Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,630)

Search Parameters:
Keywords = plasma in liquids

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1641 KiB  
Article
Site-Specific Trafficking of Lipid and Polar Metabolites in Adipose and Muscle Tissue Reveals the Impact of Bariatric Surgery-Induced Weight Loss: A 6-Month Follow-Up Study
by Aidan Joblin-Mills, Zhanxuan E. Wu, Garth J. S. Cooper, Ivana R. Sequeira-Bisson, Jennifer L. Miles-Chan, Anne-Thea McGill, Sally D. Poppitt and Karl Fraser
Metabolites 2025, 15(8), 525; https://doi.org/10.3390/metabo15080525 (registering DOI) - 2 Aug 2025
Abstract
Background: The causation of type 2 diabetes remains under debate, but evidence supports both abdominal lipid and ectopic lipid overspill into tissues including muscle as key. How these depots differentially alter cardiometabolic profile and change during body weight and fat loss is not [...] Read more.
Background: The causation of type 2 diabetes remains under debate, but evidence supports both abdominal lipid and ectopic lipid overspill into tissues including muscle as key. How these depots differentially alter cardiometabolic profile and change during body weight and fat loss is not known. Methods: Women with obesity scheduled to undergo bariatric surgery were assessed at baseline (BL, n = 28) and at 6-month follow-up (6m_FU, n = 26) after weight loss. Fasting plasma (Pla), subcutaneous thigh adipose (STA), subcutaneous abdominal adipose, (SAA), and thigh vastus lateralis muscle (VLM) samples were collected at BL through surgery and at 6m_FU using needle biopsy. An untargeted liquid chromatography mass spectrometry metabolomics platform was used. Pla and tissue-specific lipid and polar metabolite profiles were modelled as changes from BL and 6m_FU. Results: There was significant body weight (−24.5 kg) loss at 6m_FU (p < 0.05). BL vs. 6m_FU tissue metabolomics profiles showed the largest difference in lipid profiles in SAA tissue in response to surgery. Conversely, polar metabolites were more susceptible to change in STA and VLM. In Pla samples, both lipid and polar metabolite profiles showed significant differences between timepoints. Jaccard–Tanimoto coefficient t-tests identified a sub-group of gut microbiome and dietary-derived omega-3-fatty-acid-containing lipid species and core energy metabolism and adipose catabolism-associated polar metabolites that are trafficked between sample types in response to bariatric surgery. Conclusions: In this first report on channelling of lipids and polar metabolites to alternative tissues in bariatric-induced weight loss, adaptive shuttling of small molecules was identified, further promoting adipose processing and highlighting the dynamic and coordinated nature of post-surgical metabolic regulation. Full article
Show Figures

Figure 1

22 pages, 5123 KiB  
Article
Tailored Effects of Plasma-Activated Water on Hair Structure Through Comparative Analysis of Nitrate-Rich and Peroxide-Rich Formulations Across Different Hair Types
by Antonia de Souza Leal, Michaela Shiotani Marcondes, Ariane Leite, Douglas Leite, Clodomiro Alves Junior, Laurita dos Santos and Rodrigo Pessoa
Appl. Sci. 2025, 15(15), 8573; https://doi.org/10.3390/app15158573 (registering DOI) - 1 Aug 2025
Abstract
Plasma-activated water (PAW), enriched with reactive oxygen and nitrogen species (RONS), presents oxidative and antimicrobial characteristics with potential in cosmetic applications. This study examined the effects of two PAW formulations—nitrate-rich (PAW-N) and peroxide-rich (PAW-P)—on human hair types classified as straight (Type 1), wavy [...] Read more.
Plasma-activated water (PAW), enriched with reactive oxygen and nitrogen species (RONS), presents oxidative and antimicrobial characteristics with potential in cosmetic applications. This study examined the effects of two PAW formulations—nitrate-rich (PAW-N) and peroxide-rich (PAW-P)—on human hair types classified as straight (Type 1), wavy (Type 2), and coily/kinky (Type 4). The impact of PAW on hair structure and chemistry was evaluated using Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), UV–Vis spectrophotometry, and physicochemical analyses of the liquids (pH, ORP, conductivity, and TDS). PAW-N, with high nitrate content (~500 mg/L), low pH (2.15), and elevated conductivity (6244 µS/cm), induced significant damage to porous hair types, including disulfide bond cleavage, protein oxidation, and lipid degradation, as indicated by FTIR and EDS data. SEM confirmed severe cuticle disruption. In contrast, PAW-P, containing >25 mg/L of hydrogen peroxide and exhibiting milder acidity and lower ionic strength, caused more localized and controlled oxidation with minimal morphological damage. Straight hair showed greater resistance to both treatments, while coily and wavy hair were more susceptible, particularly to PAW-N. These findings suggest that the formulation and ionic profile of PAW should be matched to hair porosity for safe oxidative treatments, supporting the use of PAW-P as a gentler alternative in hair care technologies. Full article
Show Figures

