Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (45)

Search Parameters:
Keywords = pilot MBR

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2823 KB  
Article
Evaluation of End-of-Life Reverse Osmotic Membrane for High-Retention Anaerobic Membrane Bioreactor
by Oriol Morató Torras, Hiren D. Raval, Bianca Zappulla-Sabio, Ignasi Rodriguez-Roda, Hèctor Monclús and Gaetan Blandin
Membranes 2025, 15(11), 323; https://doi.org/10.3390/membranes15110323 - 22 Oct 2025
Viewed by 749
Abstract
Following on from a circular economy in water, membrane technologies can play a role in resource recovery and high-quality water production but should also consider membrane industry circularity. Anaerobic membrane bioreactors (AnMBRs) are being used for advanced wastewater treatment, and their applications are [...] Read more.
Following on from a circular economy in water, membrane technologies can play a role in resource recovery and high-quality water production but should also consider membrane industry circularity. Anaerobic membrane bioreactors (AnMBRs) are being used for advanced wastewater treatment, and their applications are growing due to advantages like lower sludge volume, better permeate quality, and the generation of biogas. High-Rejection (HR) AnMBRs retain a higher fraction of dissolved and particulate components to further promote resource recovery and obtain improved effluent quality. With the development of membrane technologies, end-of-life (EOL) membrane recycling is emerging for various applications. The feasibility of transforming EOL Reverse Osmosis (RO) membranes into ultrafiltration (UF)- and nanofiltration (NF)-like membranes and applying these membranes to submerged HR-AnMBR applications was evaluated. A small pilot AnMBR with granular biomass was operated with EOL RO membranes converted to submerged UF- and NF-like membranes and compared to commercial microfiltration (MF) membranes. UF- and NF-like plates were constructed, characterized, and introduced step-by-step into the AnMBR by the substitution of MF plates. A chemical oxygen demand (COD) removal study showed that while 77% removal of COD was possible with MF membranes, improved COD removal (i.e., 81.40% and 88.39%) was achieved using UF-like and NF-like membranes, respectively. Because of the higher retention of salts of the NF-like membrane, the salinity in the membrane bioreactor increased from 1300 to 1680 µS·cm−1 but stabilized quickly and without a negative impact on system performance. Even without cleaning, minimal fouling and flux decline were observed for all tested configurations thanks to the use of granular biomass and low permeation flux. Permeate flux in the case of the NF-like membrane was slightly lower due to the required higher pressure. The present study demonstrated that the EOL-RO membranes may find applications in HR-AnMBRs to achieve superior permeate quality and move toward circular membrane processes. Full article
Show Figures

Figure 1

13 pages, 5177 KB  
Article
Pilot-Scale Polysulfone Ultrafiltration Patterned Membranes: Phase-Inversion Parametric Optimization on a Roll-to-Roll Casting System
by Ayesha Ilyas and Ivo F. J. Vankelecom
Membranes 2025, 15(8), 228; https://doi.org/10.3390/membranes15080228 - 31 Jul 2025
Viewed by 1191
Abstract
The scalability and processability of high-performance membranes remain significant challenges in membrane technology. This work focuses on optimizing the pilot-scale production of patterned polysulfone (PSf) ultrafiltration membranes using the spray-modified non-solvent-induced phase separation (s-NIPS) method on a roll-to-roll pilot line. s-NIPS has already [...] Read more.
The scalability and processability of high-performance membranes remain significant challenges in membrane technology. This work focuses on optimizing the pilot-scale production of patterned polysulfone (PSf) ultrafiltration membranes using the spray-modified non-solvent-induced phase separation (s-NIPS) method on a roll-to-roll pilot line. s-NIPS has already been studied extensively at lab-scale to prepare patterned membranes for various applications including membrane bioreactors (MBR), reverse osmosis (RO) and forward osmosis (FO). Although studied at the lab scale, membranes prepared at a larger scale can significantly differ in performance; therefore, phase inversion parameters, including polymer concentration, molecular weight, and additive type (i.e., polyethylene glycol (PEG) or polyvinylpyrolidine (PVP)) and concentration, were systematically varied when casting on a roll-to-roll, 12″ wide pilot line to identify optimal conditions for achieving defect-free, high-performance, patterned PSf membranes. The membranes were characterized for their pure water permeance, BSA rejection, casting solution viscosities, and resulting morphology. s-NIPS patterned membranes exhibit 150–350% increase in water flux as compared to their reference flat membrane, thanks to very high pattern heights up to 825 µm and formation of finger-like macrovoids. This work bridges the gap between lab-scale and pilot-scale membrane preparation, while proposing an upscaled membrane with great potential for use in water treatment. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

