Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (147)

Search Parameters:
Keywords = poly(L-lactide-co-glycolide)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3615 KiB  
Article
Fabrication of PVA Coatings Applied to Electrospun PLGA Scaffolds to Prevent Postoperative Adhesions
by Arsalan D. Badaraev, Evgenii V. Plotnikov, Vladislav R. Bukal, Gleb E. Dubinenko, Johannes Frueh, Sven Rutkowski and Sergei I. Tverdokhlebov
J. Funct. Biomater. 2025, 16(2), 57; https://doi.org/10.3390/jfb16020057 - 10 Feb 2025
Cited by 1 | Viewed by 1316
Abstract
There is currently a demand for anti-adhesive materials that are capable of preventing the formation of intra-abdominal adhesions. In this study, electrospun poly(lactide-co-glycolide) scaffolds were dip-coated in aqueous solutions of polyvinyl alcohol with concentrations of 3 wt.%, 6 wt.% and 9 wt.% to [...] Read more.
There is currently a demand for anti-adhesive materials that are capable of preventing the formation of intra-abdominal adhesions. In this study, electrospun poly(lactide-co-glycolide) scaffolds were dip-coated in aqueous solutions of polyvinyl alcohol with concentrations of 3 wt.%, 6 wt.% and 9 wt.% to obtain a nontoxic and anti-adhesive biomedical material. The viscosities of the applied 3 wt.%, 6 wt.% and 9 wt.% polyvinyl alcohol solutions were 7.7 mPa∙s, 38.2 mPa∙s and 180.8 mPa∙s, respectively, and increased exponentially. It is shown that increasing the viscosity of the polyvinyl alcohol solution from 6 wt.% to 9 wt.% increases the thickness of the polyvinyl alcohol layer from (3.32 ± 0.97) µm to (8.09 ± 1.43) µm. No pronounced polyvinyl alcohol layer can be observed on samples dip-coated in 3 wt.% PVA solution. Increasing the viscosity of the polyvinyl alcohol solution from 3 wt.% to 9 wt.% increases the mechanical properties of the poly(lactide-co-glycolide) samples by a factor of 1.16–1.45. Cytotoxicity analysis of all samples reveals that none is toxic to 3T3-L1 fibroblast cells. A cell adhesion assay indicates that the anti-adhesion properties increase with increasing viscosity of the polyvinyl alcohol solution and the thickness of the polyvinyl alcohol layer on the poly(lactide-co-glycolide) scaffolds. Fluorescence images of the cells show that as the thickness of the polyvinyl alcohol coating increases, the number of cells decreases, and they do not cover the surface of the samples and form spherical three-dimensional agglomerates. The highest mechanical and anti-adhesion properties are obtained with the poly(lactide-co-glycolide) scaffold sample dip-coated in the 9 wt.% polyvinyl alcohol solution. This is because this sample has the thickest polyvinyl alcohol coating. Full article
(This article belongs to the Special Issue Scaffold for Tissue Engineering)
Show Figures

Figure 1

40 pages, 2155 KiB  
Review
PLGA-Based Strategies for Intranasal and Pulmonary Applications
by Hossein Omidian and Renae L. Wilson
Pharmaceutics 2025, 17(2), 207; https://doi.org/10.3390/pharmaceutics17020207 - 6 Feb 2025
Cited by 1 | Viewed by 1885
Abstract
Poly(D,L-lactide-co-glycolide) (PLGA) has emerged as a cornerstone in the development of advanced drug delivery systems, particularly for intranasal and pulmonary routes. Its biodegradability, biocompatibility, and adaptability make it an ideal platform for addressing challenges associated with conventional therapies. By enabling sustained and controlled [...] Read more.
Poly(D,L-lactide-co-glycolide) (PLGA) has emerged as a cornerstone in the development of advanced drug delivery systems, particularly for intranasal and pulmonary routes. Its biodegradability, biocompatibility, and adaptability make it an ideal platform for addressing challenges associated with conventional therapies. By enabling sustained and controlled drug release, PLGA formulations reduce dosing frequency, improve patient compliance, and enhance therapeutic efficacy. These systems demonstrate versatility, accommodating hydrophilic and hydrophobic drugs, biological molecules, and co-delivery of synergistic agents. Moreover, surface modifications and advanced preparation techniques enhance targeting, bioavailability, and stability, expanding PLGA’s applications to treat complex diseases such as tuberculosis, cancer, pulmonary fibrosis, and CNS disorders. This manuscript provides an in-depth review of PLGA’s materials, properties, preparation methods, and therapeutic applications, alongside a critical evaluation of challenges and future opportunities in this field. Full article
Show Figures

