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Abstract: On the basis of previous study in our research group, the phenomenon of the dynamic
tapered angle was founded, the occurrence of atomization is regarded to derive from the combined
effects of the dynamic variation of the micro-tapered aperture, and the difference between forward and
reverse flow resistance has been explained by both theories and experiments. It has been revealed that
the main influencing factors of the atomization rate are driving voltage, driving frequency, and so on,
while the root causes of the various atomization rates still need to be further clarified. In this paper,
a micro-tapered aperture worked as a micron-sized tapered flow tube valveless piezoelectric pump in
periodic variation. The working principle of such a micro-tapered aperture atomizer was analyzed
in detail, and the corresponding formula of the atomization rate was also established. Through
measuring the atomization rates at different working frequencies (f), it was established that when the
f was set as 122 kHz, the atomization rate reached a maximum value. By building the relationship
between the atomization rate and voltage at a fixed resonance frequency, it can be seen that the
atomization rate increased with the increase of driving voltage. Subsequently, in order to measure
their atomization rates, the micro-tapered apertures of three different outlet diameters were applied,
so that the atomization rate was enhanced with the increase of the micro-tapered aperture diameter.
Moreover, through examining the atomization rates at different temperatures, it was observed that
the atomization rate rose with increasing temperature; while changing the liquid concentration,
the atomization rate was also enhanced by the increase in its concentration. Apparently, the impact
factors including working frequency, driving voltage, outlet diameter, temperature, and liquid
concentration all exert some effects on the atomization rate. It is worth noting that at the first stage,
these influence factors indirectly work on the micro-tapered aperture structure or flow state, followed
by further effects on the flow resistance. As above-mentioned, in this work, we considered that
the root cause influencing the atomization rate in a piezoceramic vibrating mesh atomizer can be
attributed to the flow resistance.
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1. Introduction

Piezoelectric injection and atomization devices are widely applied in inhalation therapy [1], dust
collection [2], preparation of microcapsule [3], printed circuits [4], precise surface coating [5], 3D
prototyping [6], spray drying [7], spray cooling [8], inkjet printing [9], and many other fields. Specifically,
the micron-sized droplet technique, with the characteristics of stable injection and full dispersion,
constitutes an important development direction in these fields [10]. To realize the above-mentioned
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objectives, surface acoustic wave atomizer [11] and static mesh atomizer [12] can suffer high pressure
across the whole system, which inevitably results in high-energy consumption, high cost, and high
loss. Furthermore, structures of this type have a low energy utilization rate in which their atomization
process is random and uncontrollable, and are also extremely inconvenient to carry and practical
use [13].

In light of this, Maehara et al. [14] invented an atomizing film that uses a high-frequency
piezoelectric ceramic ring to drive the disperser with a micro-tapered aperture. This type of atomizer
can effectively solve problems such as low energy utilization rate, large droplet size, and high dispersion
degree [15]. Consequently, research on these types of atomizer have attracted tremendous attention
from many scholars. In 1997, Perçin et al. [16] proposed a piezoelectric atomizer where the shaft
excited on a circular film by a flexural transducer was stacked into a resonant film to generate
atomization. Subsequently, the formation of droplets, which verified the atomization performance
of the atomizer, was simulated when the intermediate medium was selected as water, ink, powder,
and photoresist, respectively [17]. A control model of the atomizer during photolithography was
established by Roche et al. [18], and a similar atomizer was developed by Lam et al. [19] and they took
advantage of it for PMN-PT single-crystal spraying. In 2008, Shen et al. [20] studied an atomizer with a
cymbal-type high-power driver, where the atomizing device was mainly comprised of a ring-shaped
piezoelectric vibrator and a cymbal-shaped nozzle plate. The atomizer could generate droplets
with these parameters of a mass median aerodynamic diameter of 4.07 µm, operating frequency of
127.89 kHz, and an atomization rate of 0.5 mL/min [21]. The condition of a stable atomization rate
plays a vital role in the application and promotion of the piezoceramic vibrating mesh atomizer,
and thus is particularly important for studies on the influencing factors of the atomization rate in a
micro-tapered aperture atomizer. Atomizers of this type were subjected to spray cooling by Chen [22],
and it was found that the efficiency of spray cooling was closely related to the atomization rate, and that
atomization rate is in turn related to aperture diameter. The micro-tapered aperture micro-atomizing
film was used by Taso [23] to invent a simple piezoelectric ring micro-fluidic splitter, and was also
introduced in both the mass spectrometry (MS) and deposited the sample on the target substrate
by means of a spray. The micro-tapered aperture atomizer was performed on the atomizer in spray
cooling by Cai et al., and the results showed that the atomization rate had a linear relationship with
the cooling performance [24,25]. The atomization rate plays a significant role in the piezoceramic
vibrating mesh atomizer. In particular, it is used in some important application fields, for instance,
spray cooling [26], inkjet printing [27], inhalation therapy [28], and many other aspects. Up until
now, the influence of driving frequency and voltage on atomization rate has only been considered
in some references [29,30], but the impact factors are usually ignored. Herein, it is quite necessary to
investigate the influencing factors of the atomization rate in the piezoceramic vibrating mesh atomizer,
and explore the key working mechanisms.