21 pages, 7600 KB  
Article
Evaluating the Effects of Irrigation with Reused Water and Compost from a Pilot Wastewater Treatment Unit on the Experimental Growth of Two Common Ornamental Plant Species in the City of Athens
by Konstantinos Tsimnadis, Giannis Katsenios, Stylianos Fanourakis, Grigorios L. Kyriakopoulos, Antonios Kyriakakis, Dimitrios Kyriakakis and Dimitrios Tsagkaropoulos
Clean Technol. 2025, 7(1), 13; https://doi.org/10.3390/cleantechnol7010013 - 7 Feb 2025
Cited by 1 | Viewed by 1536
Abstract
Since 2019, the NextGen pilot wastewater treatment unit—also known as the NextGen Sewer Mining concept—has been operating at the Athens Plant Nursery, transforming sewage from Athens’ central network into irrigation water and compost. This unit produces resources for plant growth through membrane bioreactors [...] Read more.
Since 2019, the NextGen pilot wastewater treatment unit—also known as the NextGen Sewer Mining concept—has been operating at the Athens Plant Nursery, transforming sewage from Athens’ central network into irrigation water and compost. This unit produces resources for plant growth through membrane bioreactors (MBRs) and aerobic sludge digestion. This study experimentally evaluates the effects of NextGen reused water and compost on two common ornamental plant species in Athens, Pittosporum tobira (Angelica) and Myrtus communis (Common Myrtle), compared to the use of tap water and red soil without additional fertilization. The results indicate that NextGen reused water combined with compost significantly promotes both height and weight growth in these plants. However, by the end of the experiment, compost fertilization had a greater effect on the height and weight growth of both Angelica and Myrtus plants when applied independently and watered with tap water, compared to the use of NextGen reused water combined with red soil. Notably, none of the 96 plants withered throughout the experiment, indicating that promising and sustainable technologies like the concept of Sewer Mining can effectively replace conventional and environmentally outdated methods of plant nutrition and irrigation by producing reused water and compost. Full article
(This article belongs to the Special Issue Nature-Based Solutions for Water Reuse and Contaminant Reduction)
Show Figures

Figure 1

15 pages, 2058 KB  
Article
Influence of Salinity Level on the Treatment Performance and Membrane Fouling of MBRs Treating Saline Industrial Effluent
by Majeb Alotaibi, Ashraf Refaat, Faris Munshi, Mohamed Ali El-Said and Saber A. El-Shafai
Water 2024, 16(21), 3150; https://doi.org/10.3390/w16213150 - 4 Nov 2024
Cited by 2 | Viewed by 2427
Abstract
This study investigated the potential impact of salinity levels on the treatment performance and membrane fouling of MBR seeded with sludge from saline industrial effluent treatment plants. A pilot-scale MBR received mixed saline industrial effluents at an organic loading rate (OLR) of 1.3 [...] Read more.
This study investigated the potential impact of salinity levels on the treatment performance and membrane fouling of MBR seeded with sludge from saline industrial effluent treatment plants. A pilot-scale MBR received mixed saline industrial effluents at an organic loading rate (OLR) of 1.3 g COD/L·d and a feed-to-micro-organism (F/M) ratio of 0.33 g COD/g TSS. The effects of the variable salt concentrations of 5, 10, 20, and 25 g/L were investigated. The ranges of ammonia and total nitrogen (TN) concentrations were 22.2–26.3 mgN/L and 55.1–59.2 mgN/L, respectively. The MBR achieved promising results for chemical oxygen demand (COD) and biochemical oxygen demand (BOD), with removal ranges of 95.4–97.2% and 98.3–98.8%, respectively. The system provides 93.2–96.7% and 81.6–92.5% for ammonia and TN removal. Up to a 20 g/L salinity level, there were no significant effects on treatment performance, but 25 g/L significantly declined daily and specific COD removal load. Despite this, residual values at 25 g/L were better and met the Saudi standard for effluent discharge. This is due to membrane fouling which declined the flux rate with a spontaneous reduction of OLR and F/M ratio. The MBR system inoculated with high-salinity-adapted sludge could be managed to release treated effluent that meets Saudi disposal limits by modifying the F/M ratio via reducing the flux or increasing the mixed liquor suspended solid (MLSS) concentration. Full article
Show Figures

