Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (80)

Search Parameters:
Keywords = plant specialized metabolome

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 6632 KB  
Article
Metabolomic and Physiological Analysis of Blueberry (Vaccinium spp.) in Response to Ericoid Mycorrhizal Fungi (Oidiodendron maius H14)
by Haifeng Zhu, Yixiao Wang, Jing Jiang, Zhiyu Yang, Lili Li and Hongyi Yang
Horticulturae 2025, 11(8), 918; https://doi.org/10.3390/horticulturae11080918 - 5 Aug 2025
Viewed by 345
Abstract
Ericoid mycorrhizal fungi (EMF) enhance plant fitness and metabolic regulations in nutrient-poor soils, though the mechanisms diving these interactions require further elucidation. This study investigated the physiological and metabolic responses of blueberry seedlings following 2- and 3-weeks inoculation with Oidiodendron maius H14. The [...] Read more.
Ericoid mycorrhizal fungi (EMF) enhance plant fitness and metabolic regulations in nutrient-poor soils, though the mechanisms diving these interactions require further elucidation. This study investigated the physiological and metabolic responses of blueberry seedlings following 2- and 3-weeks inoculation with Oidiodendron maius H14. The results indicated that EMF could significantly increases plant biomass, improve the accumulation of osmoregulatory substances in leaves. Additionally, the colonization rate of EMF are 26.18% and 30.22% after 2- and 3-weeks, respectively. The Metabolomics analysis identified 758 (593 up- and 165 down-regulated) and 805 (577 up- and 228 down-regulated) differential metabolites in roots at 2- and 3-weeks inoculation with O. maius H14, respectively. KEGG pathway annotation revealed that O. maius H14 triggered various amino acid metabolism pathways, including tryptophan metabolism and arginine and proline metabolism. These findings suggested that O. maius H14 stimulated root-specific biosynthesis of growth-promoting compounds and antimicrobial compounds. Concomitant downregulation of stress-associated genes and upregulation of glutamine synthetase suggest EMF modulates host defense responses to facilitate symbiosis. Thus, our results demonstrated that O. maius H14 orchestrates a metabolic reprogramming in blueberry roots, enhancing growth and stress tolerance through coordinated changes in primary and specialized metabolism, which could inform strategies for improving symbiosis and metabolic engineering in horticultural practices. Full article
(This article belongs to the Section Fruit Production Systems)
Show Figures

Graphical abstract

36 pages, 3621 KB  
Review
Harnessing Molecular Phylogeny and Chemometrics for Taxonomic Validation of Korean Aromatic Plants: Integrating Genomics with Practical Applications
by Adnan Amin and Seonjoo Park
Plants 2025, 14(15), 2364; https://doi.org/10.3390/plants14152364 - 1 Aug 2025
Viewed by 618
Abstract
Plant genetics and chemotaxonomic analysis are considered key parameters in understanding evolution, plant diversity and adaptation. Korean Peninsula has a unique biogeographical landscape that supports various aromatic plant species, each with considerable ecological, ethnobotanical, and pharmacological significance. This review aims to provide a [...] Read more.
Plant genetics and chemotaxonomic analysis are considered key parameters in understanding evolution, plant diversity and adaptation. Korean Peninsula has a unique biogeographical landscape that supports various aromatic plant species, each with considerable ecological, ethnobotanical, and pharmacological significance. This review aims to provide a comprehensive overview of the chemotaxonomic traits, biological activities, phylogenetic relationships and potential applications of Korean aromatic plants, highlighting their significance in more accurate identification. Chemotaxonomic investigations employing techniques such as gas chromatography mass spectrometry, high-performance liquid chromatography, and nuclear magnetic resonance spectroscopy have enabled the identification of essential oils and specialized metabolites that serve as valuable taxonomic and diagnostic markers. These chemical traits play essential roles in species delimitation and in clarifying interspecific variation. The biological activities of selected taxa are reviewed, with emphasis on antimicrobial, antioxidant, anti-inflammatory, and cytotoxic effects, supported by bioassay-guided fractionation and compound isolation. In parallel, recent advances in phylogenetic reconstruction employing DNA barcoding, internal transcribed spacer regions, and chloroplast genes such as rbcL and matK are examined for their role in clarifying taxonomic uncertainties and inferring evolutionary lineages. Overall, the search period was from year 2001 to 2025 and total of 268 records were included in the study. By integrating phytochemical profiling, pharmacological evidence, and molecular systematics, this review highlights the multifaceted significance of Korean endemic aromatic plants. The conclusion highlights the importance of multidisciplinary approaches including metabolomics and phylogenomics in advancing our understanding of species diversity, evolutionary adaptation, and potential applications. Future research directions are proposed to support conservation efforts. Full article
(This article belongs to the Special Issue Applications of Bioinformatics in Plant Science)
Show Figures

