacement, since it consists of intracellularly produced polyesters by different microorganisms including Bacillus thuringiensis (Bt). P(3HB) conserves most of the properties of petroleum-derived plastics; however, some drawbacks are the production costs, processing times, and bioseparation [...] Read more.
Poly-β-hydroxybutyrate (P(3HB)) represents a suitable alternative for plastic replacement, since it consists of intracellularly produced polyesters by different microorganisms including Bacillus thuringiensis (Bt). P(3HB) conserves most of the properties of petroleum-derived plastics; however, some drawbacks are the production costs, processing times, and bioseparation techniques, limiting its extended use. Bt has production advantages over other microorganisms, such as those growing in conventional or non-conventional substrates, with short periods of fermentation, which make it an interesting candidate to develop optimized production processes. In this work, we identified P(3HB) producers from 72 isolates of Bt, from which we selected four potential candidates. These isolates were cultivated under different carbon:nitrogen (C:N) ratios of 3, 7, 30, and 50 in a complex medium named (CM). Here, the best conditions for growth in Bt isolates were C:N 3 and 7 ratios, whereas for P(3HB) production they were C:N 7 and 30. Following this, an experiment in a bioreactor was conducted with isolate 81C with the selected C:N ratio of 30, where the produced P(3HB) achieved a maximum at 10 h. Fourier transform infrared spectroscopy (FTIR)was used to characterize flask and bioreactor cultures. It must be mentioned that although a higher concentration of medium was used, this did not improve P(3HB) accumulation. This research demonstrates that C:N ratios can differentially influence growth and P(3HB) accumulation in Bt isolates, which can serve as a reference to develop P(3HB) production processes using Bt as a microbial production platform. Full article
Show Figures

Figure 1

11 pages, 1422 KB  
Article
Towards Precision Nutrition: A Novel Smartphone-Connected Biosensor for Point-of-Care Detection of β-Hydroxybutyrate in Human Blood and Saliva
by Cristina Tortolini, Massimiliano Caprio, Daniele Gianfrilli, Andrea Lenzi and Riccarda Antiochia
Sensors 2025, 25(14), 4336; https://doi.org/10.3390/s25144336 - 11 Jul 2025
Cited by 2 | Viewed by 1699
Abstract
Precision nutrition is an emerging approach that tailors dietary recommendations based on an individual’s unique genetic, metabolic, microbiome, and lifestyle factors. β-hydroxybutyrate (β-HB) is a key ketone body produced during fat metabolism, especially in states of fasting, low-carbohydrate intake, or prolonged exercise. Therefore, [...] Read more.
Precision nutrition is an emerging approach that tailors dietary recommendations based on an individual’s unique genetic, metabolic, microbiome, and lifestyle factors. β-hydroxybutyrate (β-HB) is a key ketone body produced during fat metabolism, especially in states of fasting, low-carbohydrate intake, or prolonged exercise. Therefore, monitoring β-HB levels provides valuable insights into an individual’s metabolic state, making it an essential biomarker for precision and personalized nutrition. A smartphone-connected electrochemical biosensor for single-use, rapid, low-cost, accurate, and selective detection of β-HB in whole blood and saliva at the Point-of-Care (POC) is reported. A graphite screen-printed carbon electrode modified with potassium ferricyanide (Fe(III)GSPE) was used as an electrode platform for the deposition of β-hydroxybutyrate dehydrogenase (HBDH), nicotinamide adenine dinucleotide oxidized form (NAD+), and chitosan nanoparticles (ChitNPs). An outer poly(vinyl) chloride (PVC) diffusion-limiting membrane was used to protect the modified electrode. The biosensor showed a linear range in the clinically relevant range, between 0.4 and 8 mM, with a detection limit (LOD) of 0.1 mM. The biosensor was tested on human blood and saliva samples, and the results were compared to those obtained with a commercial ketone meter, showing excellent agreement. Full article
(This article belongs to the Special Issue Feature Papers in Biomedical Sensors 2025)
Show Figures

