Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = plug setting (PS)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3730 KiB  
Article
Reservoir Compatibility and Enhanced Oil Recovery of Polymer and Polymer/Surfactant System: Effects of Molecular Weight and Hydrophobic Association
by Tao Liu, Xin Chen and Xiang Tang
Polymers 2025, 17(10), 1390; https://doi.org/10.3390/polym17101390 - 18 May 2025
Viewed by 641
Abstract
In this paper, four kinds of flooding systems, high-molecular-weight polymer (HMP), low-molecular-weight polymer (LMP), hydrophobic association polymer (HAP), and LMP/petroleum sulfonate (PS), are preferred. By comparing the static performance, their good basic characteristics as an oil displacement system are clarified. The application concentration [...] Read more.
In this paper, four kinds of flooding systems, high-molecular-weight polymer (HMP), low-molecular-weight polymer (LMP), hydrophobic association polymer (HAP), and LMP/petroleum sulfonate (PS), are preferred. By comparing the static performance, their good basic characteristics as an oil displacement system are clarified. The application concentration range of the polymer solution is optimized and designed in combination with core injectivity experiments and mobility control theory. The oil displacement system and its injection volume have been optimized via three parallel core flooding experiments. The results show that the increase of the polymer molecular weight and the association will enhance the viscosity-increasing performance, viscosity stability, viscoelasticity, and hydrodynamic characteristic size of the solution. According to whether the injection pressure curve reaches equilibrium and the time required for equilibrium, the matching relationship between the polymer and the reservoir can be divided into plugging, flow difficulty and flow smoothly. Based on the mobility control theory, the minimum mobility of the target core occurs when the water saturation is 30–40%. Therefore, the polymer formulation for the application of combined cores with viscosities of 50 mD, 210 mD, and 350 mD is set at 1500 mg/L for LMP and 800 mg/L for MAP. HAP has the best profile improvement effect, but its lowest EOR is 9.68%, which mainly acts on high-permeability layers; LMP can produce more remaining oil in middle-permeability layers, and its EOR can reach 12.01%; LMP/PS can give full play to the oil displacement performance of the polymer and the oil washing ability of the surfactant, and its highest EOR is 21.32%. Meanwhile, the emulsification effect also makes the profile improvement last longer. According to the EOR efficiency and final oil recovery, the optimal injection volume of LMP/PS can be designed to be 0.6–0.7 PV. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

28 pages, 3471 KiB  
Article
Optimal Coordination of Directional Overcurrent Relays Using Hybrid Firefly–Genetic Algorithm
by Tareq Foqha, Maher Khammash, Samer Alsadi, Osama Omari, Shady S. Refaat, Khaled Al-Qawasmi and Ali Elrashidi
Energies 2023, 16(14), 5328; https://doi.org/10.3390/en16145328 - 12 Jul 2023
Cited by 34 | Viewed by 3253
Abstract
The application of directional overcurrent relays (DOCRs) plays an important role in protecting power systems and ensuring their safe, reliable, and efficient operation. However, coordinating DOCRs involves solving a highly constrained and nonlinear optimization problem. The primary objective of optimization is to minimize [...] Read more.
The application of directional overcurrent relays (DOCRs) plays an important role in protecting power systems and ensuring their safe, reliable, and efficient operation. However, coordinating DOCRs involves solving a highly constrained and nonlinear optimization problem. The primary objective of optimization is to minimize the total operating time of DOCRs by determining the optimal values for decision variables such as the time multiplier setting (TMS) and plug setting (PS). This article presents an efficient hybrid optimization algorithm that combines the modified firefly algorithm and genetic algorithm to achieve improved solutions. First, this study modifies the firefly algorithm to obtain a global solution by updating the firefly’s brightness and to prevent the distance between the individual fireflies from being too far. Additionally, the randomized movements are controlled to produce a high convergence rate. Second, the optimization problem is solved using the genetic algorithm. Finally, the solution obtained from the modified firefly algorithm is used as the initial population for the genetic algorithm. The proposed algorithms have been tested on the IEEE 3-bus, 8-bus, 9-bus and 15-bus networks. The results indicate the effectiveness and superiority of the proposed algorithms in minimizing the total operating time of DOCRs compared with other optimization methods presented in the literature. Full article
(This article belongs to the Topic Power System Protection)
Show Figures

