Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = pineapple leaves waste

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 8165 KiB  
Article
Characterization and Application of Different Types of Pineapple Leaf Fibers (PALF) in Cement-Based Composites
by Julianna M. da Silva, Adilson Brito de Arruda Filho, Lidianne do N. Farias, Everton Hilo de Souza, Fernanda V. D. Souza, Cláudia F. Ferreira and Paulo R. L. Lima
Fibers 2025, 13(5), 51; https://doi.org/10.3390/fib13050051 - 30 Apr 2025
Viewed by 1108
Abstract
The use of plant fibers as reinforcement in cement composites has gained significant interest due to their favorable mechanical properties and inherent sustainability, particularly when sourced from agro-industrial waste. In this study, six types of pineapple leaf fibers from commercial and hybrid varieties [...] Read more.
The use of plant fibers as reinforcement in cement composites has gained significant interest due to their favorable mechanical properties and inherent sustainability, particularly when sourced from agro-industrial waste. In this study, six types of pineapple leaf fibers from commercial and hybrid varieties were characterized in terms of morphology, crystallinity index, water absorption, dimensional stability, and mechanical properties to evaluate their potential as reinforcement in cement-based composites. An anatomical analysis of the leaves was conducted to identify fiber distribution and structural function. Cement-based composites reinforced with 1.5% (by volume) of long and aligned pineapple leaf fibers were produced and tested in bending. The results indicate that the tensile strength of pineapple fibers, ranging from 180 to 753 MPa, surpasses that of fibers already successfully used in composite reinforcement. Water absorption values ranged from 150% to 187%, while fiber diameter varied between 45% and 79% as fiber moisture changed from the dry state to the saturated state. The flexural behavior of the composites modified with pineapple leaf fibers exhibited multiple cracking and deflection hardening, with increases in flexural strength ranging from 6.25 MPa to 11 MPa. The cracking pattern under bending indicated a strong fiber–matrix bond, with values between 0.41 MPa and 0.93 MPa. All composites demonstrated high flexural toughness and great potential for the development of construction elements. Full article
Show Figures

Figure 1

18 pages, 13305 KiB  
Article
Upcycling of HDPE Milk Bottles into High-Stiffness, High-HDT Composites with Pineapple Leaf Waste Materials
by Taweechai Amornsakchai and Sorn Duangsuwan
Polymers 2023, 15(24), 4697; https://doi.org/10.3390/polym15244697 - 13 Dec 2023
Cited by 5 | Viewed by 3747
Abstract
In the pursuit of sustainability and reduced dependence on new plastic materials, this study explores the upcycling potential of high-density polyethylene (HDPE) milk bottles into high-stiffness, high-heat-distortion-temperature (HDT) composites. Recycled high-density polyethylene (rHDPE) sourced from used milk bottles serves as the composite matrix, [...] Read more.
In the pursuit of sustainability and reduced dependence on new plastic materials, this study explores the upcycling potential of high-density polyethylene (HDPE) milk bottles into high-stiffness, high-heat-distortion-temperature (HDT) composites. Recycled high-density polyethylene (rHDPE) sourced from used milk bottles serves as the composite matrix, while reinforcing fillers are derived from dried pineapple leaves, comprising fibers (PALF) and non-fibrous materials (NFM). A two-roll mixer is employed to prepare rHDPE/NFM and rHDPE/PALF mixtures, facilitating filler alignment in the resulting prepreg. The prepreg is subsequently stacked and pressed into composite sheets. The introduction of PALF as a reinforcing filler significantly enhances the flexural strength and modulus of the rHDPE composite. A 20 wt.% PALF content yields a remarkable 162% increase in flexural strength and a 204% increase in modulus compared to neat rHDPE. The rHDPE/NFM composite also shows improved mechanical properties, albeit to a lesser degree than fiber reinforcement. Both composites exhibit a slight reduction in impact resistance. Notably, the addition of NFM or PALF substantially elevates HDT, raising the HDT values of the composites to approximately 84 °C and 108 °C, respectively, in contrast to the 71 °C HDT of neat rHDPE. Furthermore, the overall properties of both the composites are further enhanced by improving their compatibility through maleic anhydride-modified polyethylene (MAPE) use. Impact fracture surfaces of both composites reveal higher compatibility and clear alignment of NFM and PALF fillers, underscoring the enhanced performance and environmental friendliness of composites produced from recycled plastics reinforced with pineapple leaf waste fillers. Full article
Show Figures