Figure 1

16 pages, 2226 KB  
Article
Discovery of a High 3-Hydroxyhexanoate Containing Poly-3-hydroxybutyrate-co-3-hydroxyhexanoate Producer-, Cupriavidus sp. Oh_1 with Enhanced Fatty Acid Metabolism
by Gaeun Lim, Suk-Jin Oh, Yebin Han, Jeonghee Yun, Jeong Chan Joo, Hee-Taek Kim, Hyun Gi Koh, See-Hyoung Park, Kyungmoon Park and Yung-Hun Yang
Polymers 2025, 17(13), 1824; https://doi.org/10.3390/polym17131824 - 30 Jun 2025
Cited by 3 | Viewed by 1520
Abstract
Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(3HB-co-3HHx)) is a representative PHA copolymer that can improve the mechanical limitations of polyhydroxybutyrate (P(3HB)). Although genetic engineering can facilitate 3HHx incorporation, it often compromises cell growth and reduces polymer molecular weight owing to metabolic disruptions caused by the deletion [...] Read more.
Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(3HB-co-3HHx)) is a representative PHA copolymer that can improve the mechanical limitations of polyhydroxybutyrate (P(3HB)). Although genetic engineering can facilitate 3HHx incorporation, it often compromises cell growth and reduces polymer molecular weight owing to metabolic disruptions caused by the deletion of acetoacetyl coenzyme A (acetyl-CoA) reductase (PhaB). To address this issue, native strains capable of producing high levels of 3HHx were identified via oil-based Cupriavidus screening. Eight PHA-producing strains were isolated from various samples and Cupriavidus sp. Oh_1 exhibited the highest polyhydroxybutyrate (PHB) production at 15.23 g/L from 17.2 g/L of biomass using soybean oil. Moreover, Oh_1/phaCRaJPa, containing enoyl-CoA hydratase (phaJ) and PHA synthetase (phaC), was identified as the most effective novel strain producing the highest 3HHx mole fraction, 48.93 g/L of PHA from 52.3 g/L of biomass and achieving a maximum 3HHx accumulation of 27.2 mol%. The resulting P(3HB-co-3HHx) showed a higher Mw (12.3 × 105) compared with P(3HB-co-3HHx) produced by the phaB-deleted strain (14.6 × 104). Higher production of 3HHx was attributed to the higher expression of phaCRa and phaJPa in Oh_1, with log2 fold changes of 2.94 and 8.2, respectively, as well as the upregulation of certain β-oxidation encoding operons. Collectively, these findings highlight a strain capable of synthesizing a substantial 3HHx fraction without requiring gene deletions or extensive genetic modifications. Full article
Show Figures

Figure 1

20 pages, 10181 KB  
Article
Encapsulation of Transforming Growth Factor-β3 in Poly(hydroxybutyrate-co-hydroxyvalerate) Nanoparticles for Enhanced Cartilage Tissue Engineering
by Ana Isabel Rodríguez-Cendal, José Señarís-Rodríguez, María Piñeiro-Ramil, Loreto Cabarcos-Mouzo, María del Carmen Veiga-Barbazán, Rosa María Mejide-Faílde, Francisco Javier de Toro-Santos, Isaac Manuel Fuentes-Boquete and Silvia María Díaz-Prado
Int. J. Mol. Sci. 2025, 26(11), 4997; https://doi.org/10.3390/ijms26114997 - 22 May 2025
Cited by 2 | Viewed by 1043
Abstract
Poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) is a naturally occurring biopolymer belonging to the polyhydroxyalkanoate (PHA) family. Due to its excellent properties (biocompatible, biodegradable, and non-toxic), this biopolymer is presented as a very suitable option for use in regenerative therapy as a drug delivery system (DDS). The [...] Read more.
Poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) is a naturally occurring biopolymer belonging to the polyhydroxyalkanoate (PHA) family. Due to its excellent properties (biocompatible, biodegradable, and non-toxic), this biopolymer is presented as a very suitable option for use in regenerative therapy as a drug delivery system (DDS). The protein encapsulated in this study is transforming growth factor β3 (TGF-β3), which plays a key role in the chondrogenic differentiation of mesenchymal stem cells (MSCs). The main objective of this work is to evaluate the efficacy of PHBV nanoparticles (NPs) produced from a dairy by-product (whey) as a DDS of TGF-β3 for cartilage regeneration and extracellular matrix (ECM) synthesis and to reduce the complications associated with multiple high doses of TGF-β3 in its free form. For this purpose, biopolymer cytotoxicity, factor release, cell viability, cell proliferation, and differentiation were analyzed. The results showed that the biomaterial purified with chloroform and ethanol, either by single or double precipitation, was not toxic to cells. A sustained release profile was observed, reaching its maximum around day 4. The TGF-β3 NPs promoted the differentiation of MSCs into chondrocytes and the formation of ECM. In conclusion, PHBV demonstrated its potential as an optimal material for DDSs in cartilage regenerative therapy, effectively addressing the key challenge of the need for a single delivery method to reduce complications associated with multiple high doses of TGF-β3. Full article
(This article belongs to the Special Issue Bone and Cartilage Injury and Repair: Molecular Aspects)
Show Figures