Figure 1

13 pages, 3189 KB  
Article
Approaching Breakthrough: Resource-Efficient Micropollutant Removal with MBR-GAC Configuration
by Christian Baresel, Marion Salem, Ross Roberts, Andriy Malovanyy, Heidi Lemström and Bahare Esfahani
Appl. Sci. 2024, 14(17), 7759; https://doi.org/10.3390/app14177759 - 2 Sep 2024
Cited by 2 | Viewed by 2804
Abstract
The removal of micropollutants from municipal wastewater is crucial to mitigate negative environmental impacts on aquatic ecosystems. However, existing advanced treatment techniques often require extensive fossil resources to achieve the targeted removal of a broad range of micropollutants. This study presents the combination [...] Read more.
The removal of micropollutants from municipal wastewater is crucial to mitigate negative environmental impacts on aquatic ecosystems. However, existing advanced treatment techniques often require extensive fossil resources to achieve the targeted removal of a broad range of micropollutants. This study presents the combination of Membrane Bioreactors (MBRs) and subsequent Granular Activated Carbon (GAC) filters as a resource-efficient solution. Based on long-term pilot studies at a municipal WWTP in Stockholm, Sweden, this investigation explores the MBR-GAC configuration as a sustainable alternative for quaternary treatment at WWTPs. Results from over three years demonstrate a high removal efficiency of over 80% for targeted pharmaceuticals and other organic micropollutants, such as per- and polyfluoroalkyl substances (PFASs), from the WWTP inlet to the outlet. The synergy between MBR and GAC technologies provides this high removal efficiency with considerably lower resource consumption and cost compared to traditional GAC installations. No breakthrough of micropollutants has been observed to date indicating even better resource efficiency than presented in this paper. Full article
(This article belongs to the Section Environmental Sciences)
Show Figures

Figure 1

15 pages, 21980 KB  
Article
The Performance and Spatial Distribution of Membrane Fouling in a Sequencing Batch Ceramic Membrane Bioreactor: A Pilot Study for Swine Wastewater Treatment
by Wenhui Yue, Yanlin Chen, Qianwen Sui, Libing Zheng, Tharindu Ritigala and Yuansong Wei
Membranes 2024, 14(6), 142; https://doi.org/10.3390/membranes14060142 - 18 Jun 2024
Cited by 1 | Viewed by 1697
Abstract
The extensive application of ceramic membranes in wastewater treatment draws increasing attention due to their ultra-long service life. A cost-effective treatment for high-strength swine wastewater is an urgent and current need that is a worldwide challenge. A pilot-scale sequencing batch flat-sheet ceramic membrane [...] Read more.
The extensive application of ceramic membranes in wastewater treatment draws increasing attention due to their ultra-long service life. A cost-effective treatment for high-strength swine wastewater is an urgent and current need that is a worldwide challenge. A pilot-scale sequencing batch flat-sheet ceramic membrane bioreactor (ScMBR) coupled with a short-cut biological nitrogen removal (SBNR) process was developed to treat high-strength swine wastewater. The ScMBR achieved stable and excellent removal of COD (95.3%), NH4+-N (98.3%), and TN (92.7%), though temperature went down from 20 °C, to 15 °C, to 10 °C stepwise along three operational phases. The COD and NH4+-N concentrations in the effluent met with the discharge standards (GB18596-2001). Microbial community diversity was high, and the genera Pseudomonas and Comamonas were dominant in denitritation, and Nitrosomonas was dominant in nitritation. Ceramic membrane modules of this pilot-scale reactor were separated into six layers (A, B, C, D, E, F) from top to bottom. The total filtration resistance of both the top and bottom membrane modules was relatively low, and the resistance of the middle ones was high. These results indicate that the spatial distribution of the membrane fouling degree was different, related to different aeration scour intensities demonstrated by computational fluid dynamics (CFD). The results prove that the membrane fouling mechanism can be attributed to the cake layer formation of the middle modules and pore blocking of the top and bottom modules, which mainly consist of protein and carbohydrates. Therefore, different cleaning measures should be adopted for membrane modules in different positions. In this study, the efficient treatment of swine wastewater shows that the ScMBR system could be applied to high-strength wastewater. Furthermore, the spatial distribution characteristics of membrane fouling contribute to cleaning strategy formulation for further full-scale MBR applications. Full article
(This article belongs to the Special Issue Advances in Membrane Processes for Wastewater Treatment)
Show Figures