Figure 1

25 pages, 5713 KB  
Article
A Non-Specific Phytohormone Regulatory Network in Saccharina japonica Coordinates Growth and Environmental Adaptation
by Jiexin Cui, Jinli Zhu, Yinru Dai, Jincheng Yuan, Wen Lin and Tao Liu
Plants 2025, 14(12), 1821; https://doi.org/10.3390/plants14121821 - 13 Jun 2025
Cited by 1 | Viewed by 684
Abstract
Saccharina japonica (S. japonica) is a large-scale intertidal aquatic plant that exhibits characteristics such as rhizoid, holdfast, and blade differentiation. It demonstrates remarkable environmental adaptability. However, compared with higher plants, details about its phytohormone content, distribution, synthesis, and accumulation remain poorly [...] Read more.
Saccharina japonica (S. japonica) is a large-scale intertidal aquatic plant that exhibits characteristics such as rhizoid, holdfast, and blade differentiation. It demonstrates remarkable environmental adaptability. However, compared with higher plants, details about its phytohormone content, distribution, synthesis, and accumulation remain poorly understood. In this study, the phytohormone contents distribution and expression patterns of synthetic genes in different parts of S. japonica, including the rhizoid, petiole, basis, middle, and tip, were analyzed in detail by combining targeted metabolomics and transcriptomics analyses. A total of 20 phytohormones were detected in S. japonica, including auxin, abscisic acid (ABA), cytokinin (CTK), ethylene (ETH), gibberellin (GA), jasmonate acid (JA), and salicylic acid (SA), with significant site-differentiated accumulation. ABA and JA were significantly enriched in the tips (28.01 ng·g−1 FW and 170.67 ng·g−1 FW, respectively), whereas SA accumulated specifically only in the rhizoid. We also identified 12 phytohormones, such as gibberellin A1, methyl jasmonate, and trans-zeatin for the first time in S. japonica. Transcriptomic profiling revealed the tissue-specific expression of phytohormone biosynthesis genes, such as CYP735A (CTK synthesis), in the rhizoids and LOX/NCED (JA/ABA synthesis) in the tips. Key pathways, such as carotenoid biosynthesis and cysteine methionine metabolism, were found to be differentially enriched across tissues, aligning with hormone accumulation patterns. Additionally, an enrichment analysis of differentially expressed genes between various parts indicated that different parts of S. japonica performed distinct functions even though it does not have organ differentiation. This study is the first to uncover the distribution characteristics of phytohormones and their synthetic differences in different parts of S. japonica and elucidates how S. japonica achieves functional specialization through non-specific phytohormone regulation despite lacking organ differentiation, which provides an important theoretical basis for research on the developmental biology of macroalgae and their mechanisms of response to adversity. Full article
Show Figures