Figure 1

21 pages, 4037 KB  
Article
Poly-β-hydroxybutyrate Production from Bread Waste via Sequential Dark Fermentation and Photofermentation
by Luca Bernabò, Giulia Daly, Gianmarco Mugnai, Viola Galli, Elisa Corneli, Lisa Granchi and Alessandra Adessi
Foods 2025, 14(10), 1659; https://doi.org/10.3390/foods14101659 - 8 May 2025
Cited by 2 | Viewed by 1371
Abstract
This study explores the valorization of bread waste for poly-β-hydroxybutyrate (PHB) production through a combined dark fermentation (DF) and photofermentation (PF) process. DF, performed using Lactobacillus amylovorus DSM 20532, efficiently converted bread waste into a lactate- and acetate-rich substrate within 120 [...] Read more.
This study explores the valorization of bread waste for poly-β-hydroxybutyrate (PHB) production through a combined dark fermentation (DF) and photofermentation (PF) process. DF, performed using Lactobacillus amylovorus DSM 20532, efficiently converted bread waste into a lactate- and acetate-rich substrate within 120 h. The resulting fermented bread broth (FBB) was enriched with essential nutrients by adding digestate from anaerobic digestion, replacing the need for chemical supplements. Six purple non-sulfur bacteria (PNSB) strains were screened for PHB production in the FBB. Cereibacter johrii Pisa7 demonstrated the highest PHB accumulation (50.73% w PHB/w cells), and biomass increase (+1.26 g L−1) over 336 h, leading to its selection for scale-up. Scale-up experiments were conducted in a 5 L photobioreactor with LED lights optimized for PNSB growth. C. johrii Pisa7 accumulated PHB at 15.17% and 11.51% w PHB/w cells in two independent trials, corresponding to productivities of 2.03 and 0.89 mg PHB L−1 h−1. These results confirm the scalability of the process while maintaining competitive PHB yields. This study highlights the potential of bread waste as a low-cost carbon source for bioplastic production, contributing to a circular bioeconomy by converting food waste into sustainable materials. Full article
Show Figures

