Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = piezoelectric resonance pump

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 5334 KiB  
Article
Development and Field Test of Integrated Electronics Piezoelectric Accelerometer Based on Lead-Free Piezoelectric Ceramic for Centrifugal Pump Monitoring
by Byung-Hoon Kim, Dae-Sic Jang, Jeong-Han Lee, Min-Ku Lee and Gyoung-Ja Lee
Sensors 2024, 24(19), 6436; https://doi.org/10.3390/s24196436 - 4 Oct 2024
Viewed by 1517
Abstract
In this study, an Integrated Electronics Piezoelectric (IEPE)-type accelerometer based on an environmentally friendly lead-free piezoceramic was fabricated, and its field applicability was verified using a cooling pump owned by the Korea Atomic Energy Research Institute (KAERI). As an environmentally friendly piezoelectric material, [...] Read more.
In this study, an Integrated Electronics Piezoelectric (IEPE)-type accelerometer based on an environmentally friendly lead-free piezoceramic was fabricated, and its field applicability was verified using a cooling pump owned by the Korea Atomic Energy Research Institute (KAERI). As an environmentally friendly piezoelectric material, 0.96(K,Na)NbO3-0.03(Bi,Na,K,Li)ZrO3-0.01BiScO3 (0.96KNN-0.03BNKLZ-0.01BS) piezoceramic with an optimized piezoelectric charge constant (d33) was introduced. It was manufactured in a ring shape using a solid-state reaction method for application to a compression mode accelerometer. The fabricated ceramic ring has a high piezoelectric constant d33 of ~373 pC/N and a Curie temperature TC of ~330 °C. It was found that the electrical and physical characteristics of the 0.96KNN-0.03BNKLZ-0.01BS piezoceramic were comparable to those of a Pb(Zr,Ti)O3 (PZT) ring ceramic. As a result of a vibration test of the IEPE accelerometer fabricated using the lead-free piezoelectric ceramic, the resonant frequency fr = 20.0 kHz and voltage sensitivity Sv = 101.1 mV/g were confirmed. The fabricated IEPE accelerometer sensor showed an excellent performance equivalent to or superior to that of a commercial IEPE accelerometer sensor based on PZT for general industrial use. A field test was carried out to verify the applicability of the fabricated sensor in an actual industrial environment. The test was conducted by simultaneously installing the developed sensor and a commercial PZT-based sensor in the ball bearing housing location of a centrifugal pump. The centrifugal pump was operated at 1180 RPM, and the generated vibration signals were collected and analyzed. The test results confirmed that the developed eco-friendly lead-free sensor has comparable vibration measurement capability to that of commercial PZT-based sensors. Full article
Show Figures

Figure 1

12 pages, 3566 KiB  
Article
Resonant-Type Piezoelectric Pump Driven by Piezoelectric Stacks and a Rhombic Micro Displacement Amplifier
by Chunli Zhu, Xiaolong Shu, Dongcai Liu, Xianghan Du, Lexi Li and Qiaosheng Pan
Micromachines 2023, 14(9), 1764; https://doi.org/10.3390/mi14091764 - 13 Sep 2023
Cited by 1 | Viewed by 1642
Abstract
To obtain a high flow rate, a resonant-type piezoelectric pump is designed, fabricated, and studied in this paper. The pump consists of four parts: a piezoelectric vibrator, a pump chamber, a check valve and a compressible space. The designed piezoelectric vibrator is composed [...] Read more.
To obtain a high flow rate, a resonant-type piezoelectric pump is designed, fabricated, and studied in this paper. The pump consists of four parts: a piezoelectric vibrator, a pump chamber, a check valve and a compressible space. The designed piezoelectric vibrator is composed of a rhombic micro displacement amplifier, counterweight blocks and two piezoelectric stacks with low-voltage drive and a large output displacement. ANSYS software (Workbench 19.0) simulation results show that at the natural frequency of 946 Hz, the designed piezoelectric vibrator will produce the maximum output displacement. The bilateral deformation is symmetrical, and the phase difference is zero. Frequency, voltage, and backpressure characteristics of the piezoelectric pump are investigated. The experimental results show that at a certain operating frequency, the flow rate and the backpressure of the piezoelectric pump both increase with the increase in voltage. When the applied voltage is 150 Vpp, the flow rate reaches a peak of 367.48 mL/min at 720 Hz for one diaphragm pump, and reaches a peak of 700.15 mL/min at 716 Hz for two diaphragm pumps. Full article
(This article belongs to the Special Issue Piezoelectric Micro-/Nano Systems in China)
Show Figures