Graphical abstract

15 pages, 6075 KiB  
Article
Development of Green Leather Alternative from Natural Rubber and Pineapple Leaf Fiber
by Sorn Duangsuwan, Preeyanuch Junkong, Pranee Phinyocheep, Sombat Thanawan and Taweechai Amornsakchai
Sustainability 2023, 15(21), 15400; https://doi.org/10.3390/su152115400 - 28 Oct 2023
Cited by 12 | Viewed by 18149
Abstract
In the present research, a plant-based leather substitute material or leather alternative was developed from natural rubber (NR) and pineapple leaf fiber (PALF) using a simple process. Pineapple leaf fiber was extracted from waste pineapple leaves using a mechanical method. Untreated PALF (UPALF) [...] Read more.
In the present research, a plant-based leather substitute material or leather alternative was developed from natural rubber (NR) and pineapple leaf fiber (PALF) using a simple process. Pineapple leaf fiber was extracted from waste pineapple leaves using a mechanical method. Untreated PALF (UPALF) and sodium hydroxide-treated PALF (TPALF) were then formed into non-woven sheets using a paper making process. PALF non-woven sheets were then coated with compounded natural rubber latex at three different NR/PALF ratios, i.e., 60/40, 50/50, and 40/60. Epoxidized natural rubber with an epoxidation level of 10% (ENR) was used as an adhesion promoter, and its content was varied at 5, 10, and 15% by weight of the total rubber. The obtained leathers were characterized in terms of tensile properties, tear strength, and hardness. The internal structure of the leathers was observed with a scanning electron microscope. Comparison of these properties was made against those reported in the literature. It was found that the leather with NR/PALF equal to 50/50 was the most satisfactory; that prepared from TPALF was softer and had greater extension at break. With the addition of ENR at 5%, the stress-strain curve of each respective leather increased significantly, and as the amount of ENR was increased to 10 and 15%, the stresses at corresponding strains dropped to lower values but remained higher than that without ENR. PALF leather prepared in this study has comparable or better properties than other alternative leathers reported in the literature and is much stronger than that made from mushrooms. Thus, this type of leather alternative offers unique characteristics of being bio-based and having a lower carbon footprint. Full article
Show Figures

Graphical abstract

10 pages, 4786 KiB  
Article
Rapid Fabrication of Pineapple Leaf Fibers from Discarded Leaves by Using Electrolysis of Brine
by Huy N. Q. Phan, Jyh Hoang Leu, Khanh Thien Tran, Vi N. D. Nguyen and Trung Tan Nguyen
Textiles 2023, 3(1), 1-10; https://doi.org/10.3390/textiles3010001 - 23 Dec 2022
Cited by 7 | Viewed by 5915
Abstract
Instead of contributing to global warming by the traditional method—burning crop wastes—in this study, discarded pineapple leaves were rapidly turned into multifunctional fibers: pineapple leaf fibers (PALF). In addition, the presence of pure hydrogen during treatment can be a competitive advantage. PALF were [...] Read more.
Instead of contributing to global warming by the traditional method—burning crop wastes—in this study, discarded pineapple leaves were rapidly turned into multifunctional fibers: pineapple leaf fibers (PALF). In addition, the presence of pure hydrogen during treatment can be a competitive advantage. PALF were extracted by a conventional technique, then immersed into sodium hydroxide 6% before it was treated with an electrolysis system of sodium chloride 3%. The crystallinity index increased 57.4% of treated PALF, and was collected from XRD. Meanwhile, the removal of hemicellulose and lignin in the fiber formation was presented at the absorbance peak of around 1730 cm−1 by FTIR spectrums. Simultaneously, the purity of hydrogen reached 99% and was confirmed by GC analysis. The obtained PALF and hydrogen can be used for further consideration, aiming for a circular economy. Full article
(This article belongs to the Special Issue Recent Advances in Sustainable Textiles)
Show Figures