Figure 1

14 pages, 4651 KB  
Article
Chemical-Saving Potential for Membrane Bioreactor (MBR) Processes Based on Long-Term Pilot Trials
by Sofia Lovisa Andersson, Christian Baresel, Sofia Andersson, Klara Westling, Mikael Eriksson, Andrea Carranza Munoz, Gabriel Persson, Mayumi Narongin-Fujikawa, Kristin Johansson and Tomas Rydberg
Membranes 2024, 14(6), 126; https://doi.org/10.3390/membranes14060126 - 29 May 2024
Cited by 3 | Viewed by 2622
Abstract
Membrane bioreactors (MBRs) have gained attraction in municipal wastewater treatment because of their capacity to meet strict water quality standards and support water reuse. Despite this, their operational sustainability is often compromised by high resource consumption, especially regarding the use of chemicals for [...] Read more.
Membrane bioreactors (MBRs) have gained attraction in municipal wastewater treatment because of their capacity to meet strict water quality standards and support water reuse. Despite this, their operational sustainability is often compromised by high resource consumption, especially regarding the use of chemicals for membrane cleaning. This study explores innovative membrane-cleaning strategies to enhance the sustainability of MBR processes. Through long-term pilot trials at Stockholm’s largest wastewater treatment plant, this study showed that alternative cleaning strategies can reduce chemical use by up to 75% without sacrificing treatment performance. The results further suggest that these alternative strategies could result in cost reductions of up to 70% and a reduction in environmental impacts by as much as 95% for certain indicators. Given that MBRs play a crucial role in addressing increasing treatment demands and advancing circular water management, the outcomes of this study are beneficial for the broader adoption of MBR processes. These results also have implications for existing installations, offering a pathway to more sustainable wastewater treatment. Moreover, the presented cleaning strategies provide significant opportunities for lowering operational costs and reducing the environmental footprint of new and existing MBR installations. Full article
(This article belongs to the Topic Technologies for Wastewater and Sludge Treatment)
Show Figures

Graphical abstract

21 pages, 3671 KB  
Article
Anaerobic Membrane Bioreactor for Microalgae and Primary Sludge Co-Digestion at Pilot Scale: Instrumentation, Control and Automation Implementation, and Performance Assessment
by Juan Francisco Mora-Sánchez, Rebecca Serna-García, Alberto Bouzas, Aurora Seco and Maria Victoria Ruano
Water 2023, 15(18), 3225; https://doi.org/10.3390/w15183225 - 11 Sep 2023
Cited by 6 | Viewed by 3277
Abstract
Anaerobic membrane bioreactor (AnMBR) technology is gaining interest for circular economy integration in the water sector. However, its complexity, arising from the integration of anaerobic processes with membrane technology, poses a key challenge. Developing an appropriate instrumentation, control, and automation (ICA) system is [...] Read more.
Anaerobic membrane bioreactor (AnMBR) technology is gaining interest for circular economy integration in the water sector. However, its complexity, arising from the integration of anaerobic processes with membrane technology, poses a key challenge. Developing an appropriate instrumentation, control, and automation (ICA) system is essential for its reliable long-term operation. In this study, an ICA system was developed to successfully manage an AnMBR pilot plant co-digesting two waste streams (microalgae and primary sludge). The ICA implementation enabled its stable long-term operation for 576 days, ensuring the proper performance of biological and filtration processes and yielding 215 NmLCH4·gCODinf−1 at 35 °C. Variables such as temperature, oxidation-reduction potential, permeate flux and biogas flow were identified as key parameters and controlled. This included a 23% reduction in the integral of absolute error compared to a PID controller for permeate flow and the maintenance of a 0.5% standard deviation for digester temperature. These controls enabled AnMBR performance optimization, the rapid detection of process issues, and early corrective actions. As a start-up strategy to ensure proper filtration performance in the long term, critical flux tests were conducted, guaranteeing a competitive total annualized equivalent cost of 0.0016 EUR/m3 for optimal conditions. The study also calculated greenhouse gas emissions in different scenarios, proposing optimal and more sustainable pilot plant operations, mesophilic conditions, biogas upgrading through microalgae cultivation, and grid injection, reducing emissions by 423 kgCO2e·tCOD−1. To ensure the viability of emerging technologies such as AnMBR, proper start-up protocols are crucial, including favorable filtration and biological process operating conditions, ICA implementation, and key parameter control for technical, economic and environmental success. Full article
Show Figures

