Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = poly(γ-benzyl-l-glutamate)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4607 KiB  
Article
Influence of the Core Branching Density on Drug Release from Arborescent Poly(γ-benzyl L-glutamate) End-Grafted with Poly(ethylene oxide)
by Mosa Alsehli and Mario Gauthier
Int. J. Transl. Med. 2023, 3(4), 496-515; https://doi.org/10.3390/ijtm3040035 - 12 Dec 2023
Cited by 1 | Viewed by 1628
Abstract
Amphiphilic dendritic copolymers of arborescent poly(γ-benzyl L-glutamate) (PBG) of generations G1 and G2, grafted at their chain ends with poly(ethylene oxide) (PEO) segments (PBG-eg-PEO) were synthesized, characterized, and evaluated as nanocarriers for doxorubicin (DOX). The copolymers were designed with hydrophobic PBG [...] Read more.
Amphiphilic dendritic copolymers of arborescent poly(γ-benzyl L-glutamate) (PBG) of generations G1 and G2, grafted at their chain ends with poly(ethylene oxide) (PEO) segments (PBG-eg-PEO) were synthesized, characterized, and evaluated as nanocarriers for doxorubicin (DOX). The copolymers were designed with hydrophobic PBG cores having three different branching densities and were characterized by proton nuclear magnetic resonance (1H NMR) spectroscopy, size exclusion chromatography (SEC), transmission electron microscopy (TEM), and atomic force microscopy (AFM). Dynamic light scattering (DLS) measurements revealed that these amphiphilic molecules behaved like unimolecular micelles without significant aggregation in aqueous media such as phosphate-buffered saline (PBS), with diameters in the 13–29 nm range depending on the generation number and the core structure. Efficient encapsulation of DOX by these unimolecular micelles was demonstrated with drug loading capacities of up to 11.2 wt%, drug loading efficiencies of up to 67%, and pH-responsive sustained drug release, as determined by UV spectroscopy. The generation number of the copolymers and the branching density of the dendritic PBG core were found to have influenced the encapsulation and release properties of the micelles. Given the tailorable characteristics, good water dispersibility, and biocompatibility of the components used to synthesize the amphiphilic arborescent copolymers, these systems should be useful as robust nanocarriers for a broad range of therapeutic and diagnostic agents. Full article
Show Figures

Figure 1

12 pages, 3274 KiB  
Article
Synthesis and Thermoreversible Gelation of Coil–Rod Copolymers with a Dendritic Polyethylene Core and Multiple Helical Poly(γ-benzyl-L-glutamate) Arms
by Yuliang Lu, Dongtao Liu, Xinjie Wei, Jiming Song, Qiaogang Xiao, Kezheng Du, Xinbo Shi and Haiyang Gao
Polymers 2023, 15(22), 4351; https://doi.org/10.3390/polym15224351 - 8 Nov 2023
Cited by 2 | Viewed by 1498
Abstract
Coil–rod copolymers with a dendritic polyethylene (DPE) core and multiple helical poly(γ-benzyl-L-glutamate) (PBLG) arms (DPE-(PBLG)n) were prepared by palladium-catalyzed copolymerization in tandem with ring-opening polymerization (ROP). Macroinitiator (DPE–(NH2)11) was firstly prepared by the group transformation of DPE–(OH) [...] Read more.
Coil–rod copolymers with a dendritic polyethylene (DPE) core and multiple helical poly(γ-benzyl-L-glutamate) (PBLG) arms (DPE-(PBLG)n) were prepared by palladium-catalyzed copolymerization in tandem with ring-opening polymerization (ROP). Macroinitiator (DPE–(NH2)11) was firstly prepared by the group transformation of DPE–(OH)11 generated from palladium-catalyzed copolymerization of ethylene and acrylate comonomer. Coil–helical DPE-(PBLG)11 copolymers were prepared by ROP of γ-benzyl-L-glutamate-N-carboxyanhydride (BLG-NCA). These DPE-(PBLG)11 copolymers could form thermoreversible gels in toluene solvent, and the dendritic topology of the DPE core increased the critical gelation concentrations. The self-assembled nanostructure of gels was fully characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), small-angle X-ray scattering (SAXS), and wide-angle X-ray diffraction (WAXD), and the morphology of the fibrous structure was a twisted flat ribbon through a self-assembled nanoribbon mechanism. The self-assembled fibers formed by DPE-(PBLG45)11 are more heterogeneous and ramified than previously observed fibers formed by PBLG homopolymer and block copolymers. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Graphical abstract