Figure 1

9 pages, 576 KiB  
Article
Valorization of Pineapple Leaves Waste for the Production of Bioethanol
by Reetu Saini, Chiu-Wen Chen, Anil Kumar Patel, Jitendra Kumar Saini, Cheng-Di Dong and Reeta Rani Singhania
Bioengineering 2022, 9(10), 557; https://doi.org/10.3390/bioengineering9100557 - 15 Oct 2022
Cited by 17 | Viewed by 4816
Abstract
Being a lignocellulose-rich biomass, pineapple leaves waste (PL) could be a potential raw material for the production of biofuel, biochemicals, and other value-added products. The main aim of this study was to investigate the potential of pineapple leaves in the sustainable production of [...] Read more.
Being a lignocellulose-rich biomass, pineapple leaves waste (PL) could be a potential raw material for the production of biofuel, biochemicals, and other value-added products. The main aim of this study was to investigate the potential of pineapple leaves in the sustainable production of bioethanol via stepwise saccharification and fermentation. For this purpose, PL was subjected to hydrothermal pretreatment in a high-pressure reactor at 150 °C for 20 min without any catalyst, resulting in a maximum reducing sugar yield of 38.1 g/L in the liquid fraction after solid-liquid separation of the pretreated hydrolysate. Inhibitors (phenolics, furans) and oligomers production were also monitored during the pretreatment in the liquid fraction of pretreated PL. Enzymatic hydrolysis (EH) of both pretreated biomass slurry and cellulose-rich solid fraction maintained at a solid loading (dry basis) of 5% wt. was performed at 50 °C and 150 rpm using commercial cellulase at an enzyme dose of 10 FPU/gds. EH resulted in a glucose yield of 13.7 and 18.4 g/L from pretreated slurry and solid fractions, respectively. Fermentation of the sugar syrup obtained by EH of pretreated slurry and the solid fraction was performed at 30 °C for 72 h using Saccharomyces cerevisiae WLP300, resulting in significant ethanol production with more than 91% fermentation efficiency. This study reveals the potential of pineapple leaves waste for biorefinery application, and the role of inhibitors in the overall efficiency of the process when using whole biomass slurry as a substrate. Full article
Show Figures

Graphical abstract

11 pages, 603 KiB  
Article
Changes in Bioactive Compounds, Antioxidant Activities and Chemical Properties of Pickled Tea By-Product Fermentation: Promising Waste Management and Value-Added Product
by Sawarin Wispen, Pimpinan Somsong, Chalat Santivarangkna, Pimsiri Tiyayon, Wimonphan Chathiran, Karl R. Matthews and Warangkana Srichamnong
Fermentation 2022, 8(10), 472; https://doi.org/10.3390/fermentation8100472 - 21 Sep 2022
Cited by 6 | Viewed by 4985
Abstract
Pickled tea is an ethnic fermented product produced using Assam tea (Camellia sinensis var. assamica) leaves. It is produced in large quantities every year and the liquid waste from its production is estimated to be up to 2500 mL per every [...] Read more.
Pickled tea is an ethnic fermented product produced using Assam tea (Camellia sinensis var. assamica) leaves. It is produced in large quantities every year and the liquid waste from its production is estimated to be up to 2500 mL per every kilogram of pickled tea production. To reduce the waste, pickled tea juice remaining from the process was developed into (1) pineapple kombucha and (2) formulated functional drinks as “value added” products. The juice used for making kombucha was collected at 15 days of pickled tea fermentation due to its high value in antioxidant activity (previous study, 2250 µmol TE per g DW). After fermenting the juice with starter culture, the properties of pineapple kombucha were assessed at 0, 1, 3, 5, 7, 9, 11 days. Results showed that the total phenolic of pineapple kombucha was reduced, while antioxidant assay (FRAP and ORAC) slightly increased. The most suitable fermentation period of pineapple kombucha was at day 3. The formulated drink was made from mixing pineapple kombucha with ginger and lemon juice at various ratios including 100:0:0, 80:10:10 and 80:15:5. The ratio 80:10:10 gave the highest TP and antioxidant activity for the functional drink. In addition, for sensory analysis, liking attribute of 80:15:5 fermented juice kombucha pineapple favor was significantly higher compared to other formulations. The study demonstrates the promising second fermentation process of by-product juice from pickled tea production for the conversion to value-added functional drink with reasonable antioxidant properties. Full article
(This article belongs to the Collection Food Waste Valorization)
Show Figures