Figure 1

25 pages, 13480 KiB  
Article
Comparison of Drug Delivery Systems with Different Types of Nanoparticles in Terms of Cellular Uptake and Responses in Human Endothelial Cells, Pericytes, and Astrocytes
by Hakan Sahin, Oguz Yucel, Paul Holloway, Eren Yildirim, Serkan Emik, Gulten Gurdag, Gamze Tanriverdi and Gozde Erkanli Senturk
Pharmaceuticals 2024, 17(12), 1567; https://doi.org/10.3390/ph17121567 - 22 Nov 2024
Cited by 4 | Viewed by 1841
Abstract
Background/Objectives: The key components of the blood–brain barrier (BBB) are endothelial cells, pericytes, astrocytes, and the capillary basement membrane. The BBB serves as the main barrier for drug delivery to the brain and is the most restrictive endothelial barrier in the body. [...] Read more.
Background/Objectives: The key components of the blood–brain barrier (BBB) are endothelial cells, pericytes, astrocytes, and the capillary basement membrane. The BBB serves as the main barrier for drug delivery to the brain and is the most restrictive endothelial barrier in the body. Nearly all large therapeutic molecules and over 90% of small-molecule drugs cannot cross the BBB. To overcome this challenge, nanotechnology, particularly drug delivery systems such as nanoparticles (NPs), have gained significant attention. Methods: Poly(lactide-co-glycolide) (PLGA) and albumin-based NPs (bovine/human), with or without transferrin (Tf) ligands (BSA, HSA, BSA-Tf, HSA-Tf), and nanolipid carriers (NLC) were synthesized. The interactions of these NPs with human brain microvascular endothelial cells (hBMECs), human brain vascular pericytes (hBVPs), and human astrocytes (hASTROs) were analyzed. Results: At doses of 15.62 µg/mL, 31.25 µg/mL, and 62.5 µg/mL, none of the NPs caused toxic effects on hBMECs, hBVPs, or hASTROs after 3 h of incubation. All NPs were internalized by the cells, but BSA-Tf and HSA-Tf showed significantly higher uptake in hBMECs in a dose-dependent manner. Ultrastructural analysis revealed notable differences between NP formulation and cell type. Conclusions: Our findings underscore the potential of ligand-targeted NPs to selectively interact with BBB endothelial cells. Ultrastructural analysis reveals distinct cellular processing pathways for various NP formulations across BBB-associated cell types, with autophagy emerging as a crucial mechanism for NP handling in pericytes and astrocytes. Changes in NP chemical properties upon biological exposure present significant challenges for nanomedicine design, emphasizing the need for further investigation into NP interactions at the cellular and subcellular levels. Full article
(This article belongs to the Special Issue Drug Delivery across the Blood–Brain Barrier)
Show Figures

Figure 1

27 pages, 11207 KiB  
Article
Future-Oriented Nanosystems Composed of Polyamidoamine Dendrimer and Biodegradable Polymers as an Anticancer Drug Carrier for Potential Targeted Treatment
by Katarzyna Strzelecka, Adam Kasiński, Tadeusz Biela, Anita Bocho-Janiszewska, Anna Laskowska, Łukasz Szeleszczuk, Maciej Gawlak, Marcin Sobczak and Ewa Oledzka
Pharmaceutics 2024, 16(11), 1482; https://doi.org/10.3390/pharmaceutics16111482 - 20 Nov 2024
Viewed by 1166
Abstract
Background/Objectives: Camptothecin (CPT) is a well-known chemical compound recognized for its significant anticancer properties. However, its clinical application remains limited due to challenges related to CPT’s high hydrophobicity and the instability of its active form. To address these difficulties, our research focused [...] Read more.
Background/Objectives: Camptothecin (CPT) is a well-known chemical compound recognized for its significant anticancer properties. However, its clinical application remains limited due to challenges related to CPT’s high hydrophobicity and the instability of its active form. To address these difficulties, our research focused on the development of four novel nanoparticulate systems intended for either oral or intravenous administration. Methods: These nanosystems were based on a poly(amidoamine) (PAMAM) dendrimer/CPT complex, which had been coated with biodegradable homo- and copolymers, designed with appropriate physicochemical properties and chain microstructures. Results: The resulting nanomaterials, with diameters ranging from 110 to 406 nm and dispersity values between 0.10 and 0.67, exhibited a positive surface charge and were synthesized using biodegradable poly(L-lactide) (PLLA), poly(L-lactide-co-ε-caprolactone) (PLACL), and poly(glycolide-co-ε-caprolactone) (PGACL). Biological assessments, including cell viability and hemolysis tests, indicated that all polymers demonstrated less than 5% hemolysis, confirming their hemocompatibility for potential intravenous use. Furthermore, fibroblasts exposed to these matrices showed concentration-dependent viability. The entrapment efficiency (EE) of CPT reached up to 27%, with drug loading (DL) values as high as 17%. The in vitro drug release studies lasted over 400 h with the use of phosphate buffer solutions at two different pH levels, demonstrating that time-dependent processes allowed for a gradual and controlled release of CPT from the developed nanosystems. The release kinetics of the active compound at pH 7.4 ± 0.05 and 6.5 ± 0.05 followed near-first-order or first-order models, with diffusion and Fickian/non-Fickian transport mechanisms. Importantly, the nanoparticulate systems enabled the stabilization of the pharmacologically active form of CPT, while providing protection against hydrolysis, even in physiological environments. Conclusions: In our opinion, these results underscore the promising future of biodegradable nanosystems as effective drug delivery systems (DDSs) for targeted cancer treatment, offering stability and efficacy over short, medium, and long-term applications. Full article
Show Figures