Graphical abstract

22 pages, 2349 KB  
Review
Biogas Production in AnMBRs via Treatment of Municipal and Domestic Wastewater: Opportunities and Fouling Mitigation Strategies
by Wirginia Tomczak, Marek Gryta, Ireneusz Grubecki and Justyna Miłek
Appl. Sci. 2023, 13(11), 6466; https://doi.org/10.3390/app13116466 - 25 May 2023
Cited by 10 | Viewed by 2628
Abstract
In recent years, significant progress has been achieved in developing the potential of anaerobic membrane bioreactors (AnMBRs). The present paper presents a comprehensive review of studies focused on biogas production via the treatment of municipal and domestic wastewater with the use of such [...] Read more.
In recent years, significant progress has been achieved in developing the potential of anaerobic membrane bioreactors (AnMBRs). The present paper presents a comprehensive review of studies focused on biogas production via the treatment of municipal and domestic wastewater with the use of such technology. The main aim of the current work was to evaluate the impact of operating parameters on the biogas production yield. Moreover, the possibilities of applying various fouling mitigation strategies have been discussed in detail. Analyses have been performed and reported in the literature, which were conducted with the use of submerged and external AnMBRs equipped with both polymeric and ceramic membranes. It has been shown that, so far, the impact of the hydraulic retention time (HRT) on biogas yield is ambiguous. This finding indicates that future studies on this issue are required. In addition, it was demonstrated that temperature has a positive impact on process performance. However, as presented in the literature, investigations have been carried out mainly under psychrophilic and mesophilic conditions. Hence, performing further experimental studies at temperatures above 40 °C is highly recommended. Moreover, it has been shown that in order to restore the initial permeate flux, a combination of several membrane cleaning methods is often required. The findings presented in the current study may be particularly important for the determination of operating conditions and suitable fouling mitigation strategies for laboratory-scale and pilot-scale AnMBRs used for biogas production via the treatment of municipal and domestic conditions. Full article
(This article belongs to the Special Issue Production, Treatment, Utilization and Future Opportunities of Biogas)
Show Figures

Figure 1

18 pages, 16760 KB  
Article
Municipal Sewage Treatment Technology: A2/O-VMBR Integrated Technology for Municipal Treatment and Improved Pollutant Removal
by Qian Ma, Fengze Han, Feng Lyu and Xiaojun Yang
Water 2023, 15(8), 1574; https://doi.org/10.3390/w15081574 - 18 Apr 2023
Cited by 3 | Viewed by 3920
Abstract
To modernize wastewater treatment plants, a pilot-scale anaerobic/anoxic/oxic-vibrating membrane bioreactor (A2/O-VMBR) was developed and successfully operated. Despite a low C/N ratio, the A2/O-VMBR achieved removal rates of 61.10%, 93.77%, 72.86%, and 54.75% for COD, TN, TP, and NH3 [...] Read more.
To modernize wastewater treatment plants, a pilot-scale anaerobic/anoxic/oxic-vibrating membrane bioreactor (A2/O-VMBR) was developed and successfully operated. Despite a low C/N ratio, the A2/O-VMBR achieved removal rates of 61.10%, 93.77%, 72.86%, and 54.75% for COD, TN, TP, and NH3-N, respectively. The maximum and extremity transmembrane pressures were 45 kPa, and 80 kPa, respectively, with no sludge bulking observed. The VMBR saved over 96–98% of energy compared to traditional MBR plants, making it a better option for municipal wastewater treatment. High-throughput sequencing analysis revealed identical bacterial population structures in samples obtained from the treatment units, with genera having nitrifying, denitrifying, hydrolyzing, and glycogen-accumulating activities, which allowed for nitrogen removal. The key functional microorganisms responsible for nitrification–denitrification were species belonging to the genera FCPU426, Fusobacteria, Planctomycetes, Verrucomicrobia, and Epsilonbacteraeota. The integrated experimental system produced favorable results in improving wastewater quality, highlighting the usability of the A2/O-VMBR technology. Therefore, this technique holds potential for further investigation into the context of wastewater treatment and recovery. Full article
(This article belongs to the Special Issue Advances in Food and Textile Industry Wastewater Treatment)
Show Figures