Figure 1

14 pages, 5249 KiB  
Article
Matching the Optimal Operating Mode of Polydimethylsiloxane Check Valves by Tuning the Resonant Frequency of the Resonator in a Piezoelectric Pump for Improved Output Performance
by Jian Chen, Fanci Meng, Zihan Feng, Wenzhi Gao, Changhai Liu and Yishan Zeng
Micromachines 2023, 14(1), 15; https://doi.org/10.3390/mi14010015 - 21 Dec 2022
Cited by 2 | Viewed by 1853
Abstract
This paper proposes to improve the output performance of a piezoelectric pump by matching the resonant frequency of the resonator to the optimal operating mode of bridge-type polydimethylsiloxane (PDMS) check valves. Simulation analyses reveal that the side-curling mode of the PDMS valve is [...] Read more.
This paper proposes to improve the output performance of a piezoelectric pump by matching the resonant frequency of the resonator to the optimal operating mode of bridge-type polydimethylsiloxane (PDMS) check valves. Simulation analyses reveal that the side-curling mode of the PDMS valve is conducive to liquid flow and exhibits a faster frequency response compared with the first bending mode. The first bending resonant frequency of a beam-type piezoelectric resonator was tuned close to the side-curling mode of the PDMS valve by adjusting the weight of two mass blocks installed on both ends of the resonator, so that both the resonator and the valve could work at their best conditions. Experiments were conducted on a detachable prototype piezoelectric pump using PDMS valves with three different lengths. The results confirm that the peak flowrate at the resonant point of the pump reaches its maximum when the resonant frequencies between the resonator and the valve are matched. Maximum peak flowrates of 88 mL/min, 72 mL/min and 70 mL/min were achieved at 722 Hz, 761 Hz and 789 Hz, respectively, for diaphragm pumps using five-, four- and three-inlet-hole PDMS valves, under a driving voltage of 300 Vpp. Full article
(This article belongs to the Special Issue Piezoelectric Devices: Materials and Applications)
Show Figures

Figure 1

13 pages, 7060 KiB  
Article
Working Mechanisms and Experimental Research of Piezoelectric Pump with a Cardiac Valve-like Structure
by Jiayue Zhou, Wanting Sun, Jun Fu, Huixia Liu, Hongmei Wang and Qiufeng Yan
Micromachines 2022, 13(10), 1621; https://doi.org/10.3390/mi13101621 - 28 Sep 2022
Cited by 4 | Viewed by 2761
Abstract
In this study, based on the working principle of the cardiac valve structure that prevents blood from flowing back, a piezoelectric pump with a cardiac valve-like structure (PPCVLS) is designed. The operating principles of cardiac-valve-like structures (CVLSs) are introduced. Furthermore, the closure conditions [...] Read more.
In this study, based on the working principle of the cardiac valve structure that prevents blood from flowing back, a piezoelectric pump with a cardiac valve-like structure (PPCVLS) is designed. The operating principles of cardiac-valve-like structures (CVLSs) are introduced. Furthermore, the closure conditions of the CVLSs on both sides of the flow channel are explored. The principle behind the working-state conversion between “valve-based” and “valve-less” of PPCVLS is also analyzed. A high-speed dynamic microscopic image-analysis system was utilized to observe and verify the working-state conversion between “valve-based” and “valve-less” PPCVLSs. The resonant frequency of the piezoelectric pump was measured by Doppler laser vibrometer, and the optimal working frequency of the piezoelectric vibrator was determined as 22.35 Hz. The prototype piezoelectric pump was fabricated by the 3D printing technique, and the output performance of the piezoelectric pump was also evaluated. The experimental results show that the piezoelectric pump is valve-based when the driving voltage is greater than 140V, and the piezoelectric pump is valve-less when the driving voltage is less than 140 V. Furthermore, the maximum output pressure of the piezoelectric pump was 199 mm H2O when driven by the applied voltage of 220 V at 7 Hz, while the maximum flow rate of the piezoelectric pump was 44.5 mL/min when driven by the applied voltage of 220 V at 11 Hz. Full article
(This article belongs to the Special Issue Recent Advance in Piezoelectric Actuators and Motors)
Show Figures