Figure 1

20 pages, 3601 KiB  
Article
Formulation, Characterisation, and Biocompatibility Assessment of Rifampicin-Loaded Poly(d,l-lactide-co-glycolide) Composites for Local Treatment of Orthopaedic and Wound Infections
by Mitali Singhal, Colin C. Seaton, Alexander Surtees and Maria G. Katsikogianni
Pharmaceutics 2024, 16(11), 1467; https://doi.org/10.3390/pharmaceutics16111467 - 18 Nov 2024
Cited by 1 | Viewed by 2117
Abstract
Background/Objectives: The escalating challenge of antimicrobial resistance (AMR) necessitates the development of targeted antibiotic delivery platforms, minimising systemic administration. Polymer-based drug delivery emerges as a promising solution, ensuring sustained release and prolonged efficacy of bioactive compounds, ensuring long-term efficacy. Methods: This study focuses [...] Read more.
Background/Objectives: The escalating challenge of antimicrobial resistance (AMR) necessitates the development of targeted antibiotic delivery platforms, minimising systemic administration. Polymer-based drug delivery emerges as a promising solution, ensuring sustained release and prolonged efficacy of bioactive compounds, ensuring long-term efficacy. Methods: This study focuses on encapsulating rifampicin (RIF), a key antibiotic for orthopaedic and wound-related infections, within Poly(d,l-lactide-co-glycolide) (PLGA), a biodegradable polymer, through solvent casting, to formulate a PLGA-RIF composite membrane. Comprehensive characterisation, employing Fourier-transformed infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), thermal analysis and X-ray Diffraction (XRD), confirmed the integrity of both the starting and produced materials. UV-Vis spectroscopy revealed a controlled drug release profile over 21 days in various media, with the chosen media influencing the drug release, notably the tryptic soya broth (TSB) caused the highest release. The quantitative assessment of the antimicrobial efficacy of the developed PLGA-RIF composite was conducted by measuring the size of the inhibition zones against both Gram-negative and Gram-positive bacteria. Results: The results confirmed the composite’s potential as a robust antibacterial biomaterial, demonstrating a rapid and effective antibacterial response. Cytocompatibility tests incorporated human fibroblast and osteoblast-like cell lines and demonstrated that the RIF:PLGA (1:8) formulation maintained eukaryotic cell viability, indicating the composite’s potential for targeted medical applications in combating bacterial infections with minimal systemic impact. Conclusions: This study presents the significance of investigating drug release within appropriate and relevant physiological media. A key novelty of this work therefore lies in the exploration of drug release dynamics across different media, allowing for a comprehensive understanding of how varying physiological conditions may influence drug release and its effect on biological responses. Full article
(This article belongs to the Special Issue New Technology for Prolonged Drug Release, 2nd Edition)
Show Figures