19 pages, 4462 KiB  
Article
Unimolecular Micelles from Randomly Grafted Arborescent Copolymers with Different Core Branching Densities: Encapsulation of Doxorubicin and In Vitro Release Study
by Mosa Alsehli and Mario Gauthier
Materials 2023, 16(6), 2461; https://doi.org/10.3390/ma16062461 - 20 Mar 2023
Cited by 3 | Viewed by 2041
Abstract
A series of amphiphilic arborescent copolymers of generations G1 and G2 with an arborescent poly(γ-benzyl L-glutamate) (PBG) core and poly(ethylene oxide) (PEO) chain segments in the shell, PBG-g-PEO, were synthesized and evaluated as drug delivery nanocarriers. The PBG building blocks were [...] Read more.
A series of amphiphilic arborescent copolymers of generations G1 and G2 with an arborescent poly(γ-benzyl L-glutamate) (PBG) core and poly(ethylene oxide) (PEO) chain segments in the shell, PBG-g-PEO, were synthesized and evaluated as drug delivery nanocarriers. The PBG building blocks were generated by ring-opening polymerization of γ-benzyl L-glutamic acid N-carboxyanhydride (Glu-NCA) initiated with n-hexylamine. Partial or full deprotection of the benzyl ester groups followed by coupling with PBG chains yielded a comb-branched (arborescent polymer generation zero or G0) PBG structure. Additional cycles of deprotection and grafting provided G1 and G2 arborescent polypeptides. Side chains of poly(ethylene oxide) were then randomly grafted onto the arborescent PBG substrates to produce amphiphilic arborescent copolymers. Control over the branching density of G0PBG was investigated by varying the length and the deprotection level of the linear PBG substrates used in their synthesis. Three G0PBG cores with different branching densities, varying from a compact and dense to a loose and more porous structure, were thus synthesized. These amphiphilic copolymers behaved similar to unimolecular micelles in aqueous solutions, with a unimodal number- and volume-weighted size distributions in dynamic light scattering measurements. It was demonstrated that these biocompatible copolymers can encapsulate hydrophobic drugs such as doxorubicin (DOX) within their hydrophobic core with drug loading efficiencies of 42–65%. Sustained and pH-responsive DOX release was observed from the unimolecular micelles, which suggests that they could be useful as drug nanocarriers for cancer therapy. Full article
(This article belongs to the Special Issue Νanoparticles for Biomedical Applications)
Show Figures

