Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = polarimetric radar forward operator

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 23185 KB  
Article
InSAR-DEM Block Adjustment Model for Upcoming BIOMASS Mission: Considering Atmospheric Effects
by Kefu Wu, Haiqiang Fu, Jianjun Zhu, Huacan Hu, Yi Li, Zhiwei Liu, Afang Wan and Feng Wang
Remote Sens. 2024, 16(10), 1764; https://doi.org/10.3390/rs16101764 - 16 May 2024
Cited by 5 | Viewed by 1975
Abstract
The unique P-band synthetic aperture radar (SAR) instrument, BIOMASS, is scheduled for launch in 2024. This satellite will enhance the estimation of subcanopy topography, owing to its strong penetration and fully polarimetric observation capability. In order to conduct global-scale mapping of the subcanopy [...] Read more.
The unique P-band synthetic aperture radar (SAR) instrument, BIOMASS, is scheduled for launch in 2024. This satellite will enhance the estimation of subcanopy topography, owing to its strong penetration and fully polarimetric observation capability. In order to conduct global-scale mapping of the subcanopy topography, it is crucial to calibrate systematic errors of different strips through interferometric SAR (InSAR) DEM (digital elevation model) block adjustment. Furthermore, the BIOMASS mission will operate in repeat-pass interferometric mode, facing the atmospheric delay errors introduced by changes in atmospheric conditions. However, the existing block adjustment methods aim to calibrate systematic errors in bistatic mode, which can avoid possible errors from atmospheric effects through interferometry. Therefore, there is still a lack of systematic error calibration methods under the interference of atmospheric effects. To address this issue, we propose a block adjustment model considering atmospheric effects. Our model begins by employing the sub-aperture decomposition technique to form forward-looking and backward-looking interferograms, then multi-resolution weighted correlation analysis based on sub-aperture interferograms (SA-MRWCA) is utilized to detect atmospheric delay errors. Subsequently, the block adjustment model considering atmospheric effects can be established based on the SA-MRWCA. Finally, we use robust Helmert variance component estimation (RHVCE) to build the posterior stochastic model to improve parameter estimation accuracy. Due to the lack of spaceborne P-band data, this paper utilized L-band Advanced Land Observing Satellite (ALOS)-1 PALSAR data, which is also long-wavelength, to emulate systematic error calibration of the BIOMASS mission. We chose climatically diverse inland regions of Asia and the coastal regions of South America to assess the model’s effectiveness. The results show that the proposed block adjustment model considering atmospheric effects improved accuracy by 72.2% in the inland test site, with root mean square error (RMSE) decreasing from 10.85 m to 3.02 m. Moreover, the accuracy in the coastal test site improved by 80.2%, with RMSE decreasing from 16.19 m to 3.22 m. Full article
(This article belongs to the Special Issue Remote Sensing for Geology and Mapping)
Show Figures

Graphical abstract

23 pages, 9544 KB  
Article
Comparison of Imaging Radar Configurations for Roadway Inspection and Characterization
by Mengda Wu, Laurent Ferro-Famil, Frederic Boutet and Yide Wang
Sensors 2023, 23(20), 8522; https://doi.org/10.3390/s23208522 - 17 Oct 2023
Cited by 3 | Viewed by 1843
Abstract
This paper investigates the performance of a wide variety of radar imaging modes, such as nadir-looking B-scan, or side-looking synthetic aperture radar tomographic acquisitions, performed in both back- and forward-scattering geometries, for the inspection and characterization of roadways. Nadir-looking B-scan corresponds to a [...] Read more.
This paper investigates the performance of a wide variety of radar imaging modes, such as nadir-looking B-scan, or side-looking synthetic aperture radar tomographic acquisitions, performed in both back- and forward-scattering geometries, for the inspection and characterization of roadways. Nadir-looking B-scan corresponds to a low-complexity mode exploiting the direct return from the response, whereas side-looking configurations allow the utilization of angular and polarimetric diversity in order to analyze advanced features. The main objective of this paper is to evaluate the ability of each configuration, independently of aspects related to operational implementation, to discriminate and localize shallow underground defects in the wearing course of roadways, and to estimate key geophysical parameters, such as roughness and dielectric permittivity. Campaign measurements are conducted using short-range radar stepped-frequency continuous-waveform (SFCW) devices operated in the C and X bands, at the pavement fatigue carousel of Université Gustave Eiffel, over debonded areas with artificial defects. The results indicate the great potential of the newly proposed forward-scattering tomographic configuration for detecting slight defects and characterizing roadways. Case studies, performed in the presence of narrow horizontal heterogeneities which cannot be detected using classical B-scan, show that both the coherent integration along an aperture using the back-projection algorithm, and the exploitation of scattering mechanisms specific to the forward-looking bistatic geometry, allows anomalous echoes to be detected and further characterized, confirming the efficacy of radar imaging techniques in such applications. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