Figure 1

16 pages, 5209 KB  
Article
Multi-Omics Analysis Provides Insights into a Mosaic-Leaf Phenotype of Astaxanthin-Producing Tobacco
by Jialin Wang, Zaifeng Du, Xiaoyang Lin, Peng Li, Shihao Sun, Changqing Yang, Yong Chen, Zhongfeng Zhang, Xue Yin and Ning Fang
Plants 2025, 14(6), 965; https://doi.org/10.3390/plants14060965 - 19 Mar 2025
Viewed by 572
Abstract
In metabolically engineered plants, the target products are usually uniformly distributed in the whole plant or specific tissues. When engineering tobacco to produce astaxanthin, a ketocarotenoid with strong antioxidant activity and multiple bioactivities, a scattered distribution of astaxanthin-producing regions was observed in a [...] Read more.
In metabolically engineered plants, the target products are usually uniformly distributed in the whole plant or specific tissues. When engineering tobacco to produce astaxanthin, a ketocarotenoid with strong antioxidant activity and multiple bioactivities, a scattered distribution of astaxanthin-producing regions was observed in a small portion of astaxanthin-producing tobacco plants, which caused mosaic-like red and green spots on the leaves (ASTA-mosaic). A physiological assay showed that the non-astaxanthin green region (Mosaic_G) had relatively higher chlorophyll content and better chloroplast structure than the astaxanthin-producing red region (Mosaic_R). Then, metabolomics, proteomics, and small RNA transcriptomics were employed to analyze the uneven distribution of astaxanthin-producing regions in tobacco leaves. The results of metabolomics and proteomics revealed a decrease in carotenoid metabolism, chlorophyll biosynthesis, and chlorophyll degradation in the Mosaic_G region. Pheophorbide a, an intermediate of chlorophyll degradation, was found to be significantly reduced in the Mosaic_G region, which was accompanied by the attenuation of chlorophyllase and pheophytinase, which catalyze the formation of pheophorbide a in chlorophyll degradation. Reductions in photosynthetic antenna proteins and photosystem-associated proteins were observed in the Mosaic_R region, consistent with the better chloroplast structure of the Mosaic_G region. Small RNA transcriptomics showed that several small RNAs could target chlorophyll-degradative genes, but they were more effective in targeting the astaxanthin biosynthetic genes. This finding was supported by the fact that the Mosaic_G region can remain green up to the senescence of tobacco leaves. This work provides insights into the mechanism of the uneven distribution of astaxanthin-producing regions in tobacco leaves and may contribute to the specialized utilization of tobacco plants for metabolic engineering. Full article
(This article belongs to the Special Issue Molecular Techniques for Modern Plant Breeding)
Show Figures

Figure 1

16 pages, 4462 KB  
Article
Molecular Mechanism of Cuscuta Haustorium Specialization Inferences from Transcriptome and Metabolome Analysis
by Xingpan Meng, Ning Lv, Xinglin Wang, Qihang Zhou, Xu Zhang, Ximin Zhang, Zhengdong Zhang, Lunxian Liu and Tie Shen
Metabolites 2025, 15(3), 172; https://doi.org/10.3390/metabo15030172 - 3 Mar 2025
Viewed by 821
Abstract
Background: Cuscuta australis R. Br. is a parasitic herbaceous plant that obtains nutrients by forming specialized structures called haustoria to invade host plants. Methods: In this study, we elucidated the differences in the gene expression regulation and metabolic characteristics between Cuscuta australis and [...] Read more.
Background: Cuscuta australis R. Br. is a parasitic herbaceous plant that obtains nutrients by forming specialized structures called haustoria to invade host plants. Methods: In this study, we elucidated the differences in the gene expression regulation and metabolic characteristics between Cuscuta australis and Glycine max (Glycine max (L.) Merr. Var Williams) through comprehensive transcriptomic and metabolomic analyses. Results: The results demonstrated significant differences in the gene expression and metabolic features between the haustorium and the distal stem segments. The differentially expressed genes absorbed by Cuscuta australis from the soybean host influence amino acid metabolism, and the expression of the S-adenosylmethionine decarboxylase gene may affect the production of 5′-methylthioadenosine. A high expression of the chalcone synthase enzyme could lead to an increased daidzein content. Many Glycine max genes were also integrated into Cuscuta australis within the haustorium. Conclusions: This study systematically analyzed, for the first time, the significant differences in gene expression and metabolic characteristics between the haustoria and distal stem segments of Cuscuta. It also explored the nutrient absorption mechanisms of the host plant. Additionally, the research discovered that Cuscuta can absorb a substantial amount of host genes and adapt to its parasitic lifestyle through differential gene expression and metabolic changes. These findings provide important insights into the parasitic mechanisms of Cuscuta australis and lay the foundation for the development of effective control strategies. Full article
(This article belongs to the Section Plant Metabolism)
Show Figures