Figure 1

14 pages, 1416 KiB  
Article
Sustainable Valorization of Four Types of Fruit Peel Waste for Biogas Recovery and Use of Digestate for Radish (Raphanus sativus L. cv. Pusa Himani) Cultivation
by Arwa A. AL-Huqail, Vinod Kumar, Rohit Kumar, Ebrahem M. Eid, Mostafa A. Taher, Bashir Adelodun, Sami Abou Fayssal, Boro Mioč, Valentino Držaić, Madhumita Goala, Pankaj Kumar and Ivan Širić
Sustainability 2022, 14(16), 10224; https://doi.org/10.3390/su141610224 - 17 Aug 2022
Cited by 34 | Viewed by 4305
Abstract
Food waste has become a challenging global issue due to its inefficient management, particularly in low and middle-income countries. Among food waste items, fruit peel waste (FPW) is generated in enormous quantities, especially from juice vendors, resulting in arduous tasks for waste management [...] Read more.
Food waste has become a challenging global issue due to its inefficient management, particularly in low and middle-income countries. Among food waste items, fruit peel waste (FPW) is generated in enormous quantities, especially from juice vendors, resulting in arduous tasks for waste management personnel and authorities. However, considering the nutrient and digestible content of organic wastes, in this study four types of FPW (pineapple: PA; sweet lemon: SL; kinnow: KN; and pomegranate: PG) were investigated for their potential use within biogas production, using conventional and electro-assisted anaerobic reactors (CAR and EAR). In addition, the FPW digestate obtained after the biogas production experiments was considered as a soil bio-fertilizer under radish (Raphanussativus L. cv. Pusa Himani) cultivation. In the results, all four types of FPW had digestible organic fractions, as revealed from physicochemical and proximate analysis. However, PA-based FPW yielded the maximum biogas (1422.76 ± 3.10 mL/62.21 ± 0.13% CH4) using the EAR system, compared to all other FPW. Overall, the decreasing order of biogas yield obtained from FPW was observed as PA > PG > SL > KN. The kinetic analysis of the biogas production process showed that the modified Gompertz model best fitted in terms of coefficient of determination (R2 > 0.99) to predict cumulative biogas production (y), lag phase (λ), and specific biogas production rate (µm). Moreover, fertilizer application of spent FPW digestate obtained after biogas production significantly improved the arable soil properties (p < 0.05). Further, KN-based FPW digestate mixing showed maximum improvement in radish plant height (36.50 ± 0.82 cm), plant spread (70.80 ± 3.79 cm2), number of leaves (16.12 ± 0.05), fresh weight of leaves (158.08 ± 2.85 g/plant), fruit yield (140.10 ± 2.13 g/plant), and fruit length (25.05 ± 0.15 cm). Thus, this study suggests an efficient method of FPW management through biogas and crop production. Full article
Show Figures

Figure 1

13 pages, 985 KiB  
Article
Techno-Economic Analysis and Life Cycle Assessment of Pineapple Leaves Utilization in Costa Rica
by Clara Yuqi Liao, Ysabel Jingyi Guan and Mauricio Bustamante-Román
Energies 2022, 15(16), 5784; https://doi.org/10.3390/en15165784 - 9 Aug 2022
Cited by 3 | Viewed by 3403
Abstract
Pineapple production around the world creates large amounts of wasted organic residue, mainly in the form of pineapple leaves. Current management practices consist of in situ decomposition or in situ burning, both of which cause the proliferation of flies and air pollution, respectively. [...] Read more.
Pineapple production around the world creates large amounts of wasted organic residue, mainly in the form of pineapple leaves. Current management practices consist of in situ decomposition or in situ burning, both of which cause the proliferation of flies and air pollution, respectively. The research conducted aims to develop a utilization process for this residue. Considering that pineapple leaves are rich in carbohydrates and other nutrients, a simple biological process involving a two-step procedure for juice production and ethanol fermentation has been developed to convert the leaves into renewable fuel and spent yeasts for animal feed. The liquid fraction extracted from the leaves is used as the nutrients to culture yeast, Kluyveromyces marxianus, for ethanol and yeast protein production. In Costa Rica, one of the major pineapple-producing countries in the world, the studied process can produce 92,708 and 64,859 tons of bioethanol and spent yeast per year, respectively, from its 44,500 hectares of pineapple plantation. This techno-economic analysis indicates that a regional biorefinery with the capacity to produce 50,000 metric tons per year of ethanol could have a short payback period of 4.72 years. The life cycle analysis further demonstrates the advantages of the studied biorefining concept over the current practice of open burning. Full article
Show Figures

