Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (462)

Search Parameters:
Keywords = plant-associated microbes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1541 KiB  
Article
A Ubiquitous Volatile in Noctuid Larval Frass Attracts a Parasitoid Species
by Chaowei Wang, Xingzhou Liu, Sylvestre T. O. Kelehoun, Kai Dong, Yueying Wang, Maozhu Yin, Jinbu Li, Yu Gao and Hao Xu
Biology 2025, 14(8), 1007; https://doi.org/10.3390/biology14081007 - 6 Aug 2025
Abstract
Natural enemies commonly probe larval bodies and frass with their antennae for prey hunting. However, the attractants to natural enemies emitted directly from hosts and host-associated tissues remained largely unknown. Here, we used two generalist noctuid species, Helicoverpa armigera (Hübner) and Spodoptera frugiperda [...] Read more.
Natural enemies commonly probe larval bodies and frass with their antennae for prey hunting. However, the attractants to natural enemies emitted directly from hosts and host-associated tissues remained largely unknown. Here, we used two generalist noctuid species, Helicoverpa armigera (Hübner) and Spodoptera frugiperda (JE Smith), along with the larval endoparasitoid Microplitis mediator (Haliday) to address the question. Extracts of larval frass of both the noctuid species were strongly attractive to M. mediator females when hosts were fed either maize, cotton, soybean leaves, or an artificial diet without leaf tissues. By using a combination of electrophysiological measurements and behavioral tests, we found that the attractiveness of frass mainly relied on a volatile compound ethyl palmitate. The compound was likely to be a by-product of host digestion involving gut bacteria because an antibiotic supplement in diets reduced the production of the compound in frass and led to the decreased attractiveness of frass to the parasitoids. In contrast, extracts of the larval bodies of both the noctuid species appeared to be less attractive to the parasitoids than their respective fecal extracts, independently of types of food supplied to the larvae. Altogether, larval frass of the two noctuid species was likely to be more important than their bodies in attracting the endoparasitoid species, and the main attractant of frass was probably one of the common metabolites of digestion involving gut microbes, and its emission is likely to be independent of host plant species. Full article
(This article belongs to the Special Issue The Biology, Ecology, and Management of Plant Pests)
Show Figures

Figure 1

26 pages, 884 KiB  
Review
Harnessing Seed Endophytic Microbiomes: A Hidden Treasure for Enhancing Sustainable Agriculture
by Ayomide Emmanuel Fadiji, Adedayo Ayodeji Lanrewaju, Iyabo Olunike Omomowo, Fannie Isela Parra-Cota and Sergio de los Santos-Villalobos
Plants 2025, 14(15), 2421; https://doi.org/10.3390/plants14152421 - 4 Aug 2025
Viewed by 201
Abstract
Microbes perform diverse and vital functions in animals, plants, and humans, and among them, plant-associated microbiomes, especially endophytes, have attracted growing scientific interest in recent years. Numerous plant species thriving in diverse environments have been shown to host endophytic microbes. While endophytic bacteria [...] Read more.
Microbes perform diverse and vital functions in animals, plants, and humans, and among them, plant-associated microbiomes, especially endophytes, have attracted growing scientific interest in recent years. Numerous plant species thriving in diverse environments have been shown to host endophytic microbes. While endophytic bacteria commonly colonize plant tissues such as stems, roots, and leaves, seed-associated endophytes generally exhibit lower diversity compared to those in other plant compartments. Nevertheless, seed-borne microbes are of particular importance, as they represent the initial microbial inoculum that influences a plant’s critical early developmental stages. The seed endophytic microbiome is of particular interest due to its potential for vertical transmission and its capacity to produce a broad array of phytohormones, enzymes, antimicrobial compounds, and other secondary metabolites. Collectively, these functions contribute to enhanced plant biomass and yield, especially under abiotic and biotic stress conditions. Despite their multifaceted roles, seed microbiomes remain underexplored in plant ecology, and their potential benefits are not yet fully understood. This review highlights recent advances in our understanding of the diversity, community composition, mechanisms of action, and agricultural significance of seed endophytic microbes. Furthermore, it synthesizes current insights into how seed endophytes promote plant health and productivity and proposes future research directions to fully harness their potential in sustainable agriculture. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