After investigating the piezoceramic vibrating mesh atomizer, our research group discovered the
phenomenon of the dynamic tapered angle [31]. Meanwhile, its presence via a series of experiments
was conducted and the pumping effect of a dynamic tapered angle was revealed, which explains why
a piezoceramic vibrating mesh atomizer can realize atomization.

This study aimed to analyze in depth the root cause influencing the atomization rate. First,
a micro-tapered aperture in periodic variation can be considered as a micron-sized tapered flow tube
valveless piezoelectric pump. Second, according to this, this work concentrated on the principle of
atomization, and the formula of the atomization rate was deduced. Additionally, the influencing factors
of the atomization rate in a piezoceramic vibrating mesh atomizer will be reduced, and the influence
of the driving voltage, driving frequency, aperture outlet diameter, liquid temperature, and liquid
concentration on the atomization rate will be discussed systematically. Finally, it is expected that the
root causes influencing the atomization rate responsible for the variation of the flow resistance will
be explored.
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2. Structure and Theoretical Analysis of the Piezoceramic Vibrating Mesh Atomizer

The micro-tapered apertures of the piezoceramic vibrating mesh atomizer is machined in the
middle of the disperser. In addition, the piezoelectrics are required to be machined into a circular ring.
In this section, the structure of the piezoceramic vibrating mesh atomizer is given, and the atomization
mechanism of this type atomizer is analyzed.

2.1. Structure

Figure 1 shows a schematic of the piezoceramic vibrating mesh atomizer. The atomizer is
composed of a liquid container, atomizing sheet, and liquid storage chamber, in which the atomizing
sheet is bonded by the use of AB adhesive. The liquid container is made by 3D printing technology.
The piezoelectric ring is bonded tightly to the disperser, and then the inverse piezoelectric effect of the
PZT is used to drive the disperser, leading to atomization and ejection. During this operation, the small
side of the micro-tapered apertures is exposed to the air, while the large side of the micro-tapered
apertures is immersed in the liquid. Under the drive of AC voltage, the atomizing plate will generate
a kind of periodic reciprocating motion, which will act on the liquid to form the phenomenon
of atomization.
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2.2. Theoretical Analysis

As indicated by the results in a previous study, when driven by an AC signal, the micro-tapered
aperture experiences constant variations in its volume and tapered angle as well as its forward and
reverse flow resistance. Such periodic fluctuation of the micro-tapered aperture’s volume, combined
with the difference between the forward and reverse flow resistance, create a pumping effect, which
causes the one-way flow of liquid and thus results in atomization. Olsson et al. [32] compared
the numerical calculation of tapered flow with the results obtained in [33]. This indicated that the
characteristics of flow resistance in micron-sized divergence/convergence were similar to those for
normal sizes. For this reason, the atomization process of the liquid was considered as the working
process of a valveless piezoelectric pump [34]. In another way, the variation of the micro-tapered
aperture volume is considered to be changed with a piezoelectric vibrator volume in the tapered flow
tube valveless piezoelectric pump, and the micro-tapered aperture is processed as the tapered flow tube
of the tapered flow tube valveless piezoelectric pump. Driven by a periodic signal, the micro-tapered
aperture experiences dynamic variations, and subsequently forms a micron-sized tapered flow tube
valveless piezoelectric pump.