Figure 1

16 pages, 2155 KiB  
Article
Emulsifying Properties of Oat Protein/Casein Complex Prepared Using Atmospheric Cold Plasma with pH Shifting
by Yang Teng, Mingjuan Ou, Jihuan Wu, Ting Jiang, Kaige Zheng, Yuxing Guo, Daodong Pan, Tao Zhang and Zhen Wu
Foods 2025, 14(15), 2702; https://doi.org/10.3390/foods14152702 (registering DOI) - 31 Jul 2025
Abstract
An oat protein isolate is an ideal raw material for producing a wide range of plant-based products. However, oat protein exhibits weak functional properties, particularly in emulsification. Casein-based ingredients are commonly employed to enhance emulsifying properties as a general practice in the food [...] Read more.
An oat protein isolate is an ideal raw material for producing a wide range of plant-based products. However, oat protein exhibits weak functional properties, particularly in emulsification. Casein-based ingredients are commonly employed to enhance emulsifying properties as a general practice in the food industry. pH-shifting processing is a straightforward method to partially unfold protein structures. This study modified a mixture of an oat protein isolate (OPI) and casein by combining a pH adjustment (adjusting the pH of two solutions to 12, mixing them at a 3:7 ratio, and maintaining the pH at 12 for 2 h) with an atmospheric cold plasma (ACP) treatment to improve the emulsifying properties. The results demonstrated that the ACP treatment significantly enhanced the solubility of the OPI/casein mixtures, with a maximum solubility of 82.63 ± 0.33%, while the ζ-potential values were approximately −40 mV, indicating that all the samples were fairly stable. The plasma-induced increase in surface hydrophobicity supported greater protein adsorption and redistribution at the oil/water interface. After 3 min of treatment, the interfacial pressure peaked at 8.32 mN/m. Emulsions stabilized with the modified OPI/casein mixtures also exhibited a significant droplet size reduction upon extending the ACP treatment to 3 min, decreasing from 5.364 ± 0.034 μm to 3.075 ± 0.016 μm. The resulting enhanced uniformity in droplet size distribution signified the formation of a robust interfacial film. Moreover, the ACP treatment effectively enhanced the emulsifying activity of the OPI/casein mixtures, reaching (179.65 ± 1.96 m2/g). These findings highlight the potential application value of OPI/casein mixtures in liquid dairy products. In addition, dairy products based on oat protein are more conducive to sustainable development than traditional dairy products. Full article
(This article belongs to the Special Issue Food Proteins: Innovations for Food Technologies)
Show Figures

Figure 1

18 pages, 3968 KiB  
Article
Design, Development, and Clinical Validation of a Novel Kit for Cell-Free DNA Extraction
by Ekin Çelik, Hande Güner, Gizem Kayalı, Haktan Bagis Erdem, Taha Bahsi and Hasan Huseyin Kazan
Diagnostics 2025, 15(15), 1897; https://doi.org/10.3390/diagnostics15151897 - 29 Jul 2025
Viewed by 229
Abstract
Background: Cell-free DNA (cfDNA) has become a cornerstone of liquid biopsy applications, offering promise for early disease detection and monitoring. However, its widespread clinical adoption is limited by variability in pre-analytical processing, especially during isolation. Current extraction methods face challenges in yield, purity, [...] Read more.
Background: Cell-free DNA (cfDNA) has become a cornerstone of liquid biopsy applications, offering promise for early disease detection and monitoring. However, its widespread clinical adoption is limited by variability in pre-analytical processing, especially during isolation. Current extraction methods face challenges in yield, purity, and reproducibility. Methods: We developed and optimized SafeCAP 2.0, a novel magnetic bead-based cfDNA extraction kit, focusing on efficient recovery, minimal genomic DNA contamination, and PCR compatibility. Optimization involved systematic evaluation of magnetic bead chemistry, buffer composition, and reagent volumes. Performance was benchmarked against a commercial reference kit (Apostle MiniMax) using spiked oligonucleotides and plasma from patients with stage IV NSCLC. Results: The optimized protocol demonstrated superior recovery with a limit of detection (LoD) as low as 0.3 pg/µL and a limit of quantification (LoQ) of 1 pg/μL with no detectable PCR inhibition. In comparative studies, SafeCAP 2.0 showed equivalent or improved performance over the commercial kit. Clinical validation using 47 patient plasma samples confirmed robust cfDNA recovery and fragment integrity. Conclusions: SafeCAP 2.0 offers a cost-effective, high-performance solution for cfDNA extraction in both research and clinical workflows. Its design and validation address key pre-analytical barriers, supporting integration into routine diagnostics and precision medicine platforms. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Figure 1