Figure 1

13 pages, 2740 KiB  
Article
PLGA-PEG Nanoparticles Loaded with Cdc42 Inhibitor for Colorectal Cancer Targeted Therapy
by Sanazar Kadyr, Altyn Zhuraliyeva, Aislu Yermekova, Aigerim Makhambetova, Daulet B. Kaldybekov, Ellina A. Mun, Denis Bulanin, Sholpan N. Askarova and Bauyrzhan A. Umbayev
Pharmaceutics 2024, 16(10), 1301; https://doi.org/10.3390/pharmaceutics16101301 - 6 Oct 2024
Cited by 2 | Viewed by 2579
Abstract
Background/Objectives: An inhibitor of small Rho GTPase Cdc42, CASIN, has been shown to reduce cancer cell proliferation, migration, and invasion, yet it has several limitations, including rapid drug elimination and low bioavailability, which prevents its systemic administration. In this study, we designed and [...] Read more.
Background/Objectives: An inhibitor of small Rho GTPase Cdc42, CASIN, has been shown to reduce cancer cell proliferation, migration, and invasion, yet it has several limitations, including rapid drug elimination and low bioavailability, which prevents its systemic administration. In this study, we designed and characterized a nanoparticle-based delivery system for CASIN encapsulated within poly(lactide-co-glycolide)-block-poly(ethylene glycol)-carboxylic acid endcap nanoparticles (PLGA-PEG-COOH NPs) for targeted inhibition of Cdc42 activity in colon cancer. Methods: We applied DLS, TEM, and UV–vis spectroscopy methods to characterize the size, polydispersity index, zeta potential, encapsulation efficiency, loading capacity, and in vitro drug release of the synthesized nanoparticles. The CCK-8 cell viability test was used to study colorectal cancer cell growth in vitro. Results: We showed that CASIN-PLGA-PEG-COOH NPs were smooth, spherical, and had a particle size of 86 ± 1 nm, with an encapsulation efficiency of 66 ± 5% and a drug-loading capacity of 5 ± 1%. CASIN was gradually released from NPs, reaching its peak after 24 h, and could effectively inhibit the proliferation of HT-29 (IC50 = 19.55 µM), SW620 (IC50 = 9.33 µM), and HCT116 (IC50 = 10.45 µM) cells in concentrations ranging between 0.025–0.375 mg/mL. CASIN-PLGA-PEG-COOH NPs demonstrated low hemolytic activity with a hemolytic ratio of less than 1% for all tested concentrations. Conclusion: CASIN-PLGA-PEG-COOH NPs have high encapsulation efficiency, sustained drug release, good hemocompatibility, and antitumor activity in vitro. Our results suggest that PLGA-PEG-COOH nanoparticles loaded with CASIN show potential as a targeted treatment for colorectal cancer and could be recommended for further in vivo evaluation. Full article
Show Figures

Figure 1

14 pages, 2496 KiB  
Article
Pediatric Diaphyseal Forearm Fracture Management with Biodegradable Poly-L-Lactide-Co-Glycolide (PLGA) Intramedullary Implants: A Longitudinal Study
by Aba Lőrincz, Ágnes Mária Lengyel, András Kedves, Hermann Nudelman and Gergő Józsa
J. Clin. Med. 2024, 13(14), 4036; https://doi.org/10.3390/jcm13144036 - 10 Jul 2024
Cited by 1 | Viewed by 3158
Abstract
Background: Pediatric forearm fractures represent a substantial proportion of childhood injuries, requiring effective and minimally invasive treatments. Our study investigated the mid-term outcomes of biodegradable poly-L-lactide-co-glycolide (PLGA) intramedullary implants in managing diaphyseal forearm fractures in children. Methods: A follow-up cohort study was conducted [...] Read more.
Background: Pediatric forearm fractures represent a substantial proportion of childhood injuries, requiring effective and minimally invasive treatments. Our study investigated the mid-term outcomes of biodegradable poly-L-lactide-co-glycolide (PLGA) intramedullary implants in managing diaphyseal forearm fractures in children. Methods: A follow-up cohort study was conducted with 38 patients treated with PLGA implants. Control examinations were performed one year post-operation, assessing bone healing through radiographic evaluations and functional outcomes using injured and uninjured limb range of motion (ROM) comparisons. Scarring was evaluated employing the Vancouver Scar Scale (VSS), and satisfaction via a questionnaire. Results: Children were predominantly female (76.4%), with a mean age of 9.71 (SD: 2.69) years. Effective fracture stabilization and bone healing were found in all patients, with a minor reduction (mean difference of −1.5°, p = 0.282) in elbow flexion on the operated side (139.3°) compared to the intact (140.8°). Elbow extension presented negligible average changes (0.2°, p = 0.098). Forearm movements were slightly reduced on the operated side (mean pronation: 80.8° vs. 83.7°, p = 0.166; average supination: 83.5° vs. 85.7°, p = 0.141). Wrist palmar flexion and dorsiflexion showed no significant differences. VSS ratings indicated minimal scarring (mean guardian and doctor scores were 1.13 and 0.55, respectively, p = 0.020), and all patients reported satisfaction with the treatment outcomes. Conclusions: Biodegradable implants are effective for pediatric forearm fractures, providing stable bone healing while preserving functional ROM with minimal scarring and high patient satisfaction. PLGA proved to be a viable alternative to traditional metal implants, eliminating secondary removal surgeries. Full article
(This article belongs to the Special Issue Recent Advances in Trauma and Orthopaedic Surgery)
Show Figures