Figure 1

10 pages, 2517 KiB  
Article
Valorization of Pineapple Residues from the Colombian Agroindustry to Produce Cellulose Nanofibers
by Marcelo A. Guancha-Chalapud, Liliana Serna-Cock and Diego F. Tirado
Appl. Sci. 2022, 12(14), 6956; https://doi.org/10.3390/app12146956 - 9 Jul 2022
Cited by 4 | Viewed by 3513
Abstract
Cellulose nanofiber is the world’s most advanced biomass material. Most importantly, it is biodegradable. In this work, nanofibers were obtained from pineapple leaves, a large solid waste in Colombia, using a combined extraction method (chemical procedures and ultrasound). The native fibers were bleached, [...] Read more.
Cellulose nanofiber is the world’s most advanced biomass material. Most importantly, it is biodegradable. In this work, nanofibers were obtained from pineapple leaves, a large solid waste in Colombia, using a combined extraction method (chemical procedures and ultrasound). The native fibers were bleached, hydrolyzed, treated with ultrasound, and characterized by scanning electron microscopy (SEM), infrared analysis (FTIR), thermogravimetric analysis (TGA), and transmission electron microscopy (TEM). As a comparison, a commercial microcrystalline cellulose sample was analyzed, which demonstrated the efficiency of cellulose extraction. The nanofibers had a diameter and a length of 18 nm and 237 nm, respectively, with a maximum degradation temperature of 306 °C. The analysis showed the efficiency of acid treatment combined with ultrasound to obtain nanofibers and confirmed that pineapple residues can be valorized by this method. These results indicate that lignocellulosic matrices from pineapple leaves have potential application for obtaining polymeric-type composite materials. Due to their morphology and characteristic physical properties, the cellulose nanofibers obtained in this work could be a promising material for use in a wealth of fields and applications such as filter material, high gas barrier packaging material, electronic devices, foods, medicine, construction, cosmetics, pharmacy, and health care, among others. Full article
(This article belongs to the Special Issue Knowledge-Based Biotechnology for Food, Agriculture and Fisheries)
Show Figures