23 pages, 3221 KiB  
Article
Drought Modulates Root–Microbe Interactions and Functional Gene Expression in Plateau Wetland Herbaceous Plants
by Yuanyuan Chen, Shishi Feng, Qianmin Liu, Di Kang and Shuzhen Zou
Plants 2025, 14(15), 2413; https://doi.org/10.3390/plants14152413 - 4 Aug 2025
Viewed by 147
Abstract
In plateau wetlands, the interactions of herbaceous roots with ectorhizosphere soil microorganisms represent an important way to realize their ecological functions. Global change-induced aridification of plateau wetlands has altered long-established functional synergistic relationships between plant roots and ectorhizosphere soil microbes, but we still [...] Read more.
In plateau wetlands, the interactions of herbaceous roots with ectorhizosphere soil microorganisms represent an important way to realize their ecological functions. Global change-induced aridification of plateau wetlands has altered long-established functional synergistic relationships between plant roots and ectorhizosphere soil microbes, but we still know little about this phenomenon. In this context, nine typical wetlands with three different moisture statuses were selected from the eastern Tibetan Plateau in this study to analyze the relationships among herbaceous plant root traits and microbial communities and functions. The results revealed that drought significantly inhibited the accumulation of root biomass and surface area as well as the development of root volumes and diameters. Similarly, drought significantly reduced the diversity of ectorhizosphere soil microbial communities and the relative abundances of key phyla of archaea and bacteria. Redundancy analysis revealed that plant root traits and ectorhizosphere soil microbes were equally regulated by soil physicochemical properties. Functional genes related to carbohydrate metabolism were significantly associated with functional traits related to plant root elongation and nutrient uptake. Functional genes related to carbon and energy metabolism were significantly associated with traits related to plant root support and storage. Key genes such as CS,gltA, and G6PD,zwf help to improve the drought resistance and barrenness resistance of plant roots. This study helps to elucidate the synergistic mechanism of plant and soil microbial functions in plateau wetlands under drought stress, and provides a basis for evolutionary research and conservation of wetland ecosystems in the context of global change. Full article
(This article belongs to the Special Issue Soil-Beneficial Microorganisms and Plant Growth: 2nd Edition)
Show Figures

Figure 1

29 pages, 2926 KiB  
Review
Microbial Symbiosis in Lepidoptera: Analyzing the Gut Microbiota for Sustainable Pest Management
by Abdul Basit, Inzamam Ul Haq, Moazam Hyder, Muhammad Humza, Muhammad Younas, Muhammad Rehan Akhtar, Muhammad Adeel Ghafar, Tong-Xian Liu and Youming Hou
Biology 2025, 14(8), 937; https://doi.org/10.3390/biology14080937 - 25 Jul 2025
Viewed by 416
Abstract
Recent advances in microbiome studies have deepened our understanding of endosymbionts and gut-associated microbiota in host biology. Of those, lepidopteran systems in particular harbor a complex and diverse microbiome with various microbial taxa that are stable and transmitted between larval and adult stages, [...] Read more.
Recent advances in microbiome studies have deepened our understanding of endosymbionts and gut-associated microbiota in host biology. Of those, lepidopteran systems in particular harbor a complex and diverse microbiome with various microbial taxa that are stable and transmitted between larval and adult stages, and others that are transient and context-dependent. We highlight key microorganisms—including Bacillus, Lactobacillus, Escherichia coli, Pseudomonas, Rhizobium, Fusarium, Aspergillus, Saccharomyces, Bifidobacterium, and Wolbachia—that play critical roles in microbial ecology, biotechnology, and microbiome studies. The fitness implications of these microbial communities can be variable; some microbes improve host performance, while others neither positively nor negatively impact host fitness, or their impact is undetectable. This review examines the central position played by the gut microbiota in interactions of insects with plants, highlighting the functions of the microbiota in the manipulation of the behavior of herbivorous pests, modulating plant physiology, and regulating higher trophic levels in natural food webs. It also bridges microbiome ecology and applied pest management, emphasizing S. frugiperda as a model for symbiont-based intervention. As gut microbiota are central to the life history of herbivorous pests, we consider how these interactions can be exploited to drive the development of new, environmentally sound biocontrol strategies. Novel biotechnological strategies, including symbiont-based RNA interference (RNAi) and paratransgenesis, represent promising but still immature technologies with major obstacles to overcome in their practical application. However, microbiota-mediated pest control is an attractive strategy to move towards sustainable agriculture. Significantly, the gut microbiota of S. frugiperda is essential for S. frugiperda to adapt to a wide spectrum of host plants and different ecological niches. Studies have revealed that the microbiome of S. frugiperda has a close positive relationship with the fitness and susceptibility to entomopathogenic fungi; therefore, targeting the S. frugiperda microbiome may have good potential for innovative biocontrol strategies in the future. Full article
(This article belongs to the Special Issue Recent Advances in Wolbachia and Spiroplasma Symbiosis)
Show Figures