23 pages, 2911 KiB  
Article
Development of a Liquid Chromatography–Tandem Mass Spectrometry Method for Oxylipin Analysis and Its Application to Children’s Plasma
by Yonghan Li, Siddabasave Gowda B. Gowda, Divyavani Gowda, Atsuko Ikeda, Yu Ait Bamai, Rahel Mesfin Ketema, Reiko Kishi, Hitoshi Chiba and Shu-Ping Hui
Diagnostics 2025, 15(15), 1870; https://doi.org/10.3390/diagnostics15151870 - 25 Jul 2025
Viewed by 442
Abstract
Background/Objectives: Oxylipins, a family of oxygenated natural products derived from polyunsaturated fatty acids (PUFAs), play crucial roles in various physiological processes. Evaluating their levels in vivo helps to reveal their roles in health and disease. Because of the numerous isomers of oxylipins, it [...] Read more.
Background/Objectives: Oxylipins, a family of oxygenated natural products derived from polyunsaturated fatty acids (PUFAs), play crucial roles in various physiological processes. Evaluating their levels in vivo helps to reveal their roles in health and disease. Because of the numerous isomers of oxylipins, it is essential to develop efficient and precise analytical methods for their identification and quantification. The objective of this study is to establish a quantitative method for oxylipin analysis and its application to the assessment of oxylipins in children’s plasma, with potential implications for diagnostic use in pediatric populations. Methods: A liquid chromatography–electrospray ionization–tandem mass spectrometry method was developed to quantify 64 oxylipins and four precursor PUFAs within 36 min. The limits of quantification ranged from 0.25 to 50 pg, with most analytes showing recoveries and matrix effects between 85 and 110% and between 90 and 110%, respectively. Intra- and inter-day precision values were within 15%. The established method was applied to plasma samples from children aged 9–12 years (boys = 181; girls = 161) in Hokkaido, Japan, to assess the relation between plasma oxylipin and PUFA levels and age, sex, and body mass index. Results: There was no significant correlation between oxylipin levels and age, sex, or body mass index. However, among the PUFAs, boys had higher eicosapentaenoic acid and arachidonic acid levels than those of girls, with a significant increase in eicosapentaenoic acid levels in the overweight group compared with those in the underweight group. Conclusions: We successfully developed a simple and highly selective method for the analysis of oxylipins in preadolescent children’s plasma samples. Thus, this study provides a foundation for broader application of the developed method to different biological samples in future studies. Full article
(This article belongs to the Special Issue Recent Advances in Pediatric Laboratory Medicine)
Show Figures

Figure 1

13 pages, 1704 KiB  
Article
Rapid High-Accuracy Quantitative Analysis of Water Hardness by Combination of One-Point Calibration Laser-Induced Breakdown Spectroscopy and Aerosolization
by Ting Luo, Weihua Huang, Riheng Chen, Furong Chen, Jinke Chen, Zhenlin Hu and Junfei Nie
Chemosensors 2025, 13(8), 271; https://doi.org/10.3390/chemosensors13080271 - 23 Jul 2025
Viewed by 226
Abstract
Water quality should be tested to ensure it is acceptable for the healthy growth of plants and animals, and water hardness is one of the important testing indexes. Herein, a novel approach was proposed to achieve high accuracy and rapid quantitative analyses of [...] Read more.
Water quality should be tested to ensure it is acceptable for the healthy growth of plants and animals, and water hardness is one of the important testing indexes. Herein, a novel approach was proposed to achieve high accuracy and rapid quantitative analyses of water hardness by combining one-point calibration laser-induced breakdown spectroscopy (OPC–LIBS) and aerosolization. First, the water samples are aerosolized via the aerosol generation device and the LIBS spectra of aerosols are obtained. Then, a modified OPC–LIBS model is used to determine the elemental contents of the aerosols via LIBS spectra, in which the plasma temperature is calculated using the Multi-Element Saha–Boltzmann (ME–SB) plot. One suitable standard liquid sample (the concentrations of Ca, Mg, and Sr were 50 mg/L, 50 mg/L, and 500 mg/L, respectively) was selected to evaluate the quantitative performance of the modified OPC–LIBS. Then, the Ca and Mg concentrations in the three real water samples (from the Yangtze River, reservoir, and underground) were detected and quantified by the proposed method, and the quantitative results of three LIBS calibration methods were compared with that of inductively coupled plasma optical emission spectroscopy (ICP–OES). The average relative error of Ca and Mg found in the OPC–LIBS results was lower by 22.23% than the internal standard method and 14.50% lower than the external standard method. The method combining modified OPC–LIBS and aerosolization can achieve high-precision rapid quantification of water hardness detection, which provides a new path for rapid detection of water hardness and is expected to make online detection a reality in the water quality testing field. Full article
Show Figures