Figure 1

19 pages, 4735 KiB  
Article
Preparation of PLGA Microspheres Using the Non-Toxic Glycofurol as Polymer Solvent by a Modified Phase Inversion Methodology
by Douglas Sobel, Barath Ramasubramanian, Puja Sawhney and Keerat Parmar
Polymers 2024, 16(3), 434; https://doi.org/10.3390/polym16030434 - 4 Feb 2024
Cited by 1 | Viewed by 2120
Abstract
Poly(D,L-lactide-co-glycolide is a biodegradable copolymer that can release pharmaceuticals. These pharmaceuticals can provide local therapy and also avert the clinical issues that occur when a drug must be given continuously and/or automatically. However, the drawbacks of using poly(D,L-lactide-co-glycolide include the kinetics and duration [...] Read more.
Poly(D,L-lactide-co-glycolide is a biodegradable copolymer that can release pharmaceuticals. These pharmaceuticals can provide local therapy and also avert the clinical issues that occur when a drug must be given continuously and/or automatically. However, the drawbacks of using poly(D,L-lactide-co-glycolide include the kinetics and duration of time of poly(D,L-lactide-co-glycolide drug release, the denaturing of the drug loaded drug, and the potential clinical side effects. These drawbacks are mainly caused by the volatile organic solvents needed to prepare poly(D,L-lactide-co-glycolide spheres. Using the non-toxic solvent glycofurol solvent instead of volatile organic solvents to construct poly(D,L-lactide-co-glycolide microspheres may deter the issues of using volatile organic solvents. Up to now, preparation of such glycofurol spheres has previously met with limited success. We constructed dexamethasone laden poly(D,L-lactide-co-glycolide microspheres utilizing glycofurol as the solvent within a modified phase inversion methodology. These prepared microspheres have a higher drug load and a lower rate of water diffusion. This prolongs drug release compared to dichloromethane constructed spheres. The glycofurol-generated spheres are also not toxic to target cells as is the case for dichloromethane-constructed spheres. Further, glycofurol-constructed spheres do not denature the dexamethasone molecule and have kinetics of drug release that are more clinically advantageous, including a lower drug burst and a prolonged drug release. Full article
Show Figures

Figure 1

19 pages, 8494 KiB  
Article
Designing of Drug Delivery Systems to Improve the Antimicrobial Efficacy in the Periodontal Pocket Based on Biodegradable Polyesters
by Magdalena Zięba, Wanda Sikorska, Marta Musioł, Henryk Janeczek, Jakub Włodarczyk, Małgorzata Pastusiak, Abhishek Gupta, Iza Radecka, Mattia Parati, Grzegorz Tylko, Marek Kowalczuk and Grażyna Adamus
Int. J. Mol. Sci. 2024, 25(1), 503; https://doi.org/10.3390/ijms25010503 - 29 Dec 2023
Cited by 1 | Viewed by 2283
Abstract
Delivery systems for biologically active substances such as proanthocyanidins (PCANs), produced in the form of electrospun nonwoven through the electrospinning method, were designed using a polymeric blend of poly(L-lactide-co-glycolide) (PLGA)and poly[(R,S)-3-hydroxybutyrate] ((R,S)-PHB). The studies involved the structural and thermal characteristics of the developed [...] Read more.
Delivery systems for biologically active substances such as proanthocyanidins (PCANs), produced in the form of electrospun nonwoven through the electrospinning method, were designed using a polymeric blend of poly(L-lactide-co-glycolide) (PLGA)and poly[(R,S)-3-hydroxybutyrate] ((R,S)-PHB). The studies involved the structural and thermal characteristics of the developed electrospun three-dimensional fibre matrices unloaded and loaded with PCANs. In the next step, the hydrolytic degradation tests of these systems were performed. The release profile of PCANs from the electrospun nonwoven was determined with the aid of UV–VIS spectroscopy. Approximately 30% of the PCANs were released from the tested electrospun nonwoven during the initial 15–20 days of incubation. The chemical structure of water-soluble oligomers that were formed after the hydrolytic degradation of the developed delivery system was identified through electrospray ionization mass spectrometry. Oligomers of lactic acid and OLAGA oligocopolyester, as well as oligo-3-hydroxybutyrate terminated with hydroxyl and carboxyl end groups, were recognized as degradation products released into the water during the incubation time. It was also demonstrated that variations in the degradation rate of individual mat components influenced the degradation pattern and the number of formed oligomers. The obtained results suggest that the incorporation of proanthocyanidins into the system slowed down the hydrolytic degradation process of the poly(L-lactide-co-glycolide)/poly[(R,S)-3-hydroxybutyrate] three-dimensional fibre matrix. In addition, in vitro cytotoxicity and antimicrobial studies advocate the use of PCANs for biomedical applications with promising antimicrobial activity. Full article
Show Figures