Graphical abstract

22 pages, 3302 KiB  
Article
Effects of Temperature Increase on Microbiome of Carnivorous Plant Utricularia vulgaris L. in Peat Bog Ecosystems
by Aleksandra Bartkowska-Bekasiewicz and Tomasz Mieczan
Biology 2025, 14(7), 884; https://doi.org/10.3390/biology14070884 - 18 Jul 2025
Viewed by 188
Abstract
Climate change can have a direct impact on the decomposition of organic matter, as well as indirect effects on peatland vegetation (including carnivorous plants) and the microbial communities associated with this environment. The activity of microbes varies depending on the type of peatland [...] Read more.
Climate change can have a direct impact on the decomposition of organic matter, as well as indirect effects on peatland vegetation (including carnivorous plants) and the microbial communities associated with this environment. The activity of microbes varies depending on the type of peatland they inhabit. Because some microorganisms are highly sensitive, they can be used as indicators of climate change. However, there is still little knowledge of how changes in the temperature of the environment can affect the microbiome of carnivorous plants. The study was conducted to test the following hypotheses: (1) The effect of rising water temperature on the qualitative and quantitative structure of the microbiome of carnivorous peatland plants depends on the type of peatland; (2) habitats with a higher trophic status stimulate the development of microbial communities in the water, but are an unfavourable habitat for the development of the microbiome of plant traps. Irrespective of the type of peatland, the species richness of microorganisms was much higher in the water than in the traps. As the temperature increased, there was an increase in the abundance of bacteria, heterotrophic flagellates, and testate amoebae, which was much more pronounced in the peat bog than in the carbonate fen. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

15 pages, 8519 KiB  
Article
Microplastics Alter Growth and Reproduction Strategy of Scirpus mariqueter by Modifying Soil Nutrient Availability
by Pengcheng Jiang, Jingwen Gao, Junzhen Li, Ming Wu, Xuexin Shao and Niu Li
Diversity 2025, 17(7), 472; https://doi.org/10.3390/d17070472 - 9 Jul 2025
Viewed by 243
Abstract
Microplastic pollution threatens coastal wetland ecosystems, yet its impacts on the dominant plant species and soil properties remain poorly understood. We investigated the effects of four microplastic types (PP, PE, PS, PET) at three concentrations (0.1%, 0.5%, 1% w/w) on [...] Read more.
Microplastic pollution threatens coastal wetland ecosystems, yet its impacts on the dominant plant species and soil properties remain poorly understood. We investigated the effects of four microplastic types (PP, PE, PS, PET) at three concentrations (0.1%, 0.5%, 1% w/w) on Scirpus mariqueter, a keystone species in the coastal wetlands of China, and the associated soil physicochemical properties. In a controlled pot experiment, microplastics significantly altered the plant biomass, vegetative traits, and reproductive strategies, with type-specific and concentration-dependent responses. PET and PE strongly suppressed the belowground and total biomass (p < 0.05), with reductions in the belowground biomass of 42.87% and 44.13%, respectively, at a 0.1% concentration. PP promoted seed production, particularly increasing the seed number by 25.23% at a 0.1% concentration (p < 0.05). The soil NH4+-N, moisture, and EC were key mediators, with NH4+-N declines linked to biomass reductions via nitrogen limitation. The Spearman correlations confirmed strong associations between the plant traits and soil properties, particularly nitrogen forms. These findings reveal that microplastics disrupt wetland plant performance and soil environments, potentially impairing carbon sequestration and ecosystem stability. Our study underscores the urgent need for microplastic risk assessments in coastal wetlands and highlights soil–microbe–plant interactions as critical mechanisms for future investigation. Full article
(This article belongs to the Special Issue Wetland Biodiversity and Ecosystem Conservation)
Show Figures