Graphical abstract

12 pages, 2715 KiB  
Article
Room-Temperature Plasma Hydrogenation of Fatty Acid Methyl Esters (FAMEs)
by Benjamin Wang, Trevor Jehl, Hongtao Zhong and Mark Cappelli
Processes 2025, 13(8), 2333; https://doi.org/10.3390/pr13082333 - 23 Jul 2025
Viewed by 242
Abstract
The increasing demand for sustainable energy has spurred the exploration of advanced technologies for biodiesel production. This paper investigates the use of Dielectric Barrier Discharge (DBD)-generated low-temperature plasmas to enhance the conversion of fatty acid methyl esters (FAMEs) into hydrogenated fatty acid methyl [...] Read more.
The increasing demand for sustainable energy has spurred the exploration of advanced technologies for biodiesel production. This paper investigates the use of Dielectric Barrier Discharge (DBD)-generated low-temperature plasmas to enhance the conversion of fatty acid methyl esters (FAMEs) into hydrogenated fatty acid methyl esters (H-FAMEs) and other high-value hydrocarbons. A key mechanistic advance is achieved via in situ distillation: at the reactor temperature, unsaturated C18 and C20 FAMEs remain liquid due to their low melting points, while the corresponding saturated C18:0 and C20:0 FAMEs (with melting points of approximately 37–39 °C and 46–47 °C, respectively) solidify and deposit on a glass substrate. This phase separation continuously exposes fresh unsaturated FAME to the plasma, driving further hydrogenation and thereby delivering high overall conversion efficiency. The non-thermal, energy-efficient nature of DBD plasmas offers a promising alternative to conventional high-pressure, high-temperature methods; here, we evaluate the process efficiency, product selectivity, and scalability of this room-temperature, atmospheric-pressure approach and discuss its potential for sustainable fuel-reforming applications. Full article
(This article belongs to the Special Issue Plasma Science and Plasma-Assisted Applications)
Show Figures

Figure 1

10 pages, 721 KiB  
Article
Pharmacokinetic Analysis of the Bioavailability of AQUATURM®, a Water-Soluble Curcumin Formulation, in Comparison to a Conventional Curcumin Tablet, in Human Subjects
by Lillian Jabur, Rishi Pandey, Meena Mikhael, Garry Niedermayer, Erika Gyengesi, David Mahns and Gerald Münch
Pharmaceuticals 2025, 18(7), 1073; https://doi.org/10.3390/ph18071073 - 21 Jul 2025
Viewed by 333
Abstract
Background/Objectives: Curcumin, the principal bioactive component of Curcuma longa, is known for its anti-inflammatory, antioxidant, and neuroprotective properties. Despite its therapeutic potential, curcumin exhibits poor oral bioavailability due to low solubility, rapid metabolism, and limited gastrointestinal absorption. Various delivery systems have been developed [...] Read more.
Background/Objectives: Curcumin, the principal bioactive component of Curcuma longa, is known for its anti-inflammatory, antioxidant, and neuroprotective properties. Despite its therapeutic potential, curcumin exhibits poor oral bioavailability due to low solubility, rapid metabolism, and limited gastrointestinal absorption. Various delivery systems have been developed to overcome these limitations. This study aimed to evaluate and compare the pharmacokinetic profile of AQUATURM®, a novel, water-soluble curcumin formulation, with that of a widely available commercial curcumin supplement. Methods: A randomized, double-blind, two-period crossover study was conducted in 12 healthy adult participants (6 male, 6 female; aged 20–45 years). Each participant received a single oral dose of either AQUATURM® or the comparator product, followed by a 7-day washout period before receiving the alternate treatment. Blood samples were collected at multiple time points over a 12-h period post-dosing. Plasma curcumin concentrations were quantified using ultra-performance liquid chromatography with tandem mass spectrometry (UPLC-MS/MS). Results: AQUATURM® achieved a significantly higher systemic exposure compared to the comparator, with a more than 7-fold increase in area under the curve (AUC0–12h) and higher peak plasma concentrations (Cmax). AQUATURM® also maintained detectable curcumin levels for the full 12-h observation period, whereas levels from the comparator fell below quantification limits in most participants after 4 h. Conclusions: AQUATURM® significantly enhances curcumin bioavailability in humans compared to a standard curcumin formulation. These pharmacokinetic improvements support its potential for greater clinical efficacy and warrant further evaluation in therapeutic setting Full article
Show Figures