Figure 1

13 pages, 6133 KB  
Article
Specialized Metabolite Profiling-Based Variations of Watercress Leaves (Nasturtium officinale R.Br.) from Hydroponic and Aquaponic Systems
by Ivon Buitrago-Villanueva, Ricardo Barbosa-Cornelio and Ericsson Coy-Barrera
Molecules 2025, 30(2), 406; https://doi.org/10.3390/molecules30020406 - 19 Jan 2025
Cited by 1 | Viewed by 1298
Abstract
Watercress (Nasturtium officinale), a freshwater aquatic plant in the Brassicaceae family, is characterized by its high content of specialized metabolites, including flavonoids, glucosinolates, and isothiocyanates. Traditionally, commercial cultivation is conducted in submerged beds using river or spring water, often on soil [...] Read more.
Watercress (Nasturtium officinale), a freshwater aquatic plant in the Brassicaceae family, is characterized by its high content of specialized metabolites, including flavonoids, glucosinolates, and isothiocyanates. Traditionally, commercial cultivation is conducted in submerged beds using river or spring water, often on soil or gravel substrates. However, these methods have significant environmental impacts, such as promoting eutrophication due to excessive fertilizer use and contaminating water sources with pesticides. This study aimed to explore two emerging cultivation strategies, i.e., hydroponics and aquaponics, to grow watercress and evaluate its specialized metabolite content using an untargeted metabolomic approach. The goal was to characterize metabolic profiles, identify component variations, and assess changes in metabolite accumulation at two harvest times. Two culture systems (hydroponic and aquaponic) and two harvest stages (‘baby leaf’ and traditional harvest) were examined. The results revealed 23 key metabolites, predominantly glucosinolates and flavonoids, that significantly influenced the metabolic profile discrimination, with the aquaponic system yielding the highest diversity and relative abundance of metabolites (variable importance in the projection (VIP) > 1). Important condition-related compounds were identified via cross-validation (area under the curve (AUC) > 0.7), including isorhamnetin sophoroside–glucoside and gluconasturtiin at the traditional harvest in the hydroponic system and glucoarabin at the ‘baby leaf’ stage in the aquaponic system. These findings highlight the potential of aquaponic and hydroponic systems as sustainable alternatives for watercress cultivation, offering environmental benefits and enhanced metabolite quality. Full article
Show Figures

Figure 1

12 pages, 1574 KB  
Article
Evolutionary Trajectories of Shoots vs. Roots: Plant Volatile Metabolomes Are Richer but Less Structurally Diverse Belowground in the Tropical Tree Genus Protium
by Katherine D. Holmes, Paul V. A. Fine, Italo Mesones, Julieta Alvarez-Manjarrez, Andressa M. Venturini, Kabir G. Peay and Diego Salazar
Plants 2025, 14(2), 225; https://doi.org/10.3390/plants14020225 - 15 Jan 2025
Viewed by 1261
Abstract
The breadth and depth of plant leaf metabolomes have been implicated in key interactions with plant enemies aboveground. In particular, divergence in plant species chemical composition—amongst neighbors, relatives, or both—is often suggested as a means of escape from insect herbivore enemies. Plants also [...] Read more.
The breadth and depth of plant leaf metabolomes have been implicated in key interactions with plant enemies aboveground. In particular, divergence in plant species chemical composition—amongst neighbors, relatives, or both—is often suggested as a means of escape from insect herbivore enemies. Plants also experience strong pressure from enemies such as belowground pathogens; however, little work has been carried out to examine the evolutionary trajectories of species’ specialized chemistries in both roots and leaves. Here, we examine the GCMS detectable phytochemistry (for simplicity, hereafter referred to as specialized volatile metabolites) of the tropical tree genus Protium, testing the hypothesis that phenotypic divergence will be weaker belowground compared to aboveground due to more limited dispersal by enemies. We found that, after controlling for differences in chemical richness, roots expressed less structurally diverse compounds than leaves, despite having higher numbers of specialized volatile metabolites, and that species’ phylogenetic distance was only positively correlated with compound structural distance in roots, not leaves. Taken together, our results suggest that root specialized volatile metabolites exhibit significantly less phenotypic divergence than leaf specialized metabolites and may be under relaxed selection pressure from enemies belowground. Full article
(This article belongs to the Special Issue Phytochemical Diversity and Interactions with Herbivores)
Show Figures