Figure 1

2 pages, 171 KiB  
Correction
Correction: Borecka et al. Development of the Latanoprost Solid Delivery System Based on Poly(l-lactide-co-glycolide-co-trimethylene carbonate) with Shape Memory for Glaucoma Treatment. Appl. Sci. 2023, 13, 7562
by Aleksandra Borecka, Jakub Rech, Henryk Janeczek, Justyna Wilińska, Janusz Kasperczyk, Magdalena Kobielarz, Paweł Grieb and Artur Turek
Appl. Sci. 2023, 13(24), 13043; https://doi.org/10.3390/app132413043 - 7 Dec 2023
Viewed by 806
Abstract
In the original publication [...] Full article
(This article belongs to the Special Issue Advances in Biomaterials and Drug Technology)
18 pages, 3035 KiB  
Article
PLGA-Encapsulated Haemonchus contortus Antigen ES-15 Augments Immune Responses in a Murine Model
by Muhammad Waqqas Hasan, Muhammad Ehsan, Qiangqiang Wang, Muhammad Haseeb, Shakeel Ahmed Lakho, Ali Haider, Mingmin Lu, Lixin Xu, Xiaokai Song, Ruofeng Yan and Xiangrui Li
Vaccines 2023, 11(12), 1794; https://doi.org/10.3390/vaccines11121794 - 30 Nov 2023
Cited by 4 | Viewed by 1928
Abstract
Haemonchus contortus is a gastrointestinal parasite that adversely impacts small ruminants, resulting in a notable reduction in animal productivity. In the current investigation, we developed a nanovaccine by encapsulating the recombinant protein rHcES-15, sourced from the excretory/secretory products of H. contortus, within [...] Read more.
Haemonchus contortus is a gastrointestinal parasite that adversely impacts small ruminants, resulting in a notable reduction in animal productivity. In the current investigation, we developed a nanovaccine by encapsulating the recombinant protein rHcES-15, sourced from the excretory/secretory products of H. contortus, within biodegradable poly (D, L-lactide-co-glycolide) (PLGA) nanoparticles (NPs). The development of this nanovaccine involved the formulation of PLGA NPs using a modified double emulsion solvent evaporation technique. Scanning electron microscopy (SEM)verified the successful encapsulation of rHcES-15 within PLGA NPs, exhibiting a size range of 350–400 nm. The encapsulation efficiency (EE) of the antigen in the nanovaccine was determined to be 72%. A total of forty experimental mice were allocated into five groups, with the nanovaccine administered on day 0 and the mice euthanized at the end of the 14-day trial. The stimulation index (SI) from the mice subjected to the nanovaccine indicated heightened lymphocyte proliferation (*** p < 0.001) and a noteworthy increase in anti-inflammatory cytokines (IL-4, IL-10, and IL-17). Additionally, the percentages of T-cells (CD4+, CD8+) and dendritic cell phenotypes (CD83+, CD86+) were significantly elevated (** p < 0.01, *** p < 0.001) in mice inoculated with the nanovaccine compared to control groups and the rHcES-15 group. Correspondingly, higher levels of antigen-specific serum immunoglobulins (IgG1, IgG2a, IgM) were observed in response to the nanovaccine in comparison to both the antigenic (rHcES-15) and control groups (* p < 0.05, ** p < 0.01). In conclusion, the data strongly supports the proposal that the encapsulation of rHcES-15 within PLGA NPs effectively triggers immune cells in vivo, ultimately enhancing the antigen-specific adaptive immune responses against H. contortus. This finding underscores the promising potential of the nanovaccine, justifying further investigations to definitively ascertain its efficacy. Full article
(This article belongs to the Special Issue Vaccines and Animal Health)
Show Figures