22 pages, 12411 KB  
Article
Evaluating Simulated Microphysics of Stratiform and Convective Precipitation in a Squall Line Event Using Polarimetric Radar Observations
by Yuting Sun, Zhimin Zhou, Qingjiu Gao, Hongli Li and Minghuan Wang
Remote Sens. 2023, 15(6), 1507; https://doi.org/10.3390/rs15061507 - 9 Mar 2023
Cited by 7 | Viewed by 2876
Abstract
Recent upgrades to China’s radar network now allow for polarimetric measurements of convective systems in central China, providing an effective data set with which to evaluate the microphysics schemes employed in local squall line simulations. We compared polarimetric radar variables derived by Weather [...] Read more.
Recent upgrades to China’s radar network now allow for polarimetric measurements of convective systems in central China, providing an effective data set with which to evaluate the microphysics schemes employed in local squall line simulations. We compared polarimetric radar variables derived by Weather Research and Forecasting (WRF) and radar forward models and the corresponding hydrometeor species with radar observations and retrievals for a severe squall line observed over central China on 16 March 2022. Two microphysics schemes were tested and were able to accurately depict the contrast between convective and stratiform regions in terms of the drop size distribution (DSD) and reproduce the classical polarimetric signatures of the observed differential reflectivity (ZDR) and specific differential phase (KDP) columns. However, for the convective region, the simulated DSDs in both schemes exhibited lower proportions of large drops and lower liquid water content; by contrast, for the stratiform region, the proportion of large drops was found to be too high in the Morrison (MORR) scheme. The underprediction of ice-phase processes in the convective region, particularly the riming processes associated with graupel and hail, was likely responsible for the bias toward large raindrops at low levels. In the stratiform region, raindrop evaporation in the WRF Double-Moment 6-Class (WDM6) scheme, which partially offsets the overestimation of ice-phase processes, produced ground DSDs that more closely matched the observational data, and did not exhibit the overly strong warm-rain collisional growth processes of MORR. Full article
(This article belongs to the Special Issue Processing and Application of Weather Radar Data)
Show Figures

Figure 1

24 pages, 7995 KB  
Article
A Polarimetric Radar Operator and Application for Convective Storm Simulation
by Xuanli Li, John R. Mecikalski, Jason A. Otkin, David S. Henderson and Jayanthi Srikishen
Atmosphere 2022, 13(5), 645; https://doi.org/10.3390/atmos13050645 - 19 Apr 2022
Cited by 4 | Viewed by 3351
Abstract
In this study, a polarimetric radar forward model operator was developed for the Weather Research and Forecasting (WRF) model that was based on a scattering algorithm using the T-matrix methodology. Three microphysics schemes—Thompson, Morrison 2-moment, and Milbrandt-Yau 2-moment—were supported in the operator. This [...] Read more.
In this study, a polarimetric radar forward model operator was developed for the Weather Research and Forecasting (WRF) model that was based on a scattering algorithm using the T-matrix methodology. Three microphysics schemes—Thompson, Morrison 2-moment, and Milbrandt-Yau 2-moment—were supported in the operator. This radar forward operator used the microphysics, thermodynamic, and wind fields from WRF model forecasts to compute horizontal reflectivity, radial velocity, and polarimetric variables including differential reflectivity (ZDR) and specific differential phase (KDP) for S-band radar. A case study with severe convective storms was used to examine the accuracy of the radar operator. Output from the radar operator was compared to real radar observations from the Weather Surveillance Radar–1988 Doppler (WSR-88D) radar. The results showed that the radar forward operator generated realistic polarimetric signatures. The distribution of polarimetric variables agreed well with the hydrometer properties produced by different microphysics schemes. Similar to the observed polarimetric signatures, radar operator output showed ZDR and KDP columns from low-to-mid troposphere, reflecting the large amount of rain within strong updrafts. The Thompson scheme produced a better simulation for the hail storm with a ZDR hole to indicate the existence of graupel in the low troposphere. Full article
Show Figures