Figure 1

13 pages, 4192 KB  
Article
Investigating the Effect of Pipecolic Acid on Specialized Metabolites Involved in Tomato Plant Defense Mechanisms Against Ralstonia solanacearum Wilt Pathogens
by Usha Sabharwal, Piyush Kant Rai, Kamlesh Choure, R. B. Subramanian, Jeong Chan Joo and Ashutosh Pandey
Analytica 2025, 6(1), 2; https://doi.org/10.3390/analytica6010002 - 9 Jan 2025
Cited by 1 | Viewed by 1468
Abstract
The role of pipecolic acid (Pip) in plant immune responses, particularly against bacterial wilt pathogens, is significant. This research aimed to understand the interaction between plant defense-responsive enzymes and Pip by analyzing methanolic extracts from different treatments of tolerant (GAT5) and susceptible (GT2) [...] Read more.
The role of pipecolic acid (Pip) in plant immune responses, particularly against bacterial wilt pathogens, is significant. This research aimed to understand the interaction between plant defense-responsive enzymes and Pip by analyzing methanolic extracts from different treatments of tolerant (GAT5) and susceptible (GT2) tomato cultivars. LC-MS analysis demonstrated that the foliar application of Pip significantly influenced tomato metabolites, especially in bacterial wilt-infected plants, with a more pronounced effect in tolerant varieties. Principal component analysis (PCA) revealed that Pip-treated plants of tolerant varieties exhibited better coordinated metabolome profiles than those of susceptible varieties. Notable variations were observed in the levels of specialized metabolites, such as salicylic acid (SA), N-hydroxy pipecolic acid (NHP), and Pip, which are essential for producing defense compounds. Molecular docking studies further explored Pip’s interactions with key plant enzymes involved in defense mechanisms and showed that Pip acts as an effective organic inducer of systemic acquired resistance (SAR). These findings highlight Pip’s potential as a natural agent for enhancing plant tolerance to pathogens, offering promising implications for agricultural practices and improving crop resilience against diseases. This study enhances our understanding of Pip’s role in plant defense and provides a foundation for developing Pip-based strategies for sustainable agriculture. Full article
Show Figures

Figure 1

18 pages, 2222 KB  
Review
A Review of Edible Wild Plants Recently Introduced into Cultivation in Spain and Their Health Benefits
by Benito Valdes, Ekaterina Kozuharova and Christina Stoycheva
Int. J. Plant Biol. 2025, 16(1), 5; https://doi.org/10.3390/ijpb16010005 - 3 Jan 2025
Cited by 1 | Viewed by 1785
Abstract
Before the Bronze age, when agricultural practices spread throughout the Iberian Peninsula, the diet of the native people was based on hunting, fishing, and gathering wild plants. In spite of modern agriculture, the popular gathering of wild species for medical use, food, craftwork, [...] Read more.
Before the Bronze age, when agricultural practices spread throughout the Iberian Peninsula, the diet of the native people was based on hunting, fishing, and gathering wild plants. In spite of modern agriculture, the popular gathering of wild species for medical use, food, craftwork, etc., for centuries has left a detailed knowledge on the use of many of these species. Of the 6176 Angiosperms native to the Iberian Peninsula and the Balearic Islands, over 200 species were introduced into cultivation during the Neolithic period outside the Iberian Peninsula. The names of 30 of the progenitors still popularly used as food are listed in this paper, together with the names of their derived crops. This review focuses on five wild species collected as food from ancient times, namely Borago officinalis L. Prunus spinosa L., Silene vulgaris (Moench) Garke subsp. vulgaris, Scolymus hispanicus L., and Asparagus acutifolius L. In response to great demand, they have been recently introduced into cultivation in Spain and are now harvested and commercialized as new crops. Special attention is paid to their basic bioactive compounds and pharmacological properties. The limitation of this study is that the published information about the bioactive compounds of these five plants originates from different parts of the world where they grow wild or are cultivated. Therefore, further research is needed to trace the metabolomic dynamics of these plants regarding geographical and ecological principles, as well as wild versus cultivated origins. Full article
(This article belongs to the Section Plant Ecology and Biodiversity)
Show Figures

