Non-Volatile Transistor Memory with a Polypeptide Dielectric
Abstract
1. Introduction
2. Experiment Section
2.1. Materials
2.2. The Fabrication of TFT Memory
2.3. Apparatus
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Baude, P.F.; Ender, D.A.; Haase, M.A.; Kelley, T.W.; Muyres, D.V.; Theiss, S.D. Pentacene-based radio-frequency identification circuitry. Appl. Phys. Lett. 2003, 82, 3964. [Google Scholar] [CrossRef]
- Kjellander, B.K.C.; Smaal, W.T.T.; Myny, K.; Genoe, J.; Dehaene, W.; Heremans, P. Optimized circuit design for flexible 8-bit RFID transponders with active layer of ink-jet printed small molecule semiconductors. Org. Electron. 2013, 14, 768–774. [Google Scholar] [CrossRef]
- Yagi, I.; Hirai, N.; Miyamoto, Y.; Noda, M.; Imaoka, A.; Yoneya, N.; Nomoto, K.; Kasahara, J.; Yumoto, A.; Urabe, T. A flexible full-color AMOLED display driven by OTFTs. J. Soc. Inf. Disp. 2008, 16, 15–20. [Google Scholar] [CrossRef]
- Parashkov, R.; Becker, E.; Ginev, G.; Riedl, T.; Brandes, M.; Johanne s, H.-H.; Kowalsky, W. Organic vertical-channel transistors structured using excimer laser. Appl. Phys. Lett. 2004, 85, 5751–5753. [Google Scholar] [CrossRef]
- Zhou, L.; Wanga, A.; Wu, S.-C.; Sun, J.; Park, S.; Jackson, T.N. All-organic active matrix flexible display. Appl. Phys. Lett. 2006, 88, 83502. [Google Scholar] [CrossRef]
- Naber, R.C.G.; Tanase, C.; Blom, P.W.M.; Gelinck, G.H.; Marsman, A.W.; Touwslager, F.J.; Setayesh, S.; De Leeuw, D.M. High-performance solution-processed polymer ferroelectric field-effect transistors. Nat. Mater. 2005, 4, 243–248. [Google Scholar] [CrossRef]
- Asadi, K.; De Leeuw, D.M.; De Boer, B.; Blom, P.W.M. Organic non-volatile memories from ferroelectric phase-separated blends. Nat. Mater. 2008, 7, 547–550. [Google Scholar] [CrossRef]
- Scott, J.C.; Bozano, L.D. Nonvolatile Memory Elements Based on Organic Materials. Adv. Mater. 2007, 19, 1452–1463. [Google Scholar] [CrossRef]
- Heremans, P.; Gelinck, G.H.; Müller, R.; Baeg, K.-J.; Kim, D.-Y.; Noh, Y.-Y. Polymer and Organic Nonvolatile Memory Devices†. Chem. Mater. 2011, 23, 341–358. [Google Scholar]
- Han, S.-T.; Zhou, Y.; Roy, V.A.L. Towards the Development of Flexible Non-Volatile Memories. Adv. Mater. 2013, 25, 5425–5449. [Google Scholar] [CrossRef]
- Guo, Y.; Yu, G.; Liu, Y. Functional Organic Field-Effect Transistors. Adv. Mater. 2010, 22, 4427–4447. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-C.; Pei, Z.; Chan, Y.-J. Artificial electrical dipole in polymer multilayers for nonvolatile thin film transistor memory. Appl. Phys. Lett. 2008, 93, 143302. [Google Scholar] [CrossRef]
- Sun, Q.; Qian, B.; Uto, K.; Chen, J.; Liu, X.; Minari, T. Functional biomaterials towards flexible electronics and sensors. Biosens. Bioelectr. 2018, 119, 237–251. [Google Scholar] [CrossRef] [PubMed]
- Shih, C.-C.; Chiu, Y.-C.; Lee, W.-Y.; Chen, J.-Y.; Chen, W.-C. Conjugated Polymer Nanoparticles as Nano Floating Gate Electrets for High Performance Nonvolatile Organic Transistor Memory Devices. Adv. Funct. Mater. 2015, 25, 1511–1519. [Google Scholar] [CrossRef]
- Han, S.-T.; Zhou, Y.; Xu, Z.-X.; Huang, L.-B.; Yang, X.-B.; Roy, V.A.L. Microcontact Printing of Ultrahigh Density Gold Nanoparticle Monolayer for Flexible Flash Memories. Adv. Mater. 2012, 24, 3556–3561. [Google Scholar] [CrossRef] [PubMed]
- Baeg, K.-J.; Noh, Y.-Y.; Sirringhaus, H.; Kim, D.-Y. Controllable Shifts in Threshold Voltage of Top-Gate Polymer Field-Effect Transistors for Applications in Organic Nano Floating Gate Memory. Adv. Funct. Mater. 2010, 20, 224–230. [Google Scholar] [CrossRef]