Figure 1

21 pages, 2746 KiB  
Article
The Hybridization of PSO for the Optimal Coordination of Directional Overcurrent Protection Relays of the IEEE Bus System
by Yuheng Wang, Kashif Habib, Abdul Wadood and Shahbaz Khan
Energies 2023, 16(9), 3726; https://doi.org/10.3390/en16093726 - 26 Apr 2023
Cited by 14 | Viewed by 2454
Abstract
The hybridization of PSO for the Optimal Coordination of Directional Overcurrent Protection Relays (DOPR) of the IEEE bus system proposes a new method for coordinating directional overcurrent protection relays in power systems. The method combines the hybrid particle swarm optimization (HPSO) algorithm and [...] Read more.
The hybridization of PSO for the Optimal Coordination of Directional Overcurrent Protection Relays (DOPR) of the IEEE bus system proposes a new method for coordinating directional overcurrent protection relays in power systems. The method combines the hybrid particle swarm optimization (HPSO) algorithm and a heuristic PSO algorithm to find the minimum total operating time of the directional overcurrent protection relays with speed and accuracy. The proposed method is tested on the IEEE 4-bus, 6-bus, and 8-bus systems, and the results are compared with those obtained using traditional coordination methods. The collected findings suggest that the proposed method may produce better coordination and faster operation of DOPRs than the previous methods, with an increase of up to 74.9% above the traditional technique. The hybridization of the PSO algorithm and heuristic PSO algorithm offers a promising approach to optimize power system protection. Full article
Show Figures

Figure 1

17 pages, 1642 KiB  
Article
An Improved Technique of Hybridization of PSO for the Optimal Coordination of Directional Overcurrent Protection Relays of IEEE Bus System
by Kashif Habib, Xinquan Lai, Abdul Wadood, Shahbaz Khan, Yuheng Wang and Siting Xu
Energies 2022, 15(9), 3076; https://doi.org/10.3390/en15093076 - 22 Apr 2022
Cited by 15 | Viewed by 2470
Abstract
The use of a directional overcurrent protection relay (DOPR) to protect an electrical power system is a crucial instrument for keeping the system dynamic and avoiding undue interruption. The coordination of a DOPR’s primary and backup relays is modelled as a highly constrained [...] Read more.
The use of a directional overcurrent protection relay (DOPR) to protect an electrical power system is a crucial instrument for keeping the system dynamic and avoiding undue interruption. The coordination of a DOPR’s primary and backup relays is modelled as a highly constrained optimization problem. The goal is to determine an ideal value that will reduce the overall working time of all primary relays. The coordination is accomplished by the use of particle swarm optimization hybridization (HPSO). Comprehensive simulation experiments are carried out to evaluate the efficacy of the proposed HPSO by employing the time multiplier setting (TMS) and plug setting (PS) as an optimization variable and constant, respectively. The HPSO has been examined satisfactorily utilizing certain IEEE benchmark test systems (9-bus and 14-bus). The outcomes are contrasted with earlier heuristics and evolutionary approaches. Based on the acquired findings, it is clear that the obtained results exceed the other conventional and state of the art procedures in terms of total DOPR operation and the computing time necessary to achieve the global optimal solution. Full article
(This article belongs to the Special Issue Power System Simulation and Modeling)
Show Figures