Figure 1

12 pages, 2208 KiB  
Article
MRI-Compatible Microcirculation System Using Ultrasonic Pumps for Microvascular Imaging on 3T MRI
by Ju-Yeon Jung, Dong-Kyu Seo, Yeong-Bae Lee and Chang-Ki Kang
Sensors 2022, 22(16), 6191; https://doi.org/10.3390/s22166191 - 18 Aug 2022
Cited by 1 | Viewed by 2129
Abstract
The diagnosis of small vessel disease is attracting interest; however, it remains difficult to visualize the microvasculature using 3 Tesla (T) magnetic resonance imaging (MRI). Therefore, this study aimed to visualize the microvascular structure and measure a slow flow on 3T MRI. We [...] Read more.
The diagnosis of small vessel disease is attracting interest; however, it remains difficult to visualize the microvasculature using 3 Tesla (T) magnetic resonance imaging (MRI). Therefore, this study aimed to visualize the microvascular structure and measure a slow flow on 3T MRI. We developed a microcirculation system using piezoelectric pumps connected to small tubes (0.4, 0.5, 0.8, and 1.0 mm) and evaluated various MR sequences and imaging parameters to identify the most appropriate acquisition parameters. We found that the system could image small structures with a diameter of 0.5 mm or more when using a 1 m-long tube (maximal signal intensity of 241 in 1 mm, 199 in 0.8 mm, and 133 in 0.5 mm). We also found that the highest signal-to-noise ratio (SNR) appeared on 2-dimensional time-of-flight low-resolution imaging and that the flow velocity (10.03 cm/s) was similar to the actual velocity (11.01 cm/s in a flowmeter) when velocity encoding of 30 cm/s was used in a 0.8 mm-diameter tube. In conclusion, this study demonstrates that a microcirculation system can be used to image small vessels. Therefore, our results could serve as a basis for research on vessels’ anatomical structure and pathophysiological function in small vessel disease. Full article
(This article belongs to the Special Issue Recent Advances in Magnetic Resonance Imaging for Disease Diagnosis)
Show Figures

Figure 1

13 pages, 5418 KiB  
Article
Design of a Piezoelectric Pump Driven by Inertial Force of Vibrator Supported by a Slotted Beam
by Yong Zhang, Xiaoliang Wang, Shanlin Liu and Qiaosheng Pan
Machines 2022, 10(6), 460; https://doi.org/10.3390/machines10060460 - 9 Jun 2022
Cited by 3 | Viewed by 2146
Abstract
This paper introduces the design, manufacture, dynamic analysis, and experimental results of a piezoelectric pump driven by the inertial force of a vibrator supported by a slotted beam. The piezoelectric vibrator is composed of a mass block, displacement amplifier, and slotted beam fixed [...] Read more.
This paper introduces the design, manufacture, dynamic analysis, and experimental results of a piezoelectric pump driven by the inertial force of a vibrator supported by a slotted beam. The piezoelectric vibrator is composed of a mass block, displacement amplifier, and slotted beam fixed with both ends. In the resonant mode, the displacement amplifier drives the slotted beam to work, and produces amplitude and inertial force. In this paper, the design of the slotted beam optimizes the output of the displacement amplifier. In addition, the slotted beam supports the displacement amplifier and increases the elastic output. The pump body adopts polydimethylsiloxane (PDMS) check valves and compressible spaces to improve the output performance. This research studies the influence of stiffness and mass on the output performance by qualitatively analyzing the inertial output force of the vibrator. Nine kinds of slotted beams with different stiffnesses and different mass blocks are designed for comparison. Thereafter, an optimal structure of the piezoelectric pump is selected. The experimental results show that under a driving voltage of 700 Vpp , the maximum flowrate is 441 mL min1 and the maximum back pressure is 25.3 kPa. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