Figure 1

17 pages, 5260 KiB  
Article
Electrospun Nanofibrous Conduit Filled with a Collagen-Based Matrix (ColM) for Nerve Regeneration
by Yuanjing Hou, Xinyu Wang, Yiyu Wang, Xia Chen, Benmei Wei, Juntao Zhang, Lian Zhu, Huizhi Kou, Wenyao Li and Haibo Wang
Molecules 2023, 28(22), 7675; https://doi.org/10.3390/molecules28227675 - 20 Nov 2023
Cited by 6 | Viewed by 2184
Abstract
Traumatic nerve defects result in dysfunctions of sensory and motor nerves and are usually accompanied by pain. Nerve guidance conduits (NGCs) are widely applied to bridge large-gap nerve defects. However, few NGCs can truly replace autologous nerve grafts to achieve comprehensive neural regeneration [...] Read more.
Traumatic nerve defects result in dysfunctions of sensory and motor nerves and are usually accompanied by pain. Nerve guidance conduits (NGCs) are widely applied to bridge large-gap nerve defects. However, few NGCs can truly replace autologous nerve grafts to achieve comprehensive neural regeneration and function recovery. Herein, a three-dimensional (3D) sponge-filled nanofibrous NGC (sf@NGC) resembling the structure of native peripheral nerves was developed. The conduit was fabricated by electrospinning a poly(L-lactide-co-glycolide) (PLGA) membrane, whereas the intraluminal filler was obtained by freeze-drying a collagen-based matrix (ColM) resembling the extracellular matrix. The effects of the electrospinning process and of the composition of ColM on the physicochemical performance of sf@NGC were investigated in detail. Furthermore, the biocompatibility of the PLGA sheath and ColM were evaluated. The continuous and homogeneous PLGA nanofiber membrane had high porosity and tensile strength. ColM was shown to exhibit an ECM-like architecture characterized by a multistage pore structure and a high porosity level of over 70%. The PLGA sheath and ColM were shown to possess stagewise degradability and good biocompatibility. In conclusion, sf@NGC may have a favorable potential for the treatment of nerve reconstruction. Full article
(This article belongs to the Special Issue Electroanalysis of Biochemistry and Material Chemistry)
Show Figures

Figure 1

21 pages, 4491 KiB  
Article
A Dexamethasone-Loaded Polymeric Electrospun Construct as a Tubular Cardiovascular Implant
by Stavroula Kyriakou, Sergio Acosta, Ikram El Maachi, Stephan Rütten and Stefan Jockenhoevel
Polymers 2023, 15(21), 4332; https://doi.org/10.3390/polym15214332 - 6 Nov 2023
Cited by 4 | Viewed by 2439
Abstract
Cardiovascular tissue engineering is providing many solutions to cardiovascular diseases. The complex disease demands necessitating tissue-engineered constructs with enhanced functionality. In this study, we are presenting the production of a dexamethasone (DEX)-loaded electrospun tubular polymeric poly(l-lactide) (PLA) or poly(d,l-lactide- [...] Read more.
Cardiovascular tissue engineering is providing many solutions to cardiovascular diseases. The complex disease demands necessitating tissue-engineered constructs with enhanced functionality. In this study, we are presenting the production of a dexamethasone (DEX)-loaded electrospun tubular polymeric poly(l-lactide) (PLA) or poly(d,l-lactide-co-glycolide) (PLGA) construct which contains iPSC-CMs (induced pluripotent stem cell cardiomyocytes), HUVSMCs (human umbilical vein smooth muscle cells), and HUVECs (human umbilical vein endothelial cells) embedded in fibrin gel. The electrospun tube diameter was calculated, as well as the DEX release for 50 days for 2 different DEX concentrations. Furthermore, we investigated the influence of the polymer composition and concentration on the function of the fibrin gels by imaging and quantification of CD31, alpha-smooth muscle actin (αSMA), collagen I (col I), sarcomeric alpha actinin (SAA), and Connexin 43 (Cx43). We evaluated the cytotoxicity and cell proliferation of HUVECs and HUVSMCs cultivated in PLA and PLGA polymeric sheets. The immunohistochemistry results showed efficient iPSC-CM marker expression, while the HUVEC toxicity was higher than the respective HUVSMC value. In total, our study emphasizes the combination of fibrin gel and electrospinning in a functionalized construct, which includes three cell types and provides useful insights of the DEX release and cytotoxicity in a tissue engineering perspective. Full article
(This article belongs to the Special Issue Electrospinning Techniques and Advanced Textile Materials)
Show Figures