Graphical abstract

14 pages, 1649 KiB  
Article
LC-MS-Based Untargeted Metabolic Profiling in Plasma Following Dapagliflozin Administration in Healthy Volunteers
by Hyeon Ji Kim, Jae Hwa Lee, Ji Seo Park, Jin Ju Park, Hae Won Lee, Heeyoun Bunch, Sook Jin Seong, Mi-Ri Gwon and Young-Ran Yoon
Metabolites 2025, 15(7), 484; https://doi.org/10.3390/metabo15070484 - 17 Jul 2025
Viewed by 447
Abstract
Dapagliflozin, a sodium-glucose cotransporter 2 inhibitor, treats type 2 diabetes by blocking renal glucose reabsorption and promoting urinary glucose excretion. This mechanism lowers blood glucose concentrations independently of insulin. The resulting caloric loss also contributes to weight reduction. Although these effects are well [...] Read more.
Dapagliflozin, a sodium-glucose cotransporter 2 inhibitor, treats type 2 diabetes by blocking renal glucose reabsorption and promoting urinary glucose excretion. This mechanism lowers blood glucose concentrations independently of insulin. The resulting caloric loss also contributes to weight reduction. Although these effects are well documented in patients with diabetes, their magnitude and underlying mechanisms in healthy individuals remain poorly understood. Background/Objectives: We investigated metabolic alterations after a single 10 mg dose of dapagliflozin in healthy adults with normal body-mass indices (BMIs) using untargeted metabolomics. Methods: Thirteen healthy volunteers completed this study. Plasma was collected before and 24 h after dosing. Untargeted metabolic profiling was performed with ultra-high-performance liquid chromatography–quadrupole time-of-flight/mass spectrometry. Results: Twenty-five endogenous metabolites were annotated; ten were putatively identified. Eight metabolites increased significantly, whereas two decreased. Up-regulated metabolites included phosphatidylcholine (PC) species (PC O-36:5, PC 36:3), phosphatidylserine (PS) species (PS 40:2, PS 40:3, PS 36:1, PS 40:4), lysophosphatidylserine 22:1, and uridine. Dehydroepiandrosterone sulfate and bilirubin were down-regulated. According to the Human Metabolome Database, these metabolites participate in glycerophospholipid, branched-chain amino acid, pyrimidine, and steroid-hormone metabolism. Conclusions: Dapagliflozin may affect pathways related to energy metabolism and homeostasis beyond glucose regulation. These data provide a reference for future investigations into energy balance and metabolic flexibility in metabolic disorders. Full article
(This article belongs to the Section Pharmacology and Drug Metabolism)
Show Figures

Figure 1

14 pages, 992 KiB  
Article
Development and Validation of a Highly Sensitive LC–MS/MS Method for the Precise Quantification of Sitagliptin in Human Plasma and Its Application to Pharmacokinetic Study
by Yuna Song, Wang-Seob Shim, Eunseo Song, Yebeen Park, Bo-Hyung Kim, Sangmin Lee, Eun Kyoung Chung and Kyung-Tae Lee
Molecules 2025, 30(14), 2995; https://doi.org/10.3390/molecules30142995 - 16 Jul 2025
Viewed by 303
Abstract
Sitagliptin is an orally bioavailable selective DPP4 inhibitor that reduces blood glucose levels without significant increases in hypoglycemia. The aim of this study was to design and validate an innovative, rapid, and highly sensitive LC–MS/MS assay for the precise measurement of sitagliptin concentrations [...] Read more.
Sitagliptin is an orally bioavailable selective DPP4 inhibitor that reduces blood glucose levels without significant increases in hypoglycemia. The aim of this study was to design and validate an innovative, rapid, and highly sensitive LC–MS/MS assay for the precise measurement of sitagliptin concentrations in human plasma. This analytical method, utilizing sitagliptin-d4 as the internal standard, is performed using only 100 μL of plasma and a liquid–liquid extraction procedure based on methyl tert-butyl ether (MTBE). Chromatographic separation is expertly achieved with a Kinetex® C18 column under isocratic elution, employing a perfect 1:1 blend of 5 mM ammonium acetate (with 0.04% formic acid) and acetonitrile, and maintaining an efficient flow rate of 0.2 mL/min. Detection occurs in positive ionization mode through multiple reaction monitoring, precisely targeting transitions of m/z 408.2 → 193.0 for sitagliptin and 412.2 → 239.1 for the IS. The total runtime of this assay is under 2 min. Comprehensive validation in line with MFDS and FDA criteria demonstrates outstanding linearity (5–1000 ng/mL, r2 > 0.998), alongside impressive levels of accuracy, precision, recovery and sample stability. Due to its minimal sample requirement and high-throughput capability, the validated approach is highly appropriate for pharmacokinetic and bioequivalence assessments involving sitagliptin. Full article
(This article belongs to the Special Issue The Application of LC-MS in Pharmaceutical Analysis)
Show Figures