Graphical abstract

5 pages, 483 KiB  
Proceeding Paper
Application of Marine Predator Algorithm in Solving the Problem of Directional Overcurrent Relay in Electrical Power System
by Abdul Wadood, Shahbaz Khan, Bakht Muhammad Khan, Husan Ali and Zabdur Rehman
Eng. Proc. 2021, 12(1), 9; https://doi.org/10.3390/engproc2021012009 - 22 Dec 2021
Cited by 3 | Viewed by 1377
Abstract
In electrical power systems, directional overcurrent relay (DOCR) coordination is assumed to be an essential component of the system for protection purposes. To diminish and reduce power losses, the coordination between these relays ought to be kept at an ideal value to minimalize [...] Read more.
In electrical power systems, directional overcurrent relay (DOCR) coordination is assumed to be an essential component of the system for protection purposes. To diminish and reduce power losses, the coordination between these relays ought to be kept at an ideal value to minimalize the overall operating time of all primary-relay shortcoming situations. The coordination of DOCR is a complex and profoundly compelling nonlinear problem. The objective function is to minimalize the overall total operating time of all essential relays to minimize inordinate breakdown and interference. Coordination is performed using the marine predator algorithm (MPA), inspired by a widespread foraging strategy, namely Lévy and Brownian movements, to search for global optimal solutions in order to resolve the DOCRs coordination issue. The results acquired from MPA are equated with other state-of-the-art algorithms, and it was observed that the proposed algorithm outperforms other algorithms. Full article
(This article belongs to the Proceedings of The 1st International Conference on Energy, Power and Environment)
Show Figures

Figure 1

21 pages, 3625 KiB  
Article
An Optimized Adaptive Protection Scheme for Numerical and Directional Overcurrent Relay Coordination Using Harris Hawk Optimization
by Muhammad Irfan, Abdul Wadood, Tahir Khurshaid, Bakht Muhammad Khan, Ki-Chai Kim, Seung-Ryle Oh and Sang-Bong Rhee
Energies 2021, 14(18), 5603; https://doi.org/10.3390/en14185603 - 7 Sep 2021
Cited by 26 | Viewed by 2427
Abstract
The relay coordination problem is of dire importance as it is critical to isolate the faulty portion in a timely way and thus ensure electrical network security and reliability. Meanwhile a relay protection optimization problem is highly constraint and complicated problem to be [...] Read more.
The relay coordination problem is of dire importance as it is critical to isolate the faulty portion in a timely way and thus ensure electrical network security and reliability. Meanwhile a relay protection optimization problem is highly constraint and complicated problem to be addressed. To fulfill this purpose, Harris Hawk Optimization (HHO) is adapted to solve the optimization problem for Directional Over-current Relays (DOCRs) and numerical relays. As it is inspired by the intelligent and collegial chasing and preying behavior of hawks for capturing the prey, it shows quite an impressive result for finding the global optimum values. Two decision variables; Time Dial Settings (TDS) and Plug Settings (PS) are chosen as the decision variables for minimization of overall operating time of relays. The proposed algorithm is implemented on three IEEE test systems. In comparison to other state-of-the-art nature inspired and traditional algorithms, the results demonstrate the superiority of HHO. Full article
(This article belongs to the Special Issue Smart Energy Systems: Control and Optimization)
Show Figures

Figure 1

27 pages, 5240 KiB  
Article
Nature-Inspired Whale Optimization Algorithm for Optimal Coordination of Directional Overcurrent Relays in Power Systems
by Abdul Wadood, Tahir Khurshaid, Saeid Gholami Farkoush, Jiangtao Yu, Chang-Hwan Kim and Sang-Bong Rhee
Energies 2019, 12(12), 2297; https://doi.org/10.3390/en12122297 - 16 Jun 2019
Cited by 32 | Viewed by 5150
Abstract
In power systems protection, the optimal coordination of directional overcurrent relays (DOCRs) is of paramount importance. The coordination of DOCRs in a multi-loop power system is formulated as an optimization problem. The main objective of this paper is to develop the whale optimization [...] Read more.
In power systems protection, the optimal coordination of directional overcurrent relays (DOCRs) is of paramount importance. The coordination of DOCRs in a multi-loop power system is formulated as an optimization problem. The main objective of this paper is to develop the whale optimization algorithm (WOA) for the optimal coordination of DOCRs and minimize the sum of the operating times of all primary relays. The WOA is inspired by the bubble-net hunting strategy of humpback whales which leads toward global minima. The proposed algorithm has been applied to six IEEE test systems including the IEEE three-bus, eight-bus, nine-bus, 14-bus, 15-bus, and 30-bus test systems. Furthermore, the results obtained using the proposed WOA are compared with those obtained by other up-to-date algorithms. The obtained results show the effectiveness of the proposed WOA to minimize the relay operating time for the optimal coordination of DOCRs. Full article
(This article belongs to the Special Issue Electric Power Systems Research 2019)
Show Figures

Figure 1

Back to TopTop