Figure 1

17 pages, 3858 KiB  
Article
Selection of Excipients for the Preparation of Vancomycin-Loaded Poly(D,L-lactide-co-glycolide) Microparticles with Extended Release by Emulsion Spray Drying
by Ana Jurić Simčić, Iva Erak, Biserka Cetina Čižmek, Anita Hafner and Jelena Filipović-Grčić
Pharmaceutics 2023, 15(10), 2438; https://doi.org/10.3390/pharmaceutics15102438 - 9 Oct 2023
Cited by 2 | Viewed by 1743
Abstract
The aim of this study was to relate the composition of the W/O emulsion used as a starting fluid in the spray-drying process to the quality of the dry polymer particles obtained in terms of physical–chemical properties, compatibility and drug release performance. Four [...] Read more.
The aim of this study was to relate the composition of the W/O emulsion used as a starting fluid in the spray-drying process to the quality of the dry polymer particles obtained in terms of physical–chemical properties, compatibility and drug release performance. Four W/O emulsions containing vancomycin hydrochloride (VAN), an encapsulating PLGA polymer and Poloxamer® 407, chitosan and/or sorbitan monooleate as stabilisers were spray-dried using an ultrasonic atomising nozzle. The microparticles obtained were micron-sized, with a volume mean diameter between 43.2 ± 0.3 and 64.0 ± 12.6 µm, and spherical with a mostly smooth, non-porous surface and with high drug loading (between 14.5 ± 0.6 and 17.1 ± 1.9% w/w). All formulations showed a prolonged and biphasic VAN release profile, with diffusion being the primary release mechanism. Microparticles prepared from the emulsions with Poloxamer® 407 and sorbitan monooleate released VAN rapidly and completely within one day. The release of VAN from microparticles prepared from the emulsion without additives or with chitosan in the inner aqueous phase was significantly decreased; after four days, a cumulative release of 65% and 61%, respectively, was achieved. Microparticles with encapsulated chitosan had the largest mean particle diameter and the slowest release of VAN. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Graphical abstract

14 pages, 3094 KiB  
Article
Synthesis of L-Ornithine- and L-Glutamine-Linked PLGAs as Biodegradable Polymers
by Gülce Taşkor Önel
Polymers 2023, 15(19), 3998; https://doi.org/10.3390/polym15193998 - 5 Oct 2023
Cited by 4 | Viewed by 2672
Abstract
L-ornithine and L-glutamine are amino acids used for ammonia and nitrogen transport in the human body. Novel biodegradable synthetic poly(lactic-co-glycolic acid) derivatives were synthesized via conjugation with L-ornithine or L-glutamine, which were selected due to their biological [...] Read more.
L-ornithine and L-glutamine are amino acids used for ammonia and nitrogen transport in the human body. Novel biodegradable synthetic poly(lactic-co-glycolic acid) derivatives were synthesized via conjugation with L-ornithine or L-glutamine, which were selected due to their biological importance. L-ornithine or L-glutamine was integrated into a PLGA polymer with EDC coupling reactions as a structure developer after the synthesis of PLGA via the polycondensation and ring-opening polymerization of lactide and glycolide. The chemical, thermal, and degradation property–structure relationships of PLGA, PLGA-L-ornithine, and PLGA-L-glutamine were identified. The conjugation between PLGA and the amino acid was confirmed through observation of an increase in the number of carbonyl carbons in the range of 170–160 ppm in the 13C NMR spectrum and the signal of the amide carbonyl vibration at about 1698 cm−1 in the FTIR spectrum. The developed PLGA-L-ornithine and PLGA-L-glutamine derivatives were thermally stable and energetic materials. In addition, PLGA-L-ornithine and PLGA-L-glutamine, with their unique hydrophilic properties, had faster degradation times than PLGA in terms of surface-type erosion, which covers their requirements. L-ornithine- and L-glutamine-linked PLGAs are potential candidates for development into biodegradable PLGA-derived biopolymers that can be used as raw materials for biomaterials. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

Back to TopTop