Figure 1

20 pages, 2743 KiB  
Article
Systematic Investigation of Phosphate Decomposition and Soil Fertility Modulation by the Filamentous Fungus Talaromyces nanjingensis
by Xiao-Rui Sun, Pu-Sheng Li, Huan Qiao, Wei-Liang Kong, Ya-Hui Wang and Xiao-Qin Wu
Microorganisms 2025, 13(7), 1574; https://doi.org/10.3390/microorganisms13071574 - 3 Jul 2025
Viewed by 421
Abstract
Phosphate-solubilizing microbes (PSMs) in soil play a crucial role in converting insoluble phosphates into plant-available soluble phosphorus. This paper systematically presents a comprehensive array of qualitative and quantitative techniques to assess the phosphate-decomposing capabilities of microbes. Additionally, it introduces two optimized media, namely [...] Read more.
Phosphate-solubilizing microbes (PSMs) in soil play a crucial role in converting insoluble phosphates into plant-available soluble phosphorus. This paper systematically presents a comprehensive array of qualitative and quantitative techniques to assess the phosphate-decomposing capabilities of microbes. Additionally, it introduces two optimized media, namely improved Monkina medium No. 1 and No. 2, which are particularly suitable for detecting the solubilization abilities of microbes toward insoluble organic phosphates. Talaromyces nanjingensis, a novel fungal species recently isolated from the rhizosphere soil of Pinus massoniana, demonstrates remarkable phosphate-solubilizing abilities. Across multiple temperature gradients (15 °C, 20 °C, 25 °C, 30 °C, and 37 °C), it effectively decomposes both insoluble inorganic and organic phosphates. This is achieved through the secretion of organic acids, including gluconic acid (6.10 g L−1), oxalic acid (0.93 g L−1), and malonic acid (0.17 g L−1), as well as phosphate-solubilizing enzymes. Moreover, under low-, medium-, and high-temperature conditions, T. nanjingensis can decompose insoluble phosphates in three types of soil with varying pH levels, thereby enhancing the overall soil fertility. Genomic analysis of T. nanjingensis has identified approximately 308 genes associated with phosphate decomposition and environmental adaptability, validating its superior capabilities and multi-faceted strategies for phosphate mobilization. These findings underscore the wide applicability of T. nanjingensis in maintaining soil phosphorus homeostasis and optimizing the phosphorus use efficiency, highlighting its promising potential for agricultural and environmental applications. Full article
(This article belongs to the Special Issue Soil Microbial Carbon/Nitrogen/Phosphorus Cycling: 2nd Edition)
Show Figures

Figure 1

20 pages, 6718 KiB  
Article
Genetic Diversification of Tomato and Agricultural Soil Management Shaped the Rhizospheric Microbiome of Tomato (Solanum lycopersicum)
by Máximo González, Juan Pablo Araya-Angel, Ashlie Muñoz, Adalid Alfaro-Flores, Massimiliano Cardinale and Alexandra Stoll
Microorganisms 2025, 13(7), 1550; https://doi.org/10.3390/microorganisms13071550 - 1 Jul 2025
Viewed by 454
Abstract
The domestication process not only reduced the allelic diversity of tomato genotypes but also affected the genetic traits associated to microbial recruitment, their composition, and their diversity in different compartments of the plant host. Additionally, this process included the transition from natural to [...] Read more.
The domestication process not only reduced the allelic diversity of tomato genotypes but also affected the genetic traits associated to microbial recruitment, their composition, and their diversity in different compartments of the plant host. Additionally, this process included the transition from natural to agricultural soils, which differ in nutrient availability, physicochemical properties, and agricultural practices. Therefore, modern cultivars may fail to recruit microbial taxa beneficial to their wild relatives, potentially losing important ecological functions. In this study, we analyzed the phylogenetic relationship and the rhizosphere microbiota of four tomato genotypes, Solanum chilense (wild species), S. lycopersicum var. cerasiforme (Cherry tomato), and the S. lycopersicum landrace ‘Poncho Negro’ and the modern cultivar ‘Cal Ace’, grown in both natural and agricultural soils. Microbial communities were identified using 16S rRNA (bacteria) and ITS2 (fungi) amplicon sequencing, allowing cross-domain taxonomic characterization. While the soil type was the main driver of overall microbial diversity, the host genotype influenced the recruitment of specific microbial taxa, which exhibited different recruitment patterns according to the genetic diversification of Solanum genotypes and soil types. Additionally, co-occurrence network analysis identified two main clusters: first, taxa did not show any preferential associations to particular genotypes or soil types, while the second cluster revealed specific microbial patterns associated to fungal taxa in natural soil and bacterial taxa in agricultural soil. Finally, the functional analysis suggested the loss of specific functions through tomato domestication independently of soil type. These findings highlight the role of the plant genotype as a fine-tuning factor in microbiome assembly, with implications for breeding strategies aimed at restoring beneficial plant–microbe interactions. Full article
Show Figures