Graphical abstract

21 pages, 18453 KiB  
Article
Surface Biofunctionalization of Gadolinium Phosphate Nanobunches for Boosting Osteogenesis/Chondrogenesis Differentiation
by Zhongxing Cai, Ziyi Guo, Chaohui Yang, Fei Wang, Peibiao Zhang, Yu Wang, Min Guo, Zongliang Wang, Jing Huang and Long Zhang
Int. J. Mol. Sci. 2023, 24(3), 2032; https://doi.org/10.3390/ijms24032032 - 19 Jan 2023
Cited by 4 | Viewed by 2317
Abstract
In order to achieve smart biomedical micro/nanomaterials, promote interaction with biomolecules, improve osteogenic/chondrogenic differentiation, exhibit better dispersion in bone implants and ultimately maximize functionality, we innovatively and successfully designed and synthesized polymer PBLG-modified GdPO4·H2O nanobunches by hydroxylation, silylation and [...] Read more.
In order to achieve smart biomedical micro/nanomaterials, promote interaction with biomolecules, improve osteogenic/chondrogenic differentiation, exhibit better dispersion in bone implants and ultimately maximize functionality, we innovatively and successfully designed and synthesized polymer PBLG-modified GdPO4·H2O nanobunches by hydroxylation, silylation and glutamylation processes. The effects of different feeding ratios on the surface coating of GdPO4·H2O with Si-OH, the grafting γ-aminopropyltriethoxysilane (APS) and the in situ ring-opening polymerization reaction of poly(g-benzyl-L-glutamate) (PBLG) were investigated, and the physical and chemical properties were characterized in detail. When GdPO4·H2O@SiO2–APS:NCA = 4:1, the PBLG-g-GdPO4·H2O grafting rate was 5.93%, with good stability and dispersion in degradable polymeric materials. However, the MRI imaging signal was sequentially weakened as the modification process proceeded. Despite this, the biological effects had surprising findings. All the modifiers at appropriate concentrations were biocompatible and biologically active and the biomacromolecules of COL I and COL II in particular were expressed at least 3 times higher in GdPO4·H2O@SiO2 compared to the PLGA. This indicates that the appropriate surface modification and functionalization of gadolinium-containing micro/nanomaterials can promote interaction with cells and encourage bone regeneration by regulating biomacromolecules and can be used in the field of biomedical materials. Full article
(This article belongs to the Special Issue Design and Synthesis of Biomedical Polymer Materials)
Show Figures

Graphical abstract

13 pages, 7061 KiB  
Article
Significant Electromechanical Characteristic Enhancement of Coaxial Electrospinning Core–Shell Fibers
by Duc-Nam Nguyen and Wonkyu Moon
Polymers 2022, 14(9), 1739; https://doi.org/10.3390/polym14091739 - 25 Apr 2022
Cited by 12 | Viewed by 3319
Abstract
Electrospinning is a low-cost and straightforward method for producing various types of polymers in micro/nanofiber form. Among the various types of polymers, electrospun piezoelectric polymers have many potential applications. In this study, a new type of functional microfiber composed of poly(γ-benzyl-α,L-glutamate) (PBLG) and [...] Read more.
Electrospinning is a low-cost and straightforward method for producing various types of polymers in micro/nanofiber form. Among the various types of polymers, electrospun piezoelectric polymers have many potential applications. In this study, a new type of functional microfiber composed of poly(γ-benzyl-α,L-glutamate) (PBLG) and poly(vinylidene fluoride) (PVDF) with significantly enhanced electromechanical properties has been reported. Recently reported electrospun PBLG fibers exhibit polarity along the axial direction, while electrospun PVDF fibers have the highest net dipole moment in the transverse direction. Hence, a combination of PBLG and PVDF as a core–shell structure has been investigated in the present work. On polarization under a high voltage, enhancement in the net dipole moment in each material and the intramolecular conformation was observed. The piezoelectric coefficient of the electrospun PBLG/PVDF core–shell fibers was measured to be up to 68 pC N−1 (d33), and the voltage generation under longitudinal extension was 400 mVpp (peak-to-peak) at a frequency of 60 Hz, which is better than that of the electrospun homopolymer fibers. Such new types of functional materials can be used in various applications, such as sensors, actuators, smart materials, implantable biosensors, biomedical engineering devices, and energy harvesting devices. Full article
(This article belongs to the Special Issue Polymer-Based Materials for Sensors)
Show Figures