Figure 1

13 pages, 3213 KiB  
Article
Extraction and Characterization of Cellulose from Agricultural By-Products of Chiang Rai Province, Thailand
by Orapan Romruen, Thomas Karbowiak, Wirongrong Tongdeesoontorn, Khursheed Ahmad Shiekh and Saroat Rawdkuen
Polymers 2022, 14(9), 1830; https://doi.org/10.3390/polym14091830 - 29 Apr 2022
Cited by 70 | Viewed by 7940
Abstract
Cellulose is an abundant component of the plant biomass in agricultural waste valorization that may be exploited to mitigate the excessive use of synthetic non-biodegradable materials. This work aimed to investigate the cellulose utilized by alkaline extraction with a prior bleaching process from [...] Read more.
Cellulose is an abundant component of the plant biomass in agricultural waste valorization that may be exploited to mitigate the excessive use of synthetic non-biodegradable materials. This work aimed to investigate the cellulose utilized by alkaline extraction with a prior bleaching process from rice straw, corncob, Phulae pineapple leaves, and Phulae pineapple peels. The bleaching and alkaline extraction process was performed using 1.4% acidified sodium chlorite (NaClO2) and 5% potassium hydroxide (KOH) in all the samples. All the samples, without and with the alkaline process, were characterized for their physico-chemical, microstructure, thermal properties and compared to commercial cellulose (COM-C). The extraction yield was the highest in alkaline-extracted cellulose from the corncob (AE-CCC) sample (p < 0.05), compared to the other alkaline-treated samples. The undesired components, including mineral, lignin, and hemicellulose, were lowest in the AE-CCC sample (p < 0.05), compared to raw and alkaline-treated samples. The microstructure displayed the flaky AE-CCC structure that showed a similar visibility in terms of morphology with that of the alkaline-treated pineapple peel cellulose (AE-PPC) and COM-C samples compared to other alkaline-treated samples with a fibrous structure. Fourier Transform Infrared (FTIR) and X-ray Diffraction (XRD) of AE-CCC samples showed the lowest amorphous regions, possibly due to the elimination of hemicellulose and lignin during bleaching and alkaline treatment. The highest crystallinity index obtained in the AE-CCC sample showed a close resemblance with the COM-C sample. Additionally, the AE-CCC sample showed the highest thermal stability, as evidenced by its higher Tonset (334.64 °C), and Tmax (364.67 °C) compared to the COM-C and alkaline-treated samples. Therefore, agricultural wastes after harvesting in the Chiang Rai province of Thailand may be subjected to an alkaline process with a prior bleaching process to yield a higher cellulose content that is free of impurities. Thus, the extracted cellulose could be used as an efficient, eco-friendly, and biodegradable material for packaging applications. Full article
(This article belongs to the Special Issue Biomass Polymers)
Show Figures

Graphical abstract

22 pages, 3916 KiB  
Article
Effect of Vermicompost on Growth, Plant Nutrient Uptake and Bioactivity of Ex Vitro Pineapple (Ananas comosus var. MD2)
by Mawiyah Mahmud, Rosazlin Abdullah and Jamilah Syafawati Yaacob
Agronomy 2020, 10(9), 1333; https://doi.org/10.3390/agronomy10091333 - 5 Sep 2020
Cited by 41 | Viewed by 8849
Abstract
Vermicompost is a nutrient-rich organic waste produced from earthworms that is beneficial in enhancing the soil condition and has been reported to aid in improving the crop yield and quality. In the present study, a field trial was conducted using a randomized complete [...] Read more.
Vermicompost is a nutrient-rich organic waste produced from earthworms that is beneficial in enhancing the soil condition and has been reported to aid in improving the crop yield and quality. In the present study, a field trial was conducted using a randomized complete block design with four replicates to elucidate the effects of vermicompost application (compared to supplementation with chemical fertilizer and no fertilizer) on the productivity of ex vitro MD2 pineapple plants. Vermicompost was applied on the sandy loam soils at transplanting followed by a second application at 7 months after planting (MAP) at the rate of 10 t·ha−1, while chemical fertilizer was applied based on the recommended cultivation practice. Data analysis revealed that there was no significant difference between the plants treated with vermicompost and chemical fertilizer in terms of the plant height, number of leaves, length and width of D-leaves, stomatal density and stomatal size. However, the fruits produced with vermicompost amendment were smaller in size but contained higher total soluble solids, titratable acidity, total solids, ascorbic acid and total chlorophyll content compared to the fruits produced from plants supplied with chemical fertilizer. Based on the DPPH, ABTS and FRAP assays, the methanolic fruit extracts from the control plants showed the highest antioxidant potential, followed by those of plants treated with vermicompost and chemical fertilizer. On the other hand, the application of vermicompost reduced soil acidity and produced macro- and micronutrient contents (N, P, K, Mg, Ca, S, Fe, Zn, B and Al) in the soil and plants that were comparable to or higher than those produced by the chemical fertilizer treatment. However, some of the nutrient contents observed in all treatments were lower than the recommended range for pineapple plant growth, suggesting that vermicompost or chemical fertilizer should not be used alone as a source of nutrients for ex vitro MD2 pineapple plants under these soil and field conditions. However, vermicompost can be used as a supplement to increase the fruit chemical quality and maintain the soil quality for agricultural sustainability. Full article
Show Figures