Figure 1

21 pages, 5400 KB  
Review
Multi-Omics on Traditional Medicinal Plant of the Genus Aconitum: Current Progress and Prospect
by Ting Wang, Cai Rangji, Wenbin Liu, Jing Ma, Ruichen Zhou, Liang Leng and Yi Zhang
Molecules 2025, 30(1), 118; https://doi.org/10.3390/molecules30010118 - 31 Dec 2024
Cited by 1 | Viewed by 1563
Abstract
Aconitum stands out among the Ranunculaceae family for its notable use as an ornamental and medicinal plant. Diterpenoid alkaloids (DAs), the characteristic compounds of Aconitum, have been found to have effective analgesic and anti-inflammatory effects. Despite their medicinal potential, the toxicity of [...] Read more.
Aconitum stands out among the Ranunculaceae family for its notable use as an ornamental and medicinal plant. Diterpenoid alkaloids (DAs), the characteristic compounds of Aconitum, have been found to have effective analgesic and anti-inflammatory effects. Despite their medicinal potential, the toxicity of most DAs restricts the direct use of Aconitum in traditional medicine, necessitating complex processing before use. The use of high-throughput omics allows for the investigation of Aconitum plant genetics, gene regulation, metabolic pathways, and growth and development. We have collected comprehensive information on the omics studies of Aconitum medicinal plants, encompassing genomics, transcriptomics, metabolomics, proteomics, and microbiomics, from internationally recognized electronic scientific databases such as Web of Science, PubMed, and CNKI. In light of this, we identified research gaps and proposed potential areas and key objectives for Aconitum omics research, aiming to establish a framework for quality improvement, molecular breeding, and a deeper understanding of specialized metabolite production in Aconitum plants. Full article
Show Figures