Figure 1

16 pages, 689 KiB  
Article
Quantification of Total and Unbound Selinexor Concentrations in Human Plasma by a Fully Validated Liquid Chromatography-Tandem Mass Spectrometry Method
by Suhyun Lee, Seungwon Yang, Hyeonji Kim, Wang-Seob Shim, Eunseo Song, Seunghoon Han, Sung-Soo Park, Suein Choi, Sungpil Han, Sung Hwan Joo, Seok Jun Park, Beomjin Shin, Donghyun Kim, Hyeon Su Kim, Kyung-Tae Lee and Eun Kyoung Chung
Pharmaceutics 2025, 17(7), 919; https://doi.org/10.3390/pharmaceutics17070919 - 16 Jul 2025
Viewed by 320
Abstract
Background/Objectives: Selinexor is a selective nuclear-export inhibitor approved for hematologic malignancies, characterized by extensive plasma protein binding (>95%). However, a validated analytical method to accurately measure the clinically relevant unbound fraction of selinexor in human plasma has not yet been established. This study [...] Read more.
Background/Objectives: Selinexor is a selective nuclear-export inhibitor approved for hematologic malignancies, characterized by extensive plasma protein binding (>95%). However, a validated analytical method to accurately measure the clinically relevant unbound fraction of selinexor in human plasma has not yet been established. This study aimed to develop a fully validated bioanalytical assay for simultaneous quantification of total and unbound selinexor concentrations in human plasma. Methods: We established and fully validated an analytical method based on liquid chromatography–tandem mass spectrometry (LC-MS/MS) capable of quantifying total and unbound selinexor concentrations in human plasma. Unbound selinexor was separated using ultrafiltration, and selinexor was efficiently extracted from 50 μL of plasma by liquid–liquid extraction. Chromatographic separation was achieved on a C18 column using an isocratic mobile phase (0.1% formic acid:methanol, 12:88 v/v) with a relatively short runtime of 2.5 min. Results: Calibration curves showed excellent linearity over a range of 5–2000 ng/mL for total selinexor (r2 ≥ 0.998) and 0.05–20 ng/mL for unbound selinexor (r2 ≥ 0.995). The precision (%CV ≤ 10.35%) and accuracy (92.5–104.3%) for both analytes met the regulatory criteria. This method successfully quantified selinexor in plasma samples from renally impaired patients with multiple myeloma, demonstrating potential inter-individual differences in unbound drug concentrations. Conclusions: This validated bioanalytical assay enables precise clinical pharmacokinetic assessments in a short runtime using a small plasma volume and, thus, assists in individualized dosing of selinexor, particularly for renally impaired patients with altered protein binding. Full article
(This article belongs to the Section Pharmacokinetics and Pharmacodynamics)
Show Figures