Figure 1

19 pages, 2232 KiB  
Article
The Diversity Indices of Culturable Bacteria from the Rhizosphere of Pennisetum clandestinum and Pseudelephantopus spicatus in Urban Soil
by Jorge L. Gallego, Ana M. Agudelo, Clara M. Morales, Andrea Tamayo-Londoño, Juliana Soler-Arango, Irina P. Tirado-Ballestas and Alejandro Arango-Correa
Ecologies 2025, 6(3), 49; https://doi.org/10.3390/ecologies6030049 - 1 Jul 2025
Viewed by 600
Abstract
Urban soils are subject to intense anthropogenic disturbance, often resulting in biodiversity loss and reduced ecosystem functionality. However, rhizospheric microbial communities help maintain critical soil-ecosystem services, supporting urban soil resilience. This study evaluated the diversity of culturable bacteria associated with the rhizospheres of [...] Read more.
Urban soils are subject to intense anthropogenic disturbance, often resulting in biodiversity loss and reduced ecosystem functionality. However, rhizospheric microbial communities help maintain critical soil-ecosystem services, supporting urban soil resilience. This study evaluated the diversity of culturable bacteria associated with the rhizospheres of Pennisetum clandestinum and Pseudelephantopus spicatus in green areas of Medellín, Colombia, under contrasting levels of anthropic pressures. Rhizospheric and non-rhizospheric soils were sampled near automotive mechanic sites, and bacterial communities were assessed through plate counting and morphological characterization. Alpha, beta, and rarefaction diversity indices were applied to evaluate culturable morphotypes. P. clandestinum supported a more diverse and complex rhizospheric microbiome, particularly in non-exposed soils, while P. spicatus hosted less diverse communities under similar conditions. Diversity indices effectively distinguished microbial patterns, demonstrating the utility of culture-based methods for microbial community assessment. As a first step in microbial bioprospecting workflows, these methods allow for the rapid screening of culturable diversity and support decision-making for the selection of promising environments, plant species, and microbial isolates. This approach can inform urban soil threats, the promotion of beneficial plant–microbe interactions, and the identification of bioindicator species for soil health monitoring in a framework for the management of green areas. Full article
Show Figures