Figure 1

19 pages, 33776 KB  
Article
Effect of Insecticides Imidacloprid and Alpha-Cypermethrin on the Development of Pea (Pisum sativum L.) Nodules
by Artemii P. Gorshkov, Pyotr G. Kusakin, Maxim G. Vorobiev, Anna V. Tsyganova and Viktor E. Tsyganov
Plants 2024, 13(23), 3439; https://doi.org/10.3390/plants13233439 - 7 Dec 2024
Cited by 1 | Viewed by 2244
Abstract
Insecticides are used commonly in agricultural production to defend plants, including legumes, from insect pests. It is a known fact that insecticides can have a harmful effect on the legume–rhizobial symbiosis. In this study, the effects of systemic seed treatment insecticide Imidor Pro [...] Read more.
Insecticides are used commonly in agricultural production to defend plants, including legumes, from insect pests. It is a known fact that insecticides can have a harmful effect on the legume–rhizobial symbiosis. In this study, the effects of systemic seed treatment insecticide Imidor Pro (imidacloprid) and foliar insecticide Faskord (alpha-cypermethrin) on the structural organization of pea (Pisum sativum L.) nodules and their transcriptomic activity were investigated. The plants were treated as recommended by the manufacturer (10 mg/mL for Imidor Pro and 50 µg/mL for Faskord) and twofold concentrations were used for both insecticides. Insecticides had no visible effect on the growth of pea plants. The nodules also showed no visible changes, except for the variant treated with twofold concentration of Imidor Pro. However, the dry weight of shoots and roots differed significantly in insecticide-treated plants compared to untreated plants in almost all treatments. The number of nodules decreased in variants with Imidor Pro treatment. At the ultrastructural level, both insecticides caused cell wall deformation, poly-β-hydroxybutyrate accumulation in bacteroids, expansion of the peribacteroid space in symbiosomes, and inclusions in vacuoles. Treatment with Faskord caused chromatin condensation in nucleus. Imidor Pro treatment caused hypertrophy of infection droplets by increasing the amount of matrix, as confirmed by immunofluorescence analysis of extensins. Transcriptome analysis revealed upregulation of expression of a number of extensin-like protein-coding genes in nodules after the Imidor Pro treatment. Overall, both insecticides caused some minor changes in the legume–rhizobial system when used at recommended doses, but Faskord, an enteric contact insecticide, has fewer negative effects on symbiotic nodules and legume plants; of these two insecticides, it is preferred in pea agricultural production. Full article
(This article belongs to the Special Issue Application of Agrochemical Technologies in Crop Protection)
Show Figures

Figure 1

12 pages, 15725 KB  
Article
Effect of Amorphous Halomonas-PHB on Growth, Body Composition, Immune-Related Gene Expression and Vibrio anguillarum Resistance of Hybrid Grouper (Epinephelus fuscoguttatus ♀ × E. lanceolatu ♂) Juveniles
by Wei Xie, Haoran Ma, Meirong Gao, Dongdong Du, Liangsen Liu and Liying Sui
Animals 2024, 14(18), 2649; https://doi.org/10.3390/ani14182649 - 12 Sep 2024
Cited by 4 | Viewed by 1913
Abstract
Poly-β-hydroxybutyrate (PHB) is a bacterial metabolite produced by bacteria such as Halomonas sp. that serves as a carbon and energy storage compound for bacteria under nutrient-limited conditions. Two experiments were conducted to investigate the effects of dietary supplementation with Halomonas-PHB on hybrid [...] Read more.
Poly-β-hydroxybutyrate (PHB) is a bacterial metabolite produced by bacteria such as Halomonas sp. that serves as a carbon and energy storage compound for bacteria under nutrient-limited conditions. Two experiments were conducted to investigate the effects of dietary supplementation with Halomonas-PHB on hybrid grouper (Epinephelus fuscoguttatus ♀ × E. lanceolatu ♂). In experiment I, juvenile groupers were fed basal diets supplemented with 3% Halomonas-PHB (3% HM-PHB) containing 1.4% PHB and 3% Halomonas (3% HM) without PHB, as well as a control diet, for seven weeks. The results showed no significant difference in survival rate, weight gain, and crude fat content between the 3% HM-PHB group and the control group; however, the crude protein of the 3% HM-PHB group was significantly lower than that of the control group. Furthermore, supplementation with 3% HM-PHB increased the fatty acids content in fish muscles, including long-chain unsaturated fatty acids C18:1n9, EPA, and DHA. In experiment II, groupers were fed a basal diet supplemented with 6.5% Halomonas-PHB (6.5% HM-PHB) containing 3% PHB and 6.5% Halomonas (6.5% HM) containing no PHB, as well as a basal diet (Control). After seven weeks of rearing, the fish were challenged with Vibrio anguillarum for 48 h. Although no significant difference in survival rate and growth was observed among different groups, the dietary supplement of 6.5% Halomonas-PHB improved the survival rate of V. anguillarum challenged grouper and significantly increased the gene expressions of catalase (CAT) and superoxide dismutase (SOD) in blood, interleukin 1 (IL1) and interleukin 10 (IL10) in the liver, spleen, head kidney, and blood (p < 0.05). In conclusion, dietary supplementation of Halomonas-PHB had no significantly positive effect on fish growth performance but increased the content of fatty acids, including long-chain unsaturated fatty acids C18:1n9, EPA, and DHA in fish muscle; it also improved the V. anguillarum resistance, possibly through increasing immune-related gene expression in different tissues and organs. Our findings offer compelling evidence that Halomonas-PHB can be utilized as a feed additive in intensive grouper farming to enhance the groupers’ resistance to Vibrio. Full article
Show Figures