Figure 1

11 pages, 258 KB  
Editorial
Plant Disease: A Growing Threat to Global Food Security
by Yunpeng Gai and Hongkai Wang
Agronomy 2024, 14(8), 1615; https://doi.org/10.3390/agronomy14081615 - 24 Jul 2024
Cited by 33 | Viewed by 14200
Abstract
The escalating global population has led to an increased demand for both quantity and quality in food production. Throughout history, plant diseases have posed significant threats to agricultural output by causing substantial food losses annually while also compromising product quality. Accurate identification of [...] Read more.
The escalating global population has led to an increased demand for both quantity and quality in food production. Throughout history, plant diseases have posed significant threats to agricultural output by causing substantial food losses annually while also compromising product quality. Accurate identification of pathogens, clarifying the pathogenic mechanism of pathogens, and understanding the interaction between pathogens and hosts are important for the control of plant diseases. This Special Issue, “Research Progress on Pathogenicity of Fungi in Crops”, belongs to the section “Pest and Disease Management” of Agronomy. It contains research papers on the identification and phylogeny of fungal pathogens, the molecular genetics of plant fungal pathogens, the molecular mechanisms of fungal pathogenicity, and the molecular basis of the interaction between fungi and crops. These studies encapsulate efforts to understand disease systems within current genomics, transcriptomics, proteomics, and metabolomics studies, highlighting research findings that could be future targets for crop disease and pest control. The studies presented in this Special Issue promote the progress of fungal pathogenicity research in crops and provide a scientific basis for future disease control, which is of great significance for sustainable agricultural development and global food security. Full article
(This article belongs to the Special Issue Research Progress on Pathogenicity of Fungus in Crop)
23 pages, 6015 KB  
Article
Metabolic and Transcriptomic Profile Revealing the Differential Accumulating Mechanism in Different Parts of Dendrobium nobile
by Ruoxi Zhao, Shou Yan, Yadong Hu, Dan Rao, Hongjie Li, Ze Chun and Shigang Zheng
Int. J. Mol. Sci. 2024, 25(10), 5356; https://doi.org/10.3390/ijms25105356 - 14 May 2024
Cited by 2 | Viewed by 1868
Abstract
Dendrobium nobile is an important orchid plant that has been used as a traditional herb for many years. For the further pharmaceutical development of this resource, a combined transcriptome and metabolome analysis was performed in different parts of D. nobile. First, saccharides, [...] Read more.
Dendrobium nobile is an important orchid plant that has been used as a traditional herb for many years. For the further pharmaceutical development of this resource, a combined transcriptome and metabolome analysis was performed in different parts of D. nobile. First, saccharides, organic acids, amino acids and their derivatives, and alkaloids were the main substances identified in D. nobile. Amino acids and their derivatives and flavonoids accumulated strongly in flowers; saccharides and phenols accumulated strongly in flowers and fruits; alkaloids accumulated strongly in leaves and flowers; and a nucleotide and its derivatives and organic acids accumulated strongly in leaves, flowers, and fruits. Simultaneously, genes for lipid metabolism, terpenoid biosynthesis, and alkaloid biosynthesis were highly expressed in the flowers; genes for phenylpropanoids biosynthesis and flavonoid biosynthesis were highly expressed in the roots; and genes for other metabolisms were highly expressed in the leaves. Furthermore, different members of metabolic enzyme families like cytochrome P450 and 4-coumarate-coA ligase showed differential effects on tissue-specific metabolic accumulation. Members of transcription factor families like AP2-EREBP, bHLH, NAC, MADS, and MYB participated widely in differential accumulation. ATP-binding cassette transporters and some other transporters also showed positive effects on tissue-specific metabolic accumulation. These results systematically elucidated the molecular mechanism of differential accumulation in different parts of D. nobile and enriched the library of specialized metabolic products and promising candidate genes. Full article
Show Figures

Figure 1

21 pages, 3360 KB  
Article
Data-Driven Characterization of Metabolome Reprogramming during Early Development of Sorghum Seedlings
by Ian A. Dubery, Lerato P. Nephali, Fidele Tugizimana and Paul A. Steenkamp
Metabolites 2024, 14(2), 112; https://doi.org/10.3390/metabo14020112 - 7 Feb 2024
Cited by 5 | Viewed by 2478
Abstract
Specialized metabolites are produced via discrete metabolic pathways. These small molecules play significant roles in plant growth and development, as well as defense against environmental stresses. These include damping off or seedling blight at a post-emergence stage. Targeted metabolomics was followed to gain [...] Read more.
Specialized metabolites are produced via discrete metabolic pathways. These small molecules play significant roles in plant growth and development, as well as defense against environmental stresses. These include damping off or seedling blight at a post-emergence stage. Targeted metabolomics was followed to gain insights into metabolome changes characteristic of different developmental stages of sorghum seedlings. Metabolites were extracted from leaves at seven time points post-germination and analyzed using ultra-high performance liquid chromatography coupled to mass spectrometry. Multivariate statistical analysis combined with chemometric tools, such as principal component analysis, hierarchical clustering analysis, and orthogonal partial least squares–discriminant analysis, were applied for data exploration and to reduce data dimensionality as well as for the selection of potential discriminant biomarkers. Changes in metabolome patterns of the seedlings were analyzed in the early, middle, and late stages of growth (7, 14, and 29 days post-germination). The metabolite classes were amino acids, organic acids, lipids, cyanogenic glycosides, hormones, hydroxycinnamic acid derivatives, and flavonoids, with the latter representing the largest class of metabolites. In general, the metabolite content showed an increase with the progression of the plant growth stages. Most of the differential metabolites were derived from tryptophan and phenylalanine, which contribute to innate immune defenses as well as growth. Quantitative analysis identified a correlation of apigenin flavone derivatives with growth stage. Data-driven investigations of these metabolomes provided new insights into the developmental dynamics that occur in seedlings to limit post-germination mortality. Full article
(This article belongs to the Special Issue Metabolomics and Plant Defence)
Show Figures