- Kang, S.J.; Bae, I.; Park, Y.J.; Park, T.H.; Sung, J.; Yoon, S.C.; Kim, K.H.; Choi, N.H.; Park, C. Non-volatile Ferroelectric Poly(vinylidene fluoride-co-trifluoroethylene) Memory Based on a Single-Crystalline Tri-isopropylsilylethynyl Pentacene Field-Effect Transistor. Adv. Funct. Mater. 2009, 19, 1609–1616. [Google Scholar] [CrossRef]
- Kim, S.-J.; Lee, J.-S. Flexible Organic Transistor Memory Devices. Nano Lett. 2010, 10, 2884–2890. [Google Scholar] [CrossRef]
- Khan, M.; Bhansali, U.S.; Alshareef, H.N. High-Performance Non-Volatile Organic Ferroelectric Memory on Banknotes. Adv. Mater. 2012, 24, 2165–2170. [Google Scholar] [CrossRef]
- Liu, X.; Liu, C.; Sakamoto, K.; Yasuda, T.; Xiong, P.; Liang, L.; Yang, T.; Kanehara, M.; Takeya, J.; Minari, T. Homogeneous dewetting on large-scale microdroplet arrays for solution-processed electronics. NPG Asia Mater. 2017, 9, e409. [Google Scholar] [CrossRef]
- Park, Y.; Baeg, K.-J.; Kim, C. Solution-Processed Nonvolatile Organic Transistor Memory Based on Semiconductor Blends. ACS Appl. Mater. Interfaces 2019, 11, 8327–8336. [Google Scholar] [CrossRef] [PubMed]
- Chiu, Y.-C.; Chen, T.-Y.; Chen, Y.; Satoh, T.; Kakuchi, T.; Chen, W.-C. High-Performance Nonvolatile Organic Transistor Memory Devices Using the Electrets of Semiconducting Blends. ACS Appl. Mater. Interfaces 2014, 6, 12780–12788. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, X.; Xu, J.-J.; Xie, L.-H.; Yi, M.-D.; Huang, W. The trapping, detrapping, and transport of the ambipolar charges in the electret of Polystyrene/C 60 blend films. Org. Electron. 2017, 44, 247–252. [Google Scholar] [CrossRef]
- Liang, L.; Fukushima, T.; Nakamura, K.; Uemura, S.; Kamata, T.; Kobayashi, N. Temperature-dependent characteristics of non-volatile transistor memory based on a polypeptide. J. Mater. Chem. C 2014, 2, 879–883. [Google Scholar] [CrossRef]
- Hasegawa, M.; Kobayashi, N.; Uemura, S.; Kamata, T. Memory mechanism of printable ferroelectric TFT memory with tertiary structured polypeptide as a dielectric layer. Synth. Met. 2009, 159, 961–964. [Google Scholar] [CrossRef]
- Uemura, S.; Komukai, A.; Sakaida, R.; Kawai, T.; Yoshida, M.; Hoshino, S.; Kodzasa, T.; Kamata, T. The organic FET with poly (peptide) derivatives and poly (methyl-methacrylate) gate dielectric. Synth. Met. 2005, 153, 405–408. [Google Scholar] [CrossRef]
Sample Availability: Samples of the memory device are available from the authors. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, L.; He, W.; Cao, R.; Wei, X.; Uemura, S.; Kamata, T.; Nakamura, K.; Ding, C.; Liu, X.; Kobayashi, N. Non-Volatile Transistor Memory with a Polypeptide Dielectric. Molecules 2020, 25, 499. https://doi.org/10.3390/molecules25030499
Liang L, He W, Cao R, Wei X, Uemura S, Kamata T, Nakamura K, Ding C, Liu X, Kobayashi N. Non-Volatile Transistor Memory with a Polypeptide Dielectric. Molecules. 2020; 25(3):499. https://doi.org/10.3390/molecules25030499
Chicago/Turabian StyleLiang, Lijuan, Wenjuan He, Rong Cao, Xianfu Wei, Sei Uemura, Toshihide Kamata, Kazuki Nakamura, Changshuai Ding, Xuying Liu, and Norihisa Kobayashi. 2020. "Non-Volatile Transistor Memory with a Polypeptide Dielectric" Molecules 25, no. 3: 499. https://doi.org/10.3390/molecules25030499
APA StyleLiang, L., He, W., Cao, R., Wei, X., Uemura, S., Kamata, T., Nakamura, K., Ding, C., Liu, X., & Kobayashi, N. (2020). Non-Volatile Transistor Memory with a Polypeptide Dielectric. Molecules, 25(3), 499. https://doi.org/10.3390/molecules25030499