Figure 1

16 pages, 12272 KiB  
Article
Cysteine-Mediated Root Growth Promotion in Strawberry (Fragaria × ananassa) Induced by TgSWO-Overexpressing Trichoderma
by Xiaohui Meng, Yuanhua Wang, Xu Zhang, Hongjun Yang, Yilei Lu, Ye Xu, Xiong Zhang and Zhiming Yan
Microorganisms 2025, 13(7), 1480; https://doi.org/10.3390/microorganisms13071480 - 26 Jun 2025
Viewed by 394
Abstract
Strawberry (Fragaria × ananassa) is a globally important economic crop valued for its nutritional and commercial significance. However, its growth is frequently challenged by various biotic and abiotic stresses. To enhance strawberry root development and resilience, we engineered a Trichoderma guizhouense [...] Read more.
Strawberry (Fragaria × ananassa) is a globally important economic crop valued for its nutritional and commercial significance. However, its growth is frequently challenged by various biotic and abiotic stresses. To enhance strawberry root development and resilience, we engineered a Trichoderma guizhouense NJAU4742 strain to overexpress the TgSWO gene, which encodes a plant cell-wall-loosening protein known to facilitate fungal penetration and colonization. Strawberry seedlings treated with the TgSWO-overexpressing T. guizhouense NJAU4742 strain (S-OE) exhibited significant improvements in shoot and root fresh weights, root surface area, and number of root tips, showing 1.37- to 2.00-fold increases compared with the strawberry seedlings inoculated with the wild-type T. guizhouense NJAU4742 (S-WT) and 2.00- to 3.44-fold increases compared with the uninoculated strawberry seedlings (S-CK). Field-emission scanning electron microscopy (SEM) of the S-OE roots revealed denser hyphal colonization. Transcriptome analysis of S-OE showed a decrease in genes related to defense and detoxification, while genes for cell-wall growth and hormone signaling increased, shifting focus from defense to growth. Metabolomic profiling identified cysteine as a key metabolite associated with induced growth, which was further validated through exogenous cysteine application experiments. This study highlights the potential of genetically enhanced Trichoderma for improving strawberry growth and provides new insights into root–microbe interactions and metabolite-mediated plant development. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

33 pages, 1592 KiB  
Review
Plant–Microbe Interactions for Improving Postharvest Shelf Life and Quality of Fresh Produce Through Protective Mechanisms
by Wajid Zaman, Adnan Amin, Atif Ali Khan Khalil, Muhammad Saeed Akhtar and Sajid Ali
Horticulturae 2025, 11(7), 732; https://doi.org/10.3390/horticulturae11070732 - 24 Jun 2025
Viewed by 506
Abstract
Postharvest spoilage of horticultural produce is a significant challenge, contributing to substantial food waste and economic losses. Traditional preservation methods, such as chemical preservatives and fungicides, are increasingly being replaced by sustainable, chemical-free alternatives. Microbial interventions using beneficial bacteria, fungi, and yeasts have [...] Read more.
Postharvest spoilage of horticultural produce is a significant challenge, contributing to substantial food waste and economic losses. Traditional preservation methods, such as chemical preservatives and fungicides, are increasingly being replaced by sustainable, chemical-free alternatives. Microbial interventions using beneficial bacteria, fungi, and yeasts have emerged as effective solutions to enhance the postharvest quality and extend shelf life. Advancements in omics technologies, such as metabolomics, transcriptomics, and microbiomics, have provided deeper insights into plant–microbe interactions, facilitating more targeted and effective microbial treatments. The integration of artificial intelligence (AI) and machine learning further supports the selection of optimal microbial strains tailored to specific crops and storage conditions, further enhancing the treatment efficacy. Additionally, the integration of smart cold storage systems and real-time microbial monitoring through sensor technologies offers innovative approaches to optimize microbial interventions during storage and transport. This review examines the mechanisms through which microbes enhance the postharvest quality, the role of omics technologies in improving microbial treatments, and the challenges associated with variability and regulatory approval. Amid growing consumer demand for organic and sustainable solutions, microbial-based postharvest preservation offers a promising, eco-friendly alternative to conventional chemical treatments, ensuring safer, longer-lasting produce while reducing food waste and environmental impact. Full article
(This article belongs to the Section Postharvest Biology, Quality, Safety, and Technology)
Show Figures