Graphical abstract

18 pages, 2219 KB  
Review
Ecophysiology of Antarctic Vascular Plants: An Update on the Extreme Environment Resistance Mechanisms and Their Importance in Facing Climate Change
by Constanza F. Ramírez, Lohengrin A. Cavieres, Carolina Sanhueza, Valentina Vallejos, Olman Gómez-Espinoza, León A. Bravo and Patricia L. Sáez
Plants 2024, 13(3), 449; https://doi.org/10.3390/plants13030449 - 3 Feb 2024
Cited by 16 | Viewed by 4030
Abstract
Antarctic flowering plants have become enigmatic because of their unique capability to colonize Antarctica. It has been shown that there is not a single trait that makes Colobanthus quitensis and Deschampsia antarctica so special, but rather a set of morphophysiological traits that coordinately [...] Read more.
Antarctic flowering plants have become enigmatic because of their unique capability to colonize Antarctica. It has been shown that there is not a single trait that makes Colobanthus quitensis and Deschampsia antarctica so special, but rather a set of morphophysiological traits that coordinately confer resistance to one of the harshest environments on the Earth. However, both their capacity to inhabit Antarctica and their uniqueness remain not fully explained from a biological point of view. These aspects have become more relevant due to the climatic changes already impacting Antarctica. This review aims to compile and update the recent advances in the ecophysiology of Antarctic vascular plants, deepen understanding of the mechanisms behind their notable resistance to abiotic stresses, and contribute to understanding their potential responses to environmental changes. The uniqueness of Antarctic plants has prompted research that emphasizes the role of leaf anatomical traits and cell wall properties in controlling water loss and CO2 exchange, the role of Rubisco kinetics traits in facilitating efficient carbon assimilation, and the relevance of metabolomic pathways in elucidating key processes such as gas exchange, nutrient uptake, and photoprotection. Climate change is anticipated to have significant and contrasting effects on the morphophysiological processes of Antarctic species. However, more studies in different locations outside Antarctica and using the latitudinal gradient as a natural laboratory to predict the effects of climate change are needed. Finally, we raise several questions that should be addressed, both to unravel the uniqueness of Antarctic vascular species and to understand their potential responses to climate change. Full article
(This article belongs to the Special Issue Responses of Extreme Environment Plants to Abiotic Stress)
Show Figures

Graphical abstract

20 pages, 1861 KB  
Review
Medicinal Plants against Viral Infections: A Review of Metabolomics Evidence for the Antiviral Properties and Potentials in Plant Sources
by Wilson Bamise Adeosun and Du Toit Loots
Viruses 2024, 16(2), 218; https://doi.org/10.3390/v16020218 - 31 Jan 2024
Cited by 8 | Viewed by 4838
Abstract
Most plants have developed unique mechanisms to cope with harsh environmental conditions to compensate for their lack of mobility. A key part of their coping mechanisms is the synthesis of secondary metabolites. In addition to their role in plants’ defense against pathogens, they [...] Read more.
Most plants have developed unique mechanisms to cope with harsh environmental conditions to compensate for their lack of mobility. A key part of their coping mechanisms is the synthesis of secondary metabolites. In addition to their role in plants’ defense against pathogens, they also possess therapeutic properties against diseases, and their use by humans predates written history. Viruses are a unique class of submicroscopic agents, incapable of independent existence outside a living host. Pathogenic viruses continue to pose a significant threat to global health, leading to innumerable fatalities on a yearly basis. The use of medicinal plants as a natural source of antiviral agents has been widely reported in literature in the past decades. Metabolomics is a powerful research tool for the identification of plant metabolites with antiviral potentials. It can be used to isolate compounds with antiviral capacities in plants and study the biosynthetic pathways involved in viral disease progression. This review discusses the use of medicinal plants as antiviral agents, with a special focus on the metabolomics evidence supporting their efficacy. Suggestions are made for the optimization of various metabolomics methods of characterizing the bioactive compounds in plants and subsequently understanding the mechanisms of their operation. Full article
Show Figures

Figure 1

Back to TopTop