15 pages, 2484 KiB  
Article
Flexible Platform of Acoustofluidics and Metamaterials with Decoupled Resonant Frequencies
by Shahrzad Zahertar, Hamdi Torun, Chao Sun, Christopher Markwell, Yinhua Dong, Xin Yang and Yongqing Fu
Sensors 2022, 22(12), 4344; https://doi.org/10.3390/s22124344 - 8 Jun 2022
Cited by 5 | Viewed by 3202
Abstract
The key challenge for a lab-on-chip (LOC) device is the seamless integration of key elements of biosensing and actuation (e.g., biosampling or microfluidics), which are conventionally realised using different technologies. In this paper, we report a convenient and efficient LOC platform fabricated using [...] Read more.
The key challenge for a lab-on-chip (LOC) device is the seamless integration of key elements of biosensing and actuation (e.g., biosampling or microfluidics), which are conventionally realised using different technologies. In this paper, we report a convenient and efficient LOC platform fabricated using an electrode patterned flexible printed circuit board (FPCB) pressed onto a piezoelectric film coated substrate, which can implement multiple functions of both acoustofluidics using surface acoustic waves (SAWs) and sensing functions using electromagnetic metamaterials, based on the same electrode on the FPCB. We explored the actuation capability of the integrated structure by pumping a sessile droplet using SAWs in the radio frequency range. We then investigated the hybrid sensing capability (including both physical and chemical ones) of the structure employing the concept of electromagnetic split-ring resonators (SRRs) in the microwave frequency range. The originality of this sensing work is based on the premise that the proposed structure contains three completely decoupled resonant frequencies for sensing applications and each resonance has been used as a separate physical or a chemical sensor. This feature compliments the acoustofluidic capability and is well-aligned with the goals set for a successful LOC device. Full article
(This article belongs to the Special Issue Passive Wireless and Self-Powered Wireless Sensors and Systems)
Show Figures

Figure 1

14 pages, 3506 KiB  
Article
Improving Output Performance of a Resonant Piezoelectric Pump by Adding Proof Masses to a U-Shaped Piezoelectric Resonator
by Jian Chen, Wenzhi Gao, Changhai Liu, Liangguo He and Yishan Zeng
Micromachines 2021, 12(5), 500; https://doi.org/10.3390/mi12050500 - 29 Apr 2021
Cited by 6 | Viewed by 2472
Abstract
This study proposes the improvement of the output performance of a resonant piezoelectric pump by adding proof masses to the free ends of the prongs of a U-shaped piezoelectric resonator. Simulation analyses show that the out-of-phase resonant frequency of the developed resonator can [...] Read more.
This study proposes the improvement of the output performance of a resonant piezoelectric pump by adding proof masses to the free ends of the prongs of a U-shaped piezoelectric resonator. Simulation analyses show that the out-of-phase resonant frequency of the developed resonator can be tuned more efficiently within a more compact structure to the optimal operating frequency of the check valves by adjusting the thickness of the proof masses, which ensures that both the resonator and the check valves can operate at the best condition in a piezoelectric pump. A separable prototype piezoelectric pump composed of the proposed resonator and two diaphragm pumps was designed and fabricated with outline dimensions of 30 mm × 37 mm × 54 mm. Experimental results demonstrate remarkable improvements in the output performance and working efficiency of the piezoelectric pump. With the working fluid of liquid water and under a sinusoidal driving voltage of 298.5 Vpp, the miniature pump can achieve the maximum flow rate of 2258.9 mL/min with the highest volume efficiency of 77.1% and power consumption of 2.12 W under zero backpressure at 311/312 Hz, and the highest backpressure of 157.3 kPa under zero flow rate at 383 Hz. Full article
(This article belongs to the Special Issue Wearable Piezoelectric Devices)
Show Figures