Figure 1

16 pages, 4504 KB  
Article
Composites of Poly(3-hydroxybutyrate) and Mesoporous SBA-15 Silica: Crystalline Characteristics, Confinement and Final Properties
by Tamara M. Díez-Rodríguez, Enrique Blázquez-Blázquez, Ernesto Pérez and María L. Cerrada
Polymers 2024, 16(8), 1037; https://doi.org/10.3390/polym16081037 - 10 Apr 2024
Cited by 1 | Viewed by 1349
Abstract
Several composites based on poly(3-hydroxybutyrate) (PHB) and mesoporous SBA-15 silica were prepared by solvent-casting followed by a further stage of compression molding. The thermal stability, phase transitions and crystalline details of these composites were studied, paying special attention to the confinement of the [...] Read more.
Several composites based on poly(3-hydroxybutyrate) (PHB) and mesoporous SBA-15 silica were prepared by solvent-casting followed by a further stage of compression molding. The thermal stability, phase transitions and crystalline details of these composites were studied, paying special attention to the confinement of the PHB polymeric chains into the mesopores of the silica. For that, differential scanning calorimetry (DSC) and real-time variable-temperature X-ray scattering at small angles (SAXS) were performed. Confinement was stated first by the existence of a small endotherm at temperatures around 20 °C below the main melting or crystallization peak, being later confirmed by a notable discontinuity in the intensity of the main (100) diffraction from the mesoporous silica observed through SAXS experiments, which is related to the change in the scattering contrast before and after the crystallization or melting of the polymer chains. Furthermore, the usual α modification of PHB was developed in all samples. Finally, a preliminary investigation of mechanical and relaxation parameters was carried out through dynamic–mechanical thermal analysis (DMTA). The results show, in the temperature interval analyzed, two relaxations, named α and β (the latest related to the glass transition) in order of decreasing temperatures, in all specimens. The role of silica as a filler is mainly observed at temperatures higher than the glass transition. In such cases, stiffness is dependent on SBA-15 content. Full article
(This article belongs to the Special Issue Organic-Inorganic Hybrid Materials III)
Show Figures