Figure 1

13 pages, 1498 KiB  
Article
Evaluation of Ropivacaine and 3-OH-Ropivacaine Pharmacokinetics Following Interpectoral Nerve Block via LC-MS/MS—A Pilot Study
by Mihaela Butiulca, Lenard Farczadi, Silvia Imre, Camil Eugen Vari, Laurian Vlase, Leonard Azamfirei and Alexandra Elena Lazar
Int. J. Mol. Sci. 2025, 26(14), 6696; https://doi.org/10.3390/ijms26146696 - 12 Jul 2025
Viewed by 295
Abstract
Regional anesthesia techniques such as the ultrasound-guided PECS II (pectoral nerve block) block are increasingly employed to optimize perioperative analgesia while minimizing systemic anesthetic exposure. Ropivacaine is commonly used for its favorable pharmacological profile; however, clinical data on its pharmacokinetics and systemic metabolite [...] Read more.
Regional anesthesia techniques such as the ultrasound-guided PECS II (pectoral nerve block) block are increasingly employed to optimize perioperative analgesia while minimizing systemic anesthetic exposure. Ropivacaine is commonly used for its favorable pharmacological profile; however, clinical data on its pharmacokinetics and systemic metabolite behavior following interpectoral administration remain limited. This study aimed to characterize the plasma concentration–time profile of ropivacaine and its main active metabolite, 3-OH-ropivacaine, in patients undergoing interpectoral nerve block, using a validated LC-MS/MS (liquid chromatography coupled with mass spectrometry) method. Venous blood samples were collected from 18 patients at predefined time points (0, 1, 3, 6, and 24 h) following a PECS II block performed with a ropivacaine-lidocaine mixture. Plasma concentrations were quantified via a validated LC-MS/MS protocol in accordance with FDA (Food and Drug Administration) and EMA (European Medicines Agency) guidelines. Pharmacokinetic parameters were derived using non-compartmental analysis. Ropivacaine reached a mean peak plasma concentration (Cmax—maximum concentration) of 167.5 ± 28.3 ng/mL at 1.3 ± 0.2 h (Tmax—maximum time). The metabolite 3-OH-ropivacaine peaked at 124.1 ± 21.4 ng/mL at 2.3 ± 0.3 h. The terminal elimination half-life was 19.4 ± 2.8 h for ropivacaine and 29.2 ± 3.1 h for its metabolite. Plasma levels demonstrated prolonged systemic exposure with predictable pharmacokinetics. The PECS II block using ropivacaine results in sustained systemic levels of both the parent drug and its primary metabolite, supporting its role in prolonged perioperative analgesia. These data provide a pharmacokinetic foundation for personalized regional anesthesia protocols. This strategy facilitates the adaptation of anesthetic protocols to the individual characteristics of each patient, aligning with the principles of personalized medicine, particularly in patients with altered metabolic capacity. Full article
(This article belongs to the Special Issue Ion Channels as a Potential Target in Pharmaceutical Designs 2.0)
Show Figures