Figure 1

19 pages, 3293 KiB  
Article
Application of Pineapple Leaves as Adsorbents for Removal of Rose Bengal from Wastewater: Process Optimization Operating Face-Centered Central Composite Design (FCCCD)
by Siham S. Hassan, Ahmed S. El-Shafie, Nourhan Zaher and Marwa El-Azazy
Molecules 2020, 25(16), 3752; https://doi.org/10.3390/molecules25163752 - 18 Aug 2020
Cited by 43 | Viewed by 5834
Abstract
Adsorptive removal of rose bengal (RB) from contaminated water samples was approached using pineapple leaves (PAL). Three adsorbents were utilized for that purpose; raw pineapple leaves (RPAL) and the thermally activated bio-waste leaves at 250 and 500 °C. Two measures were executed to [...] Read more.
Adsorptive removal of rose bengal (RB) from contaminated water samples was approached using pineapple leaves (PAL). Three adsorbents were utilized for that purpose; raw pineapple leaves (RPAL) and the thermally activated bio-waste leaves at 250 and 500 °C. Two measures were executed to evaluate the functionality of exploited biomasses; percentage removal (%R) and adsorption capacity (qe). Face-centered central composite design (FCCCD) was conducted to experiment the influence of variables on the %R. Dose of PAL as adsorbent (AD), concentration of RB (DC), pH and contact time (CT), were the inspected factors. Existence of functional groups and formation of activated carbon was instigated employing Fourier-transform infrared (FT-IR) and Raman spectroscopies. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) analyses were used to explore surface features. Thermal behavior of adsorbents was studied using thermogravimetric analysis (TGA). The surface area and other surface structural properties were established using the Brunauer Emmett-Teller (BET) analysis. An amount of 92.53% of RB could be removed with an adsorption capacity of 58.8 mg/g using a combination of pH 5.00 ± 0.20, RPAL dose of 0.05 mg/50 mL, and 10-ppm RB for 180 min. Equilibrium studies divulge a favorable adsorption that follows the Freundlich isotherm. Pseudo-second-order model explains the observed adsorption kinetics. Full article
Show Figures

Figure 1

11 pages, 2150 KiB  
Article
Hexagonal Boron Nitride/Microfibril Cellulose/Poly(vinyl alcohol) Ternary Composite Film with Thermal Conductivity and Flexibility
by Xin Ge, Wei-Jie Liang, Jian-Fang Ge, Xun-Jun Chen, Jian-Ye Ji, Xiao-Yan Pang, Ming He and Xiao-Meng Feng
Materials 2019, 12(1), 104; https://doi.org/10.3390/ma12010104 - 30 Dec 2018
Cited by 23 | Viewed by 5280
Abstract
Microfibril cellulose (MFC), which is detrimental to soil cultivation and environmental protection, is derived from waste pineapple leaves. Hexagonal boron nitride (h-BN) was modified with polydopamine (PDA)—PDA@h-BN named pBN, and then combined with MFC to prepare a novel hybrid powder. The effect of [...] Read more.
Microfibril cellulose (MFC), which is detrimental to soil cultivation and environmental protection, is derived from waste pineapple leaves. Hexagonal boron nitride (h-BN) was modified with polydopamine (PDA)—PDA@h-BN named pBN, and then combined with MFC to prepare a novel hybrid powder. The effect of PDA on h-BN and the binding effect between pBN and MFC were characterized by X-ray photoelectron spectroscopy (XPS), Thermogravimetric (TG), scanning electron microscopy (SEM), and Fourier Transform-Infrared (FT-IR). Poly (vinyl alcohol) (PVA) was used as an eco-friendly polymeric matrix to prepare a pBN-MFC-PVA composite film. The mechanical strength, hydrophobicity, and thermal conductivity of the film were studied and the results confirmed that h-BN was chemically modified with PDA and was uniformly distributed along the MFC. The thermal conductivity of the pBN-MFC-PVA composite film increased with the addition of a pBN-MFC novel powder. MFC acted as “guides” to mitigate the h-BN agglomerate. In addition to the possible usage in the pBN-MFC-PVA composite film itself, the pBN-MFC hybrid powder may be a potential filler candidate for manufacturing thermal interface materials and wearable devices or protective materials. Full article
Show Figures

Figure 1

Back to TopTop