Figure 1

18 pages, 4196 KiB  
Article
Copolymacrolactones Grafted with l-Glutamic Acid: Synthesis, Structure, and Nanocarrier Properties
by Ernesto Tinajero-Díaz, Antxon Martínez de Ilarduya and Sebastián Muñoz-Guerra
Polymers 2020, 12(4), 995; https://doi.org/10.3390/polym12040995 - 24 Apr 2020
Cited by 10 | Viewed by 4386
Abstract
The enzymatic ring-opening copolymerization (eROP) of globalide (Gl) and pentadecalactone (PDL) was performed in solution from mixtures of the two macrolactones at ratios covering the whole range of comonomeric compositions. The resulting P(Glx-r-PDLy) random copolyesters were aminofunctionalized [...] Read more.
The enzymatic ring-opening copolymerization (eROP) of globalide (Gl) and pentadecalactone (PDL) was performed in solution from mixtures of the two macrolactones at ratios covering the whole range of comonomeric compositions. The resulting P(Glx-r-PDLy) random copolyesters were aminofunctionalized by thiol-ene reaction with aminoethanethiol. ROP of γ-benzyl-l-glutamate N-carboxyanhydride initiated by P(Glx-r-PDLy)-NH2 provided neutral poly(γ-benzyl-l-glutamate)-grafted copolyesters, which were converted by hydrolysis into negatively charged hybrid copolymers. Both water-soluble and nonsoluble copolymers were produced depending on copolymer charge and their grafting degree, and their capacity for self-assembling in nano-objects were comparatively examined. The emulsion solvent-evaporation technique applied to the chloroform-soluble copolymers grafted with benzyl glutamate rendered well-delineated spherical nanoparticles with an average diameter of 200–300 nm. Conversely, micellar solutions in water were produced from copolyesters bearing grafted chains composed of at least 10 units of glutamic acid in the free form. The copolymer micelles were shown to be able to load doxorubicin (DOX) efficiently through electrostatic interactions and also to release the drug at a rate that was markedly pH dependent. Full article
Show Figures

Graphical abstract

23 pages, 3531 KiB  
Article
A Novel pH-Tunable Secondary Conformation Containing Mixed Micellar System in Anticancer Treatment
by Fu-Ying Shih, Wen-Ping Jiang, Xiaojie Lin, Sheng-Chu Kuo, Guan-Jhong Huang, Yu-Chi Hou, Chih-Shiang Chang, Yang Liu and Yi-Ting Chiang
Cancers 2020, 12(2), 503; https://doi.org/10.3390/cancers12020503 - 21 Feb 2020
Cited by 7 | Viewed by 3314
Abstract
In this study, for the first time, we precisely assembled the poly-γ-benzyl-l-glutamate and an amphiphilic copolymer d-α-tocopherol polyethylene glycol succinate into a mixed micellar system for the embedment of the anticancer drug doxorubicin. Importantly, the intracellular drug-releasing behaviors could be controlled by changing [...] Read more.
In this study, for the first time, we precisely assembled the poly-γ-benzyl-l-glutamate and an amphiphilic copolymer d-α-tocopherol polyethylene glycol succinate into a mixed micellar system for the embedment of the anticancer drug doxorubicin. Importantly, the intracellular drug-releasing behaviors could be controlled by changing the secondary structures of poly-γ-benzyl-l-glutamate via the precise regulation of the buffer’s pH value. Under neutral conditions, the micellar architectures were stabilized by both α-helix secondary structures and the microcrystalline structures. Under acidic conditions (pH 4.0), the interior structures transformed into a coil state with a disordered alignment, inducing the release of the loaded drug. A remarkable cytotoxicity of the Dox-loaded mixed micelles was exhibited toward human lung cancer cells in vitro. The internalizing capability into the cancer cells, as well as the intracellular drug-releasing behaviors, were also identified and observed. The secondary structures containing Dox-loaded mixed micelles had an outstanding antitumor efficacy in human lung cancer A549 cells-bearing nude mice, while little toxicities occurred or interfered with the hepatic or renal functions after the treatments. Thus, these pH-tunable α-helix-containing mixed micelles are innovative and promising for controlled intracellular anticancer drug delivery. Full article
(This article belongs to the Special Issue Cancer Nanomedicine)
Show Figures