Figure 1

25 pages, 800 KiB  
Review
Microbial Solutions in Agriculture: Enhancing Soil Health and Resilience Through Bio-Inoculants and Bioremediation
by Rahul Kumar, Beatrice Farda, Amedeo Mignini, Rihab Djebaili, Leonard Koolman, Alivia Paul, Subhankar Mondal, Joy M. Joel, Aditi Pandit, Periyasamy Panneerselvam, Marika Pellegrini and Debasis Mitra
Bacteria 2025, 4(3), 28; https://doi.org/10.3390/bacteria4030028 - 24 Jun 2025
Cited by 1 | Viewed by 874
Abstract
Soil microbes are important for maintaining agricultural ecosystems by promoting nutrient cycling, plant growth, and soil resilience. Microbial-based inoculants, such as bio-inoculants and bioremediation agents, have been identified as suitable means to promote soil health, reduce environmental deterioration, and achieve sustainable agriculture. Bio-inoculants, [...] Read more.
Soil microbes are important for maintaining agricultural ecosystems by promoting nutrient cycling, plant growth, and soil resilience. Microbial-based inoculants, such as bio-inoculants and bioremediation agents, have been identified as suitable means to promote soil health, reduce environmental deterioration, and achieve sustainable agriculture. Bio-inoculants, such as biofertilizers and biopesticides, promote nutrient availability, plant growth, and chemical input dependency reduction. Diverse microbial populations, especially plant growth-promoting bacteria (PGPB), enhance resistance by promoting a symbiotic association with plants and inducing natural resistance against insects. Bioremediation, the second significant microbial intervention, is the use of microorganisms for detoxifying and rehabilitating polluted soils. Methods effectively degrade organic pollutants, immobilize heavy metals, and mitigate the toxic effects of industrial and agricultural pollutants. Recent advances in microbial ecology and biotechnology, such as metagenomics, have transformed the knowledge of microbial soil communities, and tailor-made microbial formulations and monitoring equipment may be developed to maximize their activity. Though promising, environmental heterogeneity, scalability, and lack of field-based evidence constrain their widespread application. Multidimensional applications of microbial solutions in agroecology are explored in this review, with a focus on their potential in maintaining soil health, crop production, and environmental sustainability. It also addresses the application of bioremediation and microbial inoculants in agroecosystems and technological innovations with future research objectives. Microbial innovation to shape the soil microbiome offers a valid tool for addressing global challenges in agriculture, food security, and ecological resilience in the context of climate change. Full article
(This article belongs to the Special Issue Harnessing of Soil Microbiome for Sustainable Agriculture)
Show Figures

Graphical abstract

15 pages, 1371 KiB  
Article
Host Plant Dependence of the Symbiotic Microbiome of the Gall-Inducing Wasp Trichagalma acutissimae
by Yingnan Wang, Yuanchen Zhang, Ran Li, Yujian Li, Muha Cha and Xianfeng Yi
Insects 2025, 16(7), 652; https://doi.org/10.3390/insects16070652 - 23 Jun 2025
Viewed by 518
Abstract
Symbiotic bacteria play a pivotal role in the biology and ecology of herbivorous insects, affecting host growth and adaptation. However, the effects of host identity on the symbiotic microbiota of gall-inducing insects remain less explored. In this study, we utilized high-throughput sequencing to [...] Read more.
Symbiotic bacteria play a pivotal role in the biology and ecology of herbivorous insects, affecting host growth and adaptation. However, the effects of host identity on the symbiotic microbiota of gall-inducing insects remain less explored. In this study, we utilized high-throughput sequencing to investigate the effects of different oak hosts on the structure and diversity of the symbiotic microbial community in the asexual larvae of the gall-inducing wasp Trichagalma acutissimae. Host plant species significantly altered the alpha and beta diversity of symbiotic microbiota of T. acutissimae. At the phylum level, Proteobacteria was the predominant microflora in both groups, with significantly higher abundance in larvae parasitizing Quercus acutissima than in those parasitizing Q. variabilis. Pseudomonas, which has been identified as responsible for tannin decomposition, was the most dominant genus in T. acutissimae larvae infesting both hosts. LEfSe analysis revealed substantial differences in the symbiotic microbial communities between the two hosts while also highlighting some commonalities. Functional prediction analysis indicated no significant difference in the functional roles of symbiotic bacteria between larvae infesting the two hosts. These findings suggest that the symbiotic microbiome of T. acutissimae larvae is influenced by host plant species, yet different microbial compositions may perform similar functions, implying the potential role of symbiotic microbiota in the adaptation to high-tannin oak leaves. This research enhances our understanding of the symbiotic relationship between forest pests and their associated microbes. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