Figure 1

14 pages, 17931 KiB  
Article
Study on the Influencing Factors of the Atomization Rate in a Piezoceramic Vibrating Mesh Atomizer
by Qiufeng Yan, Wanting Sun and Jianhui Zhang
Appl. Sci. 2020, 10(7), 2422; https://doi.org/10.3390/app10072422 - 2 Apr 2020
Cited by 29 | Viewed by 5388
Abstract
On the basis of previous study in our research group, the phenomenon of the dynamic tapered angle was founded, the occurrence of atomization is regarded to derive from the combined effects of the dynamic variation of the micro-tapered aperture, and the difference between [...] Read more.
On the basis of previous study in our research group, the phenomenon of the dynamic tapered angle was founded, the occurrence of atomization is regarded to derive from the combined effects of the dynamic variation of the micro-tapered aperture, and the difference between forward and reverse flow resistance has been explained by both theories and experiments. It has been revealed that the main influencing factors of the atomization rate are driving voltage, driving frequency, and so on, while the root causes of the various atomization rates still need to be further clarified. In this paper, a micro-tapered aperture worked as a micron-sized tapered flow tube valveless piezoelectric pump in periodic variation. The working principle of such a micro-tapered aperture atomizer was analyzed in detail, and the corresponding formula of the atomization rate was also established. Through measuring the atomization rates at different working frequencies (f), it was established that when the f was set as 122 kHz, the atomization rate reached a maximum value. By building the relationship between the atomization rate and voltage at a fixed resonance frequency, it can be seen that the atomization rate increased with the increase of driving voltage. Subsequently, in order to measure their atomization rates, the micro-tapered apertures of three different outlet diameters were applied, so that the atomization rate was enhanced with the increase of the micro-tapered aperture diameter. Moreover, through examining the atomization rates at different temperatures, it was observed that the atomization rate rose with increasing temperature; while changing the liquid concentration, the atomization rate was also enhanced by the increase in its concentration. Apparently, the impact factors including working frequency, driving voltage, outlet diameter, temperature, and liquid concentration all exert some effects on the atomization rate. It is worth noting that at the first stage, these influence factors indirectly work on the micro-tapered aperture structure or flow state, followed by further effects on the flow resistance. As above-mentioned, in this work, we considered that the root cause influencing the atomization rate in a piezoceramic vibrating mesh atomizer can be attributed to the flow resistance. Full article
(This article belongs to the Special Issue Vibration Measurement and Diagnostics)
Show Figures

Figure 1

20 pages, 11424 KiB  
Article
Experimental and Numerical Investigation of Resonance Characteristics of Novel Pumping Element Driven by Two Piezoelectric Bimorphs
by Yu-Chih Lin, Yu-Hsi Huang and Kwen-Wei Chu
Appl. Sci. 2019, 9(6), 1234; https://doi.org/10.3390/app9061234 - 24 Mar 2019
Cited by 7 | Viewed by 3297
Abstract
This paper describes the vibration characteristics of a dual-bimorph piezoelectric pumping element under fluid–structure coupling. Unlike the single bimorph used in most previous studies, the proposed device comprises two piezoelectric bimorphs within an acrylic housing. Amplitude-fluctuation electronic speckle pattern interferometry (AF-ESPI) was used [...] Read more.
This paper describes the vibration characteristics of a dual-bimorph piezoelectric pumping element under fluid–structure coupling. Unlike the single bimorph used in most previous studies, the proposed device comprises two piezoelectric bimorphs within an acrylic housing. Amplitude-fluctuation electronic speckle pattern interferometry (AF-ESPI) was used to examine the visible displacement fringes in order to elucidate the anti-phase as well as in-phase motions associated with vibration. Analysis was also conducted using impedance analysis and laser Doppler vibrometer (LDV) based on the measurement of point-wise displacement. The experimental results of resonant frequencies and the corresponding mode shapes are in good agreement with those obtained using finite element analysis. The gain of flow rate obtained by the anti-phase motion of the dual-bimorph pumping element is larger than both those obtained by in-phase motion and the single bimorph pumping element. This work greatly enhances our understanding of the vibration characteristics of piezoelectric pumping elements with two bimorphs, and provides a valuable reference for the further development of bionic pump designs. Full article
Show Figures