Graphical abstract

10 pages, 3286 KiB  
Article
Non-Volatile Transistor Memory with a Polypeptide Dielectric
by Lijuan Liang, Wenjuan He, Rong Cao, Xianfu Wei, Sei Uemura, Toshihide Kamata, Kazuki Nakamura, Changshuai Ding, Xuying Liu and Norihisa Kobayashi
Molecules 2020, 25(3), 499; https://doi.org/10.3390/molecules25030499 - 23 Jan 2020
Cited by 6 | Viewed by 3066
Abstract
Organic nonvolatile transistor memory with synthetic polypeptide derivatives as dielectric was fabricated by a solution process. When only poly (γ-benzyl-l-glutamate) (PBLG) was used as dielectric, the device did not show obvious hysteresis in transfer curves. However, PBLG blended with PMMA led [...] Read more.
Organic nonvolatile transistor memory with synthetic polypeptide derivatives as dielectric was fabricated by a solution process. When only poly (γ-benzyl-l-glutamate) (PBLG) was used as dielectric, the device did not show obvious hysteresis in transfer curves. However, PBLG blended with PMMA led to a remarkable increase in memory window up to 20 V. The device performance was observed to remarkably depend on the blend ratio. This study suggests the crystal structure and the molecular alignment significantly affect the electrical performance in transistor-type memory devices, thereby provides an alternative to prepare nonvolatile memory with polymer dielectrics. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

12 pages, 4082 KiB  
Article
Facile Preparation of Highly Stretchable and Recovery Peptide-Polyurethane/Ureas
by Lin Gu, Yuanzhang Jiang and Jinlian Hu
Polymers 2018, 10(6), 637; https://doi.org/10.3390/polym10060637 - 8 Jun 2018
Cited by 8 | Viewed by 4639
Abstract
In this work, a new class of highly stretchable peptide-polyurethane/ureas (PUUs) were synthesized containing short β-sheet forming peptide blocks of poly(γ-benzyl-l-glutamate)-b-poly(propylene glycol)-b-poly(γ-benzyl-l-glutamate) (PBLG-b-PPG-b-PBLG), isophorone diisocyanate as [...] Read more.
In this work, a new class of highly stretchable peptide-polyurethane/ureas (PUUs) were synthesized containing short β-sheet forming peptide blocks of poly(γ-benzyl-l-glutamate)-b-poly(propylene glycol)-b-poly(γ-benzyl-l-glutamate) (PBLG-b-PPG-b-PBLG), isophorone diisocyanate as the hard segment, and polytetramethylene ether glycol as the soft phase. PBLG-b-PPG-b-PBLG with short peptide segment length (<10 residues) was synthesized by amine-initiated ring opening polymerization of γ-benzyl-l-glutamate-N-carboxyanhydrides (BLG-NCA), which shows mixed α-helix and β-sheet conformation, where the percent of β-sheet structure was above 48%. Morphological studies indicate that the obtained PUUs show β-sheet crystal and nanofibrous structure. Mechanical tests reveal the PUUs display medium tensile strength (0.25–4.6 MPa), high stretchability (>1600%), human-tissue-compatible Young’s modulus (226–513 KPa). Furthermore, the shape recovery ratio could reach above 85% during successive cycles at high strain (500%). In this study, we report a facile synthetic method to obtain highly stretchable and recovery peptide-polyurethane/urea materials, which will have various potential applications such as wearable and implantable electronics, and biomedical devices. Full article
(This article belongs to the Special Issue Protein Biopolymer)
Show Figures