Figure 1

24 pages, 8810 KB  
Article
Assimilation of Polarimetric Radar Data in Simulation of a Supercell Storm with a Variational Approach and the WRF Model
by Muyun Du, Jidong Gao, Guifu Zhang, Yunheng Wang, Pamela L. Heiselman and Chunguang Cui
Remote Sens. 2021, 13(16), 3060; https://doi.org/10.3390/rs13163060 - 4 Aug 2021
Cited by 7 | Viewed by 3123
Abstract
Polarimetric radar data (PRD) have potential to be used in numerical weather prediction (NWP) models to improve convective-scale weather forecasts. However, thus far only a few studies have been undertaken in this research direction. To assimilate PRD in NWP models, a forward operator, [...] Read more.
Polarimetric radar data (PRD) have potential to be used in numerical weather prediction (NWP) models to improve convective-scale weather forecasts. However, thus far only a few studies have been undertaken in this research direction. To assimilate PRD in NWP models, a forward operator, also called a PRD simulator, is needed to establish the relation between model physics parameters and polarimetric radar variables. Such a forward operator needs to be accurate enough to make quantitative comparisons between radar observations and model output feasible, and to be computationally efficient so that these observations can be easily incorporated into a data assimilation (DA) scheme. To address this concern, a set of parameterized PRD simulators for the horizontal reflectivity, differential reflectivity, specific differential phase, and cross-correlation coefficient were developed. In this study, we have tested the performance of these new operators in a variational DA system. Firstly, the tangent linear and adjoint (TL/AD) models for these PRD simulators have been developed and checked for the validity. Then, both the forward operator and its adjoint model have been built into the three-dimensional variational (3DVAR) system. Finally, some preliminary DA experiments have been performed with an idealized supercell storm. It is found that the assimilation of PRD, including differential reflectivity and specific differential phase, in addition to radar radial velocity and horizontal reflectivity, can enhance the accuracy of both initial conditions for model hydrometer state variables and ensuing model forecasts. The usefulness of the cross-correlation coefficient is very limited in terms of improving convective-scale data analysis and NWP. Full article
(This article belongs to the Special Issue Atmospheric Radar for Severe Weather Research)
Show Figures

Figure 1

34 pages, 13076 KB  
Review
What Polarimetric Weather Radars Offer to Cloud Modelers: Forward Radar Operators and Microphysical/Thermodynamic Retrievals
by Alexander V. Ryzhkov, Jeffrey Snyder, Jacob T. Carlin, Alexander Khain and Mark Pinsky
Atmosphere 2020, 11(4), 362; https://doi.org/10.3390/atmos11040362 - 8 Apr 2020
Cited by 30 | Viewed by 6265
Abstract
The utilization of polarimetric weather radars for optimizing cloud models is a next frontier of research. It is widely understood that inadequacies in microphysical parameterization schemes in numerical weather prediction (NWP) models is a primary cause of forecast uncertainties. Due to its ability [...] Read more.
The utilization of polarimetric weather radars for optimizing cloud models is a next frontier of research. It is widely understood that inadequacies in microphysical parameterization schemes in numerical weather prediction (NWP) models is a primary cause of forecast uncertainties. Due to its ability to distinguish between hydrometeors with different microphysical habits and to identify “polarimetric fingerprints” of various microphysical processes, polarimetric radar emerges as a primary source of needed information. There are two approaches to leverage this information for NWP models: (1) radar microphysical and thermodynamic retrievals and (2) forward radar operators for converting the model outputs into the fields of polarimetric radar variables. In this paper, we will provide an overview of both. Polarimetric measurements can be combined with cloud models of varying complexity, including ones with bulk and spectral bin microphysics, as well as simplified Lagrangian models focused on a particular microphysical process. Combining polarimetric measurements with cloud modeling can reveal the impact of important microphysical agents such as aerosols or supercooled cloud water invisible to the radar on cloud and precipitation formation. Some pertinent results obtained from models with spectral bin microphysics, including the Hebrew University cloud model (HUCM) and 1D models of melting hail and snow coupled with the NSSL forward radar operator, are illustrated in the paper. Full article
(This article belongs to the Special Issue Electromagetics and Polarimetric Weather Radar)
Show Figures

Figure 1

26 pages, 8287 KB  
Article
An Inverse Model for Raindrop Size Distribution Retrieval with Polarimetric Variables
by Guang Wen, Haonan Chen, Guifu Zhang and Jiming Sun
Remote Sens. 2018, 10(8), 1179; https://doi.org/10.3390/rs10081179 - 26 Jul 2018
Cited by 28 | Viewed by 5591
Abstract
This paper proposes an inverse model for raindrop size distribution (DSD) retrieval with polarimetric radar variables. In this method, a forward operator is first developed based on the simulations of monodisperse raindrops using a T-matrix method, and then approximated with a polynomial function [...] Read more.
This paper proposes an inverse model for raindrop size distribution (DSD) retrieval with polarimetric radar variables. In this method, a forward operator is first developed based on the simulations of monodisperse raindrops using a T-matrix method, and then approximated with a polynomial function to generate a pseudo training dataset by considering the maximum drop diameter in a truncated Gamma model for DSD. With the pseudo training data, a nearest-neighborhood method is optimized in terms of mass-weighted diameter and liquid water content. Finally, the inverse model is evaluated with simulated and real radar data, both of which yield better agreement with disdrometer observations compared to the existing Bayesian approach. In addition, the rainfall rate derived from the DSD by the inverse model is also improved when compared to the methods using the power-law relations. Full article
(This article belongs to the Special Issue Radar Polarimetry—Applications in Remote Sensing of the Atmosphere)
Show Figures

Graphical abstract

Back to TopTop