Figure 1

12 pages, 4247 KiB  
Article
A Piezoelectric Resonance Pump Based on a Flexible Support
by Jiantao Wang, Xiaolong Zhao, Xiafei Chen and Haoren Yang
Micromachines 2019, 10(3), 169; https://doi.org/10.3390/mi10030169 - 28 Feb 2019
Cited by 30 | Viewed by 5384
Abstract
Small volume changes are important factors that restrict the improvement of the performance of a piezoelectric diaphragm pump. In order to increase the volume change of the pump chamber, a square piezoelectric vibrator with a flexible support is proposed in this paper and [...] Read more.
Small volume changes are important factors that restrict the improvement of the performance of a piezoelectric diaphragm pump. In order to increase the volume change of the pump chamber, a square piezoelectric vibrator with a flexible support is proposed in this paper and used as the driving unit of the pump. The pump chamber diaphragm was separated from the driving unit, and the resonance principle was used to amplify the amplitude of the pump diaphragm. After analyzing the working principle of the piezoelectric resonance pump and establishing the motion differential equation of the vibration system, prototypes with different structural parameters were made and tested. The results show that the piezoelectric resonance pump resonated at 236 Hz when pumping air. When the peak-to-peak voltage of the driving power was 220 V, the amplitude of the diaphragm reached a maximum value of 0.43933 mm, and the volume change of the pump was correspondingly improved. When the pump chamber height was 0.25 mm, the output flow rate of pumping water reached a maximum value of 213.5 mL/min. When the chamber height was 0.15 mm, the output pressure reached a maximum value of 85.2 kPa. Full article
(This article belongs to the Special Issue Piezoelectric Transducers: Materials, Devices and Applications)
Show Figures

Figure 1

9 pages, 2200 KiB  
Article
A Resonant Piezoelectric Diaphragm Pump Transferring Gas with Compact Structure
by Jiantao Wang, Yong Liu, Yanhu Shen, Song Chen and Zhigang Yang
Micromachines 2016, 7(12), 219; https://doi.org/10.3390/mi7120219 - 1 Dec 2016
Cited by 38 | Viewed by 8362
Abstract
In order to improve the output capacity of a piezoelectric pump when transferring gas, this paper presents a compact resonant piezoelectric diaphragm pump (hereinafter referred to as the piezoelectric diaphragm pump), which is driven by a rectangular piezoelectric vibrator. The compact structure can [...] Read more.
In order to improve the output capacity of a piezoelectric pump when transferring gas, this paper presents a compact resonant piezoelectric diaphragm pump (hereinafter referred to as the piezoelectric diaphragm pump), which is driven by a rectangular piezoelectric vibrator. The compact structure can effectively release the vibrating constraints of the vibrator, and enlarge its center output displacement, so as to increase the volume change rate of the pump chamber. Based on the structure and the working principle of this piezoelectric diaphragm pump, a dynamic model for the diaphragm system is established in this paper, and an analysis on factors affecting the resonant frequency of the system is then conducted. We tested on the prototype under the driving voltage of 260 Vpp. The results show that the diaphragm system reaches resonance under the driving frequency of 265 Hz, which is very close to the fundamental frequency of check valve. Compared with the rectangular piezoelectric vibrator’s amplitude, the diaphragm’s amplitude is double amplified. At this time, the piezoelectric diaphragm pump achieves the maximum gas flow rate as 186.8 mL/min and the maximum output pressure as 56.7 kPa. Full article
Show Figures

Figure 1

Back to TopTop