Graphical abstract

13 pages, 2768 KiB  
Article
Zn(OAc)2-Catalyzing Ring-Opening Polymerization of N-Carboxyanhydrides for the Synthesis of Well-Defined Polypeptides
by Yanzhao Nie, Xinmei Zhi, Haifeng Du and Jing Yang
Molecules 2018, 23(4), 760; https://doi.org/10.3390/molecules23040760 - 26 Mar 2018
Cited by 19 | Viewed by 8284
Abstract
Despite notable progress, the fabrication of well-defined polypeptides via controlled ring-opening polymerization (ROP) of α-amino acid N-carboxyanhydrides (NCAs) using convenient catalysts under mild conditions in a relatively short polymerization time is still challenging. Herein, an easily obtained catalyst system composed of zinc [...] Read more.
Despite notable progress, the fabrication of well-defined polypeptides via controlled ring-opening polymerization (ROP) of α-amino acid N-carboxyanhydrides (NCAs) using convenient catalysts under mild conditions in a relatively short polymerization time is still challenging. Herein, an easily obtained catalyst system composed of zinc acetate and aniline was explored to mediate the fast ROP of γ-benzyl-l-glutamate-N-carboxyanhydride (BLG-NCA) monomer, to produce poly(γ-benzyl-l-glutamates) (PBLGs) with controllable molecular weights and narrow dispersity. Considering the excellent cooperative action of zinc acetate and a broad scope of aniline derivatives with different functional groups to control ROP of BLG-NCA, this method may offer a useful platform enabling the rapid generation of end-functionalized PBLG and block copolymers for numerous biomedical applications. Full article
Show Figures

Graphical abstract

8 pages, 2832 KiB  
Article
Synthesis and Properties of Shape Memory Poly(γ-Benzyl-l-Glutamate)-b-Poly(Propylene Glycol)-b-Poly(γ-Benzyl-l-Glutamate)
by Lin Gu, Yuanzhang Jiang and Jinlian Hu
Appl. Sci. 2017, 7(12), 1258; https://doi.org/10.3390/app7121258 - 4 Dec 2017
Cited by 14 | Viewed by 7026
Abstract
Shape memory polymers (SMPs) have attracted much attention as an important class of stimuli-responsive materials for biomedical applications. For SMP-based biomaterials, in addition to suitable shape recovery performances, their mechanical properties, biodegradability, biocompatibility, and sterilizability needs to be considered. Polypeptides can satisfy the [...] Read more.
Shape memory polymers (SMPs) have attracted much attention as an important class of stimuli-responsive materials for biomedical applications. For SMP-based biomaterials, in addition to suitable shape recovery performances, their mechanical properties, biodegradability, biocompatibility, and sterilizability needs to be considered. Polypeptides can satisfy the requirements outlined above. However, there are few reports on shape memory polypeptides. In this paper, shape memory poly(γ-benzyl-l-glutamate) (PBLG-PPG-PBLG) was synthesized by ring-opening polymerization of γ-benzyl-l-glutamate-N-carboxyanhydrides (BLG-NCA) with poly(propylene glycol) bis(2-aminopropyl ether) as the macroinitiator. 1H Nuclear Magnetic Resonance (NMR) and Fourier-Transform Infrared Spectroscopy (FTIR) were used to characterize the structure of the obtained PBLG-PPG-PBLG. The FTIR analysis showed that PBLG-PPG-PBLG has α-helical and β-sheet structures. PBLG-PPG-PBLG has good shape memory properties, its shape recovery time is less than 120 s, and its shape recovery rate is 100%. In this study, we reported a simple synthetic method to obtain intelligent polypeptide materials, which will be used in many biomedical applications. Full article
(This article belongs to the Special Issue Shape Memory Polymers)
Show Figures