Figure 1

12 pages, 5312 KB  
Article
Optimizing Hexose Utilization Pathways of Cupriavidus necator for Improving Growth and L-Alanine Production under Heterotrophic and Autotrophic Conditions
by Lei Wang, Huiying Luo, Bin Yao, Junhu Yao and Jie Zhang
Int. J. Mol. Sci. 2024, 25(1), 548; https://doi.org/10.3390/ijms25010548 - 31 Dec 2023
Cited by 49 | Viewed by 5546
Abstract
Cupriavidus necator is a versatile microbial chassis to produce high-value products. Blocking the poly-β-hydroxybutyrate synthesis pathway (encoded by the phaC1AB1 operon) can effectively enhance the production of C. necator, but usually decreases cell density in the stationary phase. To address this problem, [...] Read more.
Cupriavidus necator is a versatile microbial chassis to produce high-value products. Blocking the poly-β-hydroxybutyrate synthesis pathway (encoded by the phaC1AB1 operon) can effectively enhance the production of C. necator, but usually decreases cell density in the stationary phase. To address this problem, we modified the hexose utilization pathways of C. necator in this study by implementing strategies such as blocking the Entner–Doudoroff pathway, completing the phosphopentose pathway by expressing the gnd gene (encoding 6-phosphogluconate dehydrogenase), and completing the Embden–Meyerhof–Parnas pathway by expressing the pfkA gene (encoding 6-phosphofructokinase). During heterotrophic fermentation, the OD600 of the phaC1AB1-knockout strain increased by 44.8% with pfkA gene expression alone, and by 93.1% with gnd and pfkA genes expressing simultaneously. During autotrophic fermentation, gnd and pfkA genes raised the OD600 of phaC1AB1-knockout strains by 19.4% and 12.0%, respectively. To explore the effect of the pfkA gene on the production of C. necator, an alanine-producing C. necator was constructed by expressing the NADPH-dependent L-alanine dehydrogenase, alanine exporter, and knocking out the phaC1AB1 operon. The alanine-producing strain had maximum alanine titer and yield of 784 mg/L and 11.0%, respectively. And these values were significantly improved to 998 mg/L and 13.4% by expressing the pfkA gene. The results indicate that completing the Embden–Meyerhof–Parnas pathway by expressing the pfkA gene is an effective method to improve the growth and production of C. necator. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

15 pages, 4674 KB  
Article
Microbeam X-ray Reanalysis on Periodically Assembled Poly(β-Hydroxybutyric acid-Co-β-hydroxyvaleric acid) Tailored with Diluents
by Chun-Ning Wu, Selvaraj Nagarajan, Li-Ting Lee, Chean-Cheng Su and Eamor M. Woo
Polymers 2023, 15(16), 3484; https://doi.org/10.3390/polym15163484 - 20 Aug 2023
Viewed by 1646
Abstract
Self-assembly of 3D interiors and iridescence properties of poly(β-hydroxybutyric acid-co-β-hydroxyvaleric acid) (PHBV) periodic crystals are examined using microcopy techniques and microbeam X-ray diffraction. Morphology of PHBV can be tailored by crystallizing in presence of poly(vinyl acetate) (PVAc) or poly(trimethylene adipate) (PTA) for displaying [...] Read more.
Self-assembly of 3D interiors and iridescence properties of poly(β-hydroxybutyric acid-co-β-hydroxyvaleric acid) (PHBV) periodic crystals are examined using microcopy techniques and microbeam X-ray diffraction. Morphology of PHBV can be tailored by crystallizing in presence of poly(vinyl acetate) (PVAc) or poly(trimethylene adipate) (PTA) for displaying desired periodicity patterns. The regular alternate-layered lamellae of banded PHBV crystal aggregates, resembling the structures the natural mineral moonstone or nacre, are examined to elaborate the origin of light interference and formation mechanisms of periodic lamellar aggregation of PHBV spherulites. By using PHBV as a convenient model and the crystal diffraction data, this continuing work demonstrates unique methodology for effectively studying the periodic assembly in widely varying polymers with similar aggregates. Grating structures in periodically assembled polymer crystals can be tailored for microstructure with orderly periodicity. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