31 pages, 1989 KiB  
Review
Plant Microbiomes Alleviate Abiotic Stress-Associated Damage in Crops and Enhance Climate-Resilient Agriculture
by Fazal Ullah, Sajid Ali, Muhammad Siraj, Muhammad Saeed Akhtar and Wajid Zaman
Plants 2025, 14(12), 1890; https://doi.org/10.3390/plants14121890 - 19 Jun 2025
Viewed by 927
Abstract
Plant microbiomes, composed of a diverse array of microorganisms such as bacteria, fungi, archaea, and microalgae, are critical to plant health and resilience, playing key roles in nutrient cycling, stress mitigation, and disease resistance. Climate change is expected to intensify various abiotic stressors, [...] Read more.
Plant microbiomes, composed of a diverse array of microorganisms such as bacteria, fungi, archaea, and microalgae, are critical to plant health and resilience, playing key roles in nutrient cycling, stress mitigation, and disease resistance. Climate change is expected to intensify various abiotic stressors, such as drought, salinity, temperature extremes, nutrient deficiencies, and heavy metal toxicity. Plant-associated microbiomes have emerged as a promising natural solution to help mitigate these stresses and enhance agricultural resilience. However, translating laboratory findings into real-world agricultural benefits remains a significant challenge due to the complexity of plant–microbe interactions under field conditions. We explore the roles of plant microbiomes in combating abiotic stress and discuss advances in microbiome engineering strategies, including synthetic biology, microbial consortia design, metagenomics, and CRISPR-Cas, with a focus on enhancing their practical application in agriculture. Integrating microbiome-based solutions into climate-smart agricultural practices may contribute to long-term sustainability. Finally, we underscore the importance of interdisciplinary collaboration in overcoming existing challenges. Microbiome-based solutions hold promise for improving global food security and promoting sustainable agricultural practices in the face of climate change. Full article
Show Figures

Figure 1

17 pages, 11703 KiB  
Article
Host-Determined Diversity and Environment-Shaped Community Assembly of Phyllosphere Microbiomes in Alpine Steppes Ecosystems
by Kaifu Zheng, Xin Jin, Jingjing Li and Guangxin Lu
Microorganisms 2025, 13(6), 1432; https://doi.org/10.3390/microorganisms13061432 - 19 Jun 2025
Viewed by 395
Abstract
The Qinghai–Tibet Plateau is a key region for biodiversity conservation, where alpine grasslands are ecologically important. While previous studies have mainly addressed vegetation, ecosystem processes, and soil microbes, phyllosphere microorganisms are essential for nutrient cycling, plant health, and stress tolerance. However, their communities [...] Read more.
The Qinghai–Tibet Plateau is a key region for biodiversity conservation, where alpine grasslands are ecologically important. While previous studies have mainly addressed vegetation, ecosystem processes, and soil microbes, phyllosphere microorganisms are essential for nutrient cycling, plant health, and stress tolerance. However, their communities remain poorly understood compared to those in soil. The relative influence of host identity and environmental conditions on shaping phyllosphere microbial diversity and community assembly remains uncertain. In this study, we characterized phyllosphere bacterial and fungal communities of the phyllosphere at two alpine steppe sites with similar vegetation but climatic conditions: the Qilian Mountains (QLM) and the Qinghai Lake region (LQS). At both sites, Cyanobacteriota and Ascomycota were the predominant bacterial and fungal taxa, respectively. Microbial α-diversity did not differ significantly between the two regions, implying that host-associated mechanisms may stabilize within-site diversity. In contrast, β-diversity exhibited clear spatial differentiation. In QLM, bacterial β-diversity was significantly correlated with mean annual precipitation, while fungal α- and β-diversity were associated with soil nutrient levels (including nitrate, ammonium, available potassium, and phosphorus) and vegetation coverage. At LQS, the β-diversity of both bacterial and fungal communities was strongly influenced by soil electrical conductivity, and fungal communities were further shaped by vegetation cover. Community assembly processes were predominantly stochastic at both sites, although deterministic patterns were more pronounced in QLM. Variability in moisture availability contributed to random bacterial assembly at LQS, while increased environmental heterogeneity promoted deterministic assembly in fungal communities. The elevated diversity of microbes and plants in QLM also reinforced deterministic processes. Overall, our findings support a host–environment interaction hypothesis, indicating that host factors primarily govern α-diversity, while climatic and soil-related variables have stronger effects on β-diversity and microbial assembly dynamics. These insights advance our understanding of how phyllosphere microbial communities may respond to environmental change in alpine ecosystems. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

Back to TopTop