Figure 1

19 pages, 1867 KB  
Article
Effect of Antiscalant Usage and Air Diffuser Perforation Diameter on Filtration Performance of Submerged Flat Sheet MBR for Treatment of High Salinity and Scaling Propensity Wastewater
by İlker Parlar, Yakubu A. Jarma, Taylan O. Pek, Nalan Kabay, Mehmet Kitis, Nevzat O. Yigit and Mithat Yuksel
Water 2023, 15(6), 1191; https://doi.org/10.3390/w15061191 - 19 Mar 2023
Cited by 2 | Viewed by 3040
Abstract
Membrane fouling and mineral scaling remain major drawbacks for MBR technology. Membrane fouling reduces the filtration ability in MBR systems by increasing transmembrane pressure (TMP) and thus increases the operational cost. This study focused on the application of commercially available antiscalant in a [...] Read more.
Membrane fouling and mineral scaling remain major drawbacks for MBR technology. Membrane fouling reduces the filtration ability in MBR systems by increasing transmembrane pressure (TMP) and thus increases the operational cost. This study focused on the application of commercially available antiscalant in a pilot MBR system and the effect of diffuser perforation diameter for the treatment of high mineral scaling propensity wastewater. Submerged flat sheet membranes (Kubota, nominal pore size: 0.4 µm) were used in the pilot-scale test unit operated in the wastewater treatment plant of ITOB Organized Industrial Zone, Izmir, Turkey. The commercially available antiscalants employed were coded AS-1 and AS-2 for antiscalant study. Long term effect of the two antiscalants employed was investigated under high mixed liquor suspended solid (MLSS) concentration (17–21 g/L) for two months of MBR operation. The effect of low MLSS concentration (10–13 g/L) was also studied without changing the concentration of antiscalant type and concentration. AS-1 was found to be more effective in terms of mineral scale control. The effect of diffuser perforation diameter (1, 3 and 5 mm) on mineral scaling minimization in MBR pilot system was also studied. The best performance with respect to membrane fouling control was found with an air diffuser having 3 mm of diffuser perforated diameter. Some quality analyses of the product water were also carried out to assess the effect of antiscalant addition on microbial activities in the MBR unit. The findings in this study reveal that the use of antiscalants has not affected biological treatment performance of MBR pilot system. The removal ranges obtained during all MBR studies were 98.47–99.9%, 84.62–99.4%, 89.5–98.5%, 86.90–99.9%, 67.01–99.2%, 75.03–93.9%, and 20.36–71.5% for total suspended solid (TSS), color, chemical oxygen demand (COD), NH4-N, PO4-P, NO2-N, and total nitrogen (TN) respectively. Full article
(This article belongs to the Special Issue Innovative Membrane Processes for Drinking and Wastewater Treatment)
Show Figures