21 pages, 7518 KB  
Article
Novel Electrospun Composite Membranes Based on Polyhydroxybutyrate and Poly(vinyl formate) Loaded with Protonated Montmorillonite for Organic Dye Removal: Kinetic and Isotherm Studies
by Hristo Penchev, Ahmed E. Abdelhamid, Eman A. Ali, Dessislava Budurova, Georgy Grancharov, Filip Ublekov, Neli Koseva, Katerina Zaharieva, Ahmed A. El-Sayed and Ahmed M. Khalil
Membranes 2023, 13(6), 582; https://doi.org/10.3390/membranes13060582 - 3 Jun 2023
Cited by 15 | Viewed by 2715
Abstract
The use of biodegradable polyesters derived from green sources and their combination with natural abundantly layered aluminosilicate clay, e.g., natural montmorillonite, meets the requirements for the development of new sustainable, disposable, and biodegradable organic dye sorbent materials. In this regard, novel electrospun composite [...] Read more.
The use of biodegradable polyesters derived from green sources and their combination with natural abundantly layered aluminosilicate clay, e.g., natural montmorillonite, meets the requirements for the development of new sustainable, disposable, and biodegradable organic dye sorbent materials. In this regard, novel electrospun composite fibers, based on poly β-hydroxybutyrate (PHB) and in situ synthesized poly(vinyl formate) (PVF), loaded with protonated montmorillonite (MMT-H) were prepared via electrospinning in the presence of formic acid, a volatile solvent for polymers and a protonating agent for the pristine MMT-Na. The morphology and structure of electrospun composite fibers were investigated through SEM, TEM, AFM, FT-IR, and XRD analyses. The contact angle (CA) measurements showed increased hydrophilicity of the composite fibers incorporated with MMT-H. The electrospun fibrous mats were evaluated as membranes for removing cationic (methylene blue) and anionic (Congo red) dyes. PHB/MMT 20% and PVF/MMT 30% showed significant performance in dye removal compared with the other matrices. PHB/MMT 20% was the best electrospun mat for adsorbing Congo red. The PVF/MMT 30% fibrous membrane exhibited the optimum activity for the adsorption of methylene blue and Congo red dyes. Full article
(This article belongs to the Special Issue Recent Advances in Membrane Filtration and Purification Technologies)
Show Figures

Figure 1

25 pages, 17271 KB  
Article
Topically Applied Biopolymer-Based Tri-Layered Hierarchically Structured Nanofibrous Scaffold with a Self-Pumping Effect for Accelerated Full-Thickness Wound Healing in a Rat Model
by Kholoud H. Hamza, Ahmed A. El-Shanshory, Mona M. Agwa, Mohamed I. Abo-Alkasem, Esmail M. El-Fakharany, Abdallah S. Abdelsattar, Ali A. El-Bardan, Taher S. Kassem, Xiumei Mo and Hesham M. A. Soliman
Pharmaceutics 2023, 15(5), 1518; https://doi.org/10.3390/pharmaceutics15051518 - 17 May 2023
Cited by 15 | Viewed by 3748
Abstract
Wound healing has grown to be a significant problem at a global scale. The lack of multifunctionality in most wound dressing-based biopolymers prevents them from meeting all clinical requirements. Therefore, a multifunctional biopolymer-based tri-layered hierarchically nanofibrous scaffold in wound dressing can contribute to [...] Read more.
Wound healing has grown to be a significant problem at a global scale. The lack of multifunctionality in most wound dressing-based biopolymers prevents them from meeting all clinical requirements. Therefore, a multifunctional biopolymer-based tri-layered hierarchically nanofibrous scaffold in wound dressing can contribute to skin regeneration. In this study, a multifunctional antibacterial biopolymer-based tri-layered hierarchically nanofibrous scaffold comprising three layers was constructed. The bottom and the top layers contain hydrophilic silk fibroin (SF) and fish skin collagen (COL), respectively, for accelerated healing, interspersed with a middle layer of hydrophobic poly-3-hydroxybutyrate (PHB) containing amoxicillin (AMX) as an antibacterial drug. The advantageous physicochemical properties of the nanofibrous scaffold were estimated by SEM, FTIR, fluid uptake, contact angle, porosity, and mechanical properties. Moreover, the in vitro cytotoxicity and cell healing were assessed by MTT assay and the cell scratching method, respectively, and revealed excellent biocompatibility. The nanofibrous scaffold exhibited significant antimicrobial activity against multiple pathogenic bacteria. Furthermore, the in vivo wound healing and histological studies demonstrated complete wound healing in wounded rats on day 14, along with an increase in the expression level of the transforming growth factor-β1 (TGF-β1) and a decrease in the expression level of interleukin-6 (IL-6). The results revealed that the fabricated nanofibrous scaffold is a potent wound dressing scaffold, and significantly accelerates full-thickness wound healing in a rat model. Full article
(This article belongs to the Special Issue Biomaterials in Skin Wound Healing and Tissue Regenerations Volume II)
Show Figures

Graphical abstract

Back to TopTop