Figure 1

18 pages, 313 KiB  
Article
Comparative Analysis of Phenolic, Carotenoid, and Elemental Profiles in Three Crataegus Species from Şebinkarahisar, Türkiye: Implications for Nutritional Value and Safety
by Mehmet Emin Şeker, Ayşegül Erdoğan and Emriye Ay
Molecules 2025, 30(14), 2934; https://doi.org/10.3390/molecules30142934 - 11 Jul 2025
Viewed by 282
Abstract
This study evaluated the phenolic, carotenoid, and elemental compositions of three hawthorn species—Crataegus: C. tanacetifolia (yellow), C. orientalis (orange), and C. microphylla (red)—collected from Şebinkarahisar, Türkiye. Liquid chromatography tandem mass spectrometry (LC-MS-MS) analysis revealed that C. microphylla had the highest phenolic content, [...] Read more.
This study evaluated the phenolic, carotenoid, and elemental compositions of three hawthorn species—Crataegus: C. tanacetifolia (yellow), C. orientalis (orange), and C. microphylla (red)—collected from Şebinkarahisar, Türkiye. Liquid chromatography tandem mass spectrometry (LC-MS-MS) analysis revealed that C. microphylla had the highest phenolic content, notably epicatechin, gallic acid, and quercetin. It also showed the highest levels of β-carotene and lutein, highlighting its nutraceutical potential. C. orientalis was rich in rutin and taxifolin. Inductively coupled plasma mass spectrometry (ICP-MS) results showed significant mineral content, including Fe, Mn, Ca, and Se. About 60 g of dried hawthorn could meet 7–8% of daily selenium needs. In C. tanacetifolia, toxicological tests showed no substantial health hazards, with target hazard quotient (THQ) values below 1 and carcinogenic risk (CR) values within tolerable levels (e.g., Ni-CR: 4.68 × 10−5). Lead (Pb) and arsenic (As) levels were below detection thresholds in all samples, indicating that hawthorn fruits from this location are safe. The study also shows how species-specific and geographical factors affect hawthorn fruit nutrition and safety. Full article
20 pages, 2995 KiB  
Article
Standardized Workflow and Analytical Validation of Cell-Free DNA Extraction for Liquid Biopsy Using a Magnetic Bead-Based Cartridge System
by Shivaprasad H. Sathyanarayana, Sarah B. Spracklin, Sophie J. Deharvengt, Donald C. Green, Margery D. Instasi, Torrey L. Gallagher, Parth S. Shah and Gregory J. Tsongalis
Cells 2025, 14(14), 1062; https://doi.org/10.3390/cells14141062 - 11 Jul 2025
Viewed by 702
Abstract
Circulating cell-free DNA (cfDNA) is an important biomarker for various cancer types, enabling a non-invasive testing approach. However, pre-analytical variables, including sample collection, tube type, processing conditions, and extraction methods, can significantly impact the yield, integrity, and overall quality of cfDNA. This study [...] Read more.
Circulating cell-free DNA (cfDNA) is an important biomarker for various cancer types, enabling a non-invasive testing approach. However, pre-analytical variables, including sample collection, tube type, processing conditions, and extraction methods, can significantly impact the yield, integrity, and overall quality of cfDNA. This study presents a comprehensive analytical validation of a magnetic bead-based, high-throughput cfDNA extraction system, with a focus on assessing its efficiency, reproducibility, and compatibility with downstream molecular applications. The validation was performed using a range of sample types: synthetic cfDNA spiked into DNA-free plasma, multi-analyte ctDNA plasma controls, Seraseq ctDNA reference material in a plasma-like matrix, extraction specificity controls, residual clinical specimen from patients, and samples from healthy individuals stored at room temperature or 4 °C for up to 48 h to assess stability. Extracted cfDNA was analyzed for concentration, percentage, and fragment size, using the Agilent TapeStation. Variant detection was evaluated using a next-generation sequencing (NGS) assay on the Seraseq ctDNA reference material. The results demonstrated high cfDNA recovery rates, consistent fragment size distribution (predominantly mononucleosomal and dinucleosomal), minimal genomic DNA (gDNA) contamination, and strong concordance between detected and expected variants in reference materials. The workflow also showed robust performance under different study parameters, variable sample conditions, including sample stability and integrity. Together, these findings confirm the efficiency and reliability of the evaluated cfDNA extraction system and underscore the importance of standardized pre-analytical workflows for the successful implementation of liquid biopsy for early cancer detection, therapeutic monitoring, and improved patient outcomes. Full article
(This article belongs to the Special Issue Current Status and Future Challenges of Liquid Biopsy)
Show Figures

Figure 1

19 pages, 1187 KiB  
Article
Derivatizing Agent Selection for Hydrophilic Lysine- and Arginine-Containing Tetradecapeptide Analysis in Human Plasma by RP HPLC-MS/MS
by Margarita A. Tokareva, Evgeny S. Melnikov, Elizaveta N. Fisher, Tatiana A. Rodina, Igor E. Shohin and Maria V. Belova
Analytica 2025, 6(3), 23; https://doi.org/10.3390/analytica6030023 - 10 Jul 2025
Viewed by 248
Abstract
The application of high-performance liquid chromatography with tandem mass spectrometry (HPLC-MS/MS) in the analysis of peptide therapeutics demonstrates its capacity to achieve high sensitivity and selectivity, which are essential qualities for the expanding peptide therapeutic industry. Given the challenges posed by hydrophilic peptides [...] Read more.
The application of high-performance liquid chromatography with tandem mass spectrometry (HPLC-MS/MS) in the analysis of peptide therapeutics demonstrates its capacity to achieve high sensitivity and selectivity, which are essential qualities for the expanding peptide therapeutic industry. Given the challenges posed by hydrophilic peptides in reversed-phase chromatography, we investigated the necessity of a derivatization procedure to improve chromatographic separation and quasimolecular ion fragmentation during MS/MS detection. We investigated how eight different derivatizing agents react with a hydrophilic lysine- and arginine-containing human ezrin peptide-1 (HEP-1) to identify the most suitable one. The results showed that the reaction of HEP-1 with propionic anhydride proceeds most rapidly and completely, providing a high and reproducible yield of the product, which has sufficient retention on the RP column. The 4-propionylated derivative of HEP-1, compared to the other derivatives considered, demonstrates the most pronounced MS/MS fragmentation. The retention time of 2.42 min allows the separation of the substance from the interfering components of the blood plasma matrix and provides a limit of quantification of 5.00 ng/mL, which allows the use of this derivatizing agent for subsequent applications in pharmacokinetic studies, and this approach can improve the analytical parameters of similar peptides in other HPLC-MS/MS studies. Full article
(This article belongs to the Section Chromatography)
Show Figures

Figure 1

Back to TopTop