Figure 1

14 pages, 1739 KB  
Article
Impact of Integration of FO Membranes into a Granular Biomass AnMBR for Water Reuse
by Pere Olives, Lucie Sanchez, Geoffroy Lesage, Marc Héran, Ignasi Rodriguez-Roda and Gaetan Blandin
Membranes 2023, 13(3), 265; https://doi.org/10.3390/membranes13030265 - 23 Feb 2023
Cited by 4 | Viewed by 2254
Abstract
The granular sludge based anaerobic membrane bioreactor (G-AnMBR) has gained emphasis in the last decade by combining AnMBR advantages (high quality permeate and biogas production towards energy positive treatment) and benefits of granular biomass (boosted biological activity and reduced membrane fouling). With the [...] Read more.
The granular sludge based anaerobic membrane bioreactor (G-AnMBR) has gained emphasis in the last decade by combining AnMBR advantages (high quality permeate and biogas production towards energy positive treatment) and benefits of granular biomass (boosted biological activity and reduced membrane fouling). With the aim to further reduce energy costs, produce higher quality effluent for water reuse applications and improve system efficiency, a forward osmosis (FO) system was integrated into a 17 L G-AnMBR pilot. Plate and frame microfiltration modules were step by step replaced by submerged FO ones, synthetic wastewater was used as feed (chemical oxygen demand (COD) content 500 mg/L), with hydraulic retention time of 10 h and operated at 25 °C. The system was fed with granular biomass and after the acclimation period, operated neither with gas sparging nor relaxation at around 5 L.m−2.h−1 permeation flux during at least 10 days for each tested configuration. Process stability, impact of salinity on biomass, the produced water quality and organic matter removal efficiency were assessed and compared for the system working with 100% microfiltration (MF), 70% MF/30% FO, 50% MF/50% FO and 10% MF/90% FO, respectively. Increasing the FO share in the reactor led to salinity increase and to enhanced fouling propensity probably due to salinity shock on the active biomass, releasing extracellular polymeric substances (EPS) in the mixed liquor. However, above 90% COD degradation was observed for all configurations with a remaining COD content below 50 mg/L and below the detection limit for MF and FO permeates, respectively. FO membranes also proved to be less prone to fouling in comparison with MF ones. Complete salt mass balance demonstrated that major salinity increase in the reactor was due to reverse salt passage from the draw solution but also that salts from the feed solution could migrate to the draw solution. While FO membranes allow for full rejection and very high permeate purity, operation of G-AnMBR with FO membranes only is not recommended since MF presence acts as a purge and allows for reactor salinity stabilization. Full article
(This article belongs to the Special Issue Advanced Membrane (Bio)Reactors)
Show Figures

Graphical abstract

10 pages, 2616 KB  
Article
Evaluating Fouling Control and Energy Consumption in a Pilot-Scale, Low-Energy POREFLON Non-Aerated Membrane Bioreactor (LEP-N-MBR) System at Different Frequencies and Amplitudes
by Runzhang Zuo, Yubin Yu, Canhui Song, Muxiang Liang, Xiejuan Lu, Dajun Ren, Xiaohui Wu and Feixiang Zan
Membranes 2022, 12(11), 1085; https://doi.org/10.3390/membranes12111085 - 31 Oct 2022
Cited by 8 | Viewed by 3647
Abstract
Continual aeration, a fouling control strategy that causes high energy consumption, is the major obstacle in the deployment of membrane bioreactors (MBRs) for wastewater treatment. In recent years, a technology has been developed which adopts mechanical reciprocity for membrane vibration, and it has [...] Read more.
Continual aeration, a fouling control strategy that causes high energy consumption, is the major obstacle in the deployment of membrane bioreactors (MBRs) for wastewater treatment. In recent years, a technology has been developed which adopts mechanical reciprocity for membrane vibration, and it has been proven efficient for membrane scouring, as well as for saving energy: the low-energy POREFLON non-aerated membrane bioreactor (LEP-N-MBR). In this study, a pilot-scale LEP-N-MBR system was designed, established, and operated at various frequencies and amplitudes, and with various membrane models, so as to evaluate energy usage and membrane fouling. The results showed that a slower TMP rise occurred when the frequency and amplitude were set to 0.5 Hz and 10 cm, respectively. Under a suitable frequency and amplitude, the TMP increasing rate of model B (sealed only with epoxy resin) was slower than that of model A (sealed with a combination of polyurethane and epoxy resin). The average specific energy demand (SED) of the LEP-N-MBR was 0.18 kWh·m−3, much lower than the aerated MBR with 0.43 kWh·m−3 (obtained from a previous study), indicating a significant decrease of 59.54% in the SED. However, the uneven distribution of sludge within the membrane tank indicated that the poor hydraulic mixing in the reactor may result in sludge accumulation, which requires further operational optimization. The findings of this pilot-scale study suggest that the LEP-N-MBR system is promising and effective for municipal wastewater treatment with a much lower level of energy usage. More research is needed to further optimize the operation of the LEP-N-MBR for wide application. Full article
(This article belongs to the Special Issue Advanced Membrane (Bio)Reactors)
Show Figures