Graphical abstract

16 pages, 2266 KiB  
Article
Arborescent Unimolecular Micelles: Poly(γ-Benzyl l-Glutamate) Core Grafted with a Hydrophilic Shell by Copper(I)-Catalyzed Azide–Alkyne Cycloaddition Coupling
by Mario Gauthier and Greg Whitton
Polymers 2017, 9(10), 540; https://doi.org/10.3390/polym9100540 - 23 Oct 2017
Cited by 4 | Viewed by 5279
Abstract
Amphiphilic copolymers were obtained by grafting azide-terminated polyglycidol, poly(ethylene oxide), or poly(2-hydroxyethyl acrylate) chain segments onto alkyne-functionalized arborescent poly(γ-benzyl l-glutamate) (PBG) cores of generations G1–G3 via copper(I)-catalyzed azide–alkyne Huisgen cycloaddition (CuAAC) coupling. The alkyne functional groups on the arborescent PBG substrates were [...] Read more.
Amphiphilic copolymers were obtained by grafting azide-terminated polyglycidol, poly(ethylene oxide), or poly(2-hydroxyethyl acrylate) chain segments onto alkyne-functionalized arborescent poly(γ-benzyl l-glutamate) (PBG) cores of generations G1–G3 via copper(I)-catalyzed azide–alkyne Huisgen cycloaddition (CuAAC) coupling. The alkyne functional groups on the arborescent PBG substrates were either distributed randomly or located exclusively at the end of the chains added in the last grafting cycle of the core synthesis. The location of these coupling sites influenced the ability of the arborescent copolymers to form unimolecular micelles in aqueous environments: The chain end grafting approach provided enhanced dispersibility in aqueous media and favored the formation of unimolecular micelles in comparison to random grafting. This is attributed to a better defined core-shell morphology for the copolymers with end-grafted shell segments. Aqueous solubility also depended on the type of material used for the shell chains. Coupling by CuAAC opens up possibilities for grafting a broad range of polymers on the arborescent substrates under mild conditions. Full article
(This article belongs to the Special Issue From Amphiphilic to Polyphilic Polymers)
Show Figures

Graphical abstract

13 pages, 553 KiB  
Article
The Synthesis and Characterization of Hydroxyapatite-β-Alanine Modified by Grafting Polymerization of γ-Benzyl-L-glutamate-N-carboxyanhydride
by Yukai Shan, Yuyue Qin, Yongming Chuan, Hongli Li and Minglong Yuan
Molecules 2013, 18(11), 13979-13991; https://doi.org/10.3390/molecules181113979 - 13 Nov 2013
Cited by 15 | Viewed by 6875
Abstract
In this study, hydroxyapatite (HAP) was surface-modified by the addition of β-alanine (β-Ala), and the ring-opening polymerization of γ-benzyl-L-glutamate-N-carboxy-anhydride (BLG-NCA) was subsequently initiated. HAP containing surface poly-γ-benzyl-L-glutamates (PBLG) was successfully prepared in this way. With the increase [...] Read more.
In this study, hydroxyapatite (HAP) was surface-modified by the addition of β-alanine (β-Ala), and the ring-opening polymerization of γ-benzyl-L-glutamate-N-carboxy-anhydride (BLG-NCA) was subsequently initiated. HAP containing surface poly-γ-benzyl-L-glutamates (PBLG) was successfully prepared in this way. With the increase of PBLG content in HAP-PBLG, the solubility of HAP-PBLG increased gradually and it was ultimately soluble in chloroform. HAP-PLGA with surface carboxyl groups was obtained by the catalytic hydrogenation of HAP-PBLG. In the process of HAP modification, the morphology changes from rod to sheet and from flake to needle. The effect of BLG-NCA concentration on the character of hydroxyapatite-β-alanine-poly(γ-benzyl-L-glutamate) (HAP-PBLG) was investigated. The existence of amino acids on the HAP surfaces was confirmed in the resulting Fourier transform infrared (FTIR) spectra. The resulting powder X-ray diffraction patterns indicated that the crystallinity of HAP decreased when the ratio of BLG-NCA/HAP-NH2 increased to 20/1. Transmission electron microscopy (TEM) indicated that the particle size of HAP-PBLG decreased significantly and that the resulting particles appeared less agglomerated relative to that of the HAP-NH2 crystals. Furthermore, 1H-NMR spectra and FTIR spectra revealed that hydroxyapatite-β-alanine-poly (L-glutamic acid) (HAP-PLGA) was able to successfully bear carboxylic acid groups on its side chains. Full article
Show Figures

Graphical abstract

Back to TopTop