Figure 1

10 pages, 10298 KB  
Communication
Performance of Newly Developed Intermittent Aerator for Flat-Sheet Ceramic Membrane in Industrial MBR System
by Hiroshi Noguchi, Qiang Yin, Su Chin Lee, Tao Xia, Terutake Niwa, Winson Lay, Seng Chye Chua, Lei Yu, Yuke Jen Tay, Mohd Jamal Nassir, Guihe Tao, Shu Ting Ooi, Adil Dhalla and Chakravarthy Gudipati
Water 2022, 14(15), 2286; https://doi.org/10.3390/w14152286 - 22 Jul 2022
Cited by 2 | Viewed by 2836
Abstract
An intermittent aerator was newly developed to reduce energy costs in a flat-sheet ceramic membrane bioreactor (MBR) for industrial wastewater treatment. Large air bubbles were supplied over a short time interval by the improved aerator technology at the bottom of the flat-sheet membrane. [...] Read more.
An intermittent aerator was newly developed to reduce energy costs in a flat-sheet ceramic membrane bioreactor (MBR) for industrial wastewater treatment. Large air bubbles were supplied over a short time interval by the improved aerator technology at the bottom of the flat-sheet membrane. Performance tests for the intermittent aerator were carried out in a pilot system with two cassettes immersed in a membrane tank of the 1-MGD demonstration plant at Jurong Water Reclamation Plant (JWRP) in Singapore. Stable operation was achieved at an average flow of 19–22 LMH with every-2-days MC and peak flow of 27 to 33 LMH with daily MC with reduced air flow for membrane aeration. This indicates that energy costs for membrane aeration can be reduced by using the intermittent aerator. Stable MBR operation with a projected 43% reduction in the overall operating costs could be achieved with an improved aerator together with improved MC regime and membrane cassette. Full article
Show Figures

Figure 1

13 pages, 4984 KB  
Article
Chemical Cleaning and Membrane Aging in MBR for Textile Wastewater Treatment
by Huarong Yu, Siyuan Shangguan, Chenyu Xie, Haiyang Yang, Chunhai Wei, Hongwei Rong and Fangshu Qu
Membranes 2022, 12(7), 704; https://doi.org/10.3390/membranes12070704 - 12 Jul 2022
Cited by 14 | Viewed by 3718
Abstract
Membrane bioreactors have been widely used in textile wastewater treatment. Intensive chemical cleaning is indispensable in the MBR for textile wastewater treatment due to the severe membrane fouling implied. This work investigated the aging of three different membranes, polyvinylidene fluoride (PVDF), polyether sulfone [...] Read more.
Membrane bioreactors have been widely used in textile wastewater treatment. Intensive chemical cleaning is indispensable in the MBR for textile wastewater treatment due to the severe membrane fouling implied. This work investigated the aging of three different membranes, polyvinylidene fluoride (PVDF), polyether sulfone (PES), and polytetrafluoroethylene (PTFE), in the MBRs for textile wastewater treatment. Pilot-scale MBRs were operated and the used membrane was characterized. Batch chemical soaking tests were conducted to elucidate the aging properties of the membranes. The results indicated that the PVDF membrane was most liable to the chemical cleaning, and the PES and PTFE membranes were rather stable. The surface hydrophobicity of the PVDF increased in the acid aging test, and the pore size and pure water flux decreased due to the elevated hydrophobic effect; alkaline oxide aging destructed the structure of the PVDF membrane, enlarged pore size, and increased pure water flux. Chemical cleaning only altered the interfacial properties (hydrophobicity and surface zeta potential) of the PES and PTFE membranes. The fluoro-substitution and the dehydrofluorination of the PVDF, chain scission of the PES molecules, and dehydrofluorination of the PTFE were observed in aging. A chemically stable and anti-aging membrane would be of great importance in the MBR for textile wastewater treatment due to the intensive chemical cleaning applied. Full article
Show Figures

Figure 1

Back to TopTop