For the purpose of this study, as shown in Figure 2a, the liquid flow from the inlet to outlet was
defined as forward flow, and the liquid flow from the outlet to inlet as reverse flow is also denoted.
According to this definition, the forward and reverse flow resistances of the micro-tapered aperture
are represented as ξ+ and ξ−, respectively. Considering that the tapered angle of the micro-tapered
aperture and its forward-reverse flow resistance varies constantly, their relationship must be expressed
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in the form of mean flow resistance. The forward mean flow resistance and reverse mean flow resistance
of the micro-tapered aperture are shown as follows:

ξ(χ)+ =

∫
χ→∞

ξ(χ)+dχ

χ
(1)

ξ(χ)
−
=

∫
χ→∞

ξ(χ)
−

dχ

χ
(2)

where and respectively represent the forward and reverse transient flow resistance of the
micro-tapered aperture.
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Figure 2. Model and mesh generation of piezoelectric vibrator (a) Piezoelectric vibrator model. (b) Grid
division of piezoelectric vibrator model.

According to the previous study [31], the variation of the micro-tapered aperture volume can be
expressed as:

∆Vd =
t

Ω
[2z( fyy + fxx + f 2

y fxx

−2 fx fy fxy + f 2
x fyy)m−1]dV

(3)

Thus, the atomization rate incurred by the pumping effect of the micro-tapered aperture can be
expressed as:

Q = ∆Vd f n
ξ(χ)+ − ξ(χ)−

2 + ξ(χ)+ + ξ(χ)
−

(4)

where ∆Vd represents the variation of the micro-tapered aperture volume in a given period; f represents
the driving frequency of the piezoelectric vibrator; and n represents the number of micro-tapered
apertures on an atomizing film. As seen from the above formula, the variation of the micro-tapered
aperture volume, driving frequency, and the flow resistances of the micro-tapered apertures all exert
some influence on the atomization rate.

3. Simulation and Experiments of Vibration Characteristics of Atomizer

In order to obtain the resonant frequency of the piezoceramic vibrating mesh atomizer, the vibration
characteristics of the piezoelectric vibrator was simulated by ANSYS software, and the Polytech
PSV-300F-B was used to measure the corresponding actual numerical values.

3.1. Simulation

Figure 2 shows the model and mesh generation of the piezoelectric vibrator. As shown in Figure 2a,
the gray part is the PZT ring, and the yellow part is the disperser. Table 1 provides the material and
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geometric parameters of the piezoceramic vibrating mesh atomizer. In this section, the data presented
in Table 1 will be adopted for modal analysis of the piezoelectric vibrator.

Table 1. Material and geometric parameters of the piezoceramic vibrating mesh atomizer.

Material Density
(kg/m3)

Elastic Modulus
(Gpa) Poisson Inner/Outer Ring

Diameter (mm)
Thickness

(mm)

PZT 7500 7.65 × 10ˆ10 0.32 7.69/15.96 0.63
Stainless steel 8000 200 0.30 15.96 0.05

Figure 3 shows the simulation diagram of the vibration mode of the piezoelectric vibrator.
The simulation results showed that the vibration frequencies of the piezoceramic vibrating mesh
atomizer were 22.989 kHz, 83.668 kHz, 122.41 kHz, and 142.07 kHz, respectively. When the piezoelectric
vibrator worked at a different resonance frequency, the vibration amplitude became larger, the pump
effect was more obvious, thus it was easier to obtain a better atomization effect.
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3.2. Experiment

Figure 4 shows the photograph of the equipment used for measuring the vibration mode
of the piezoelectric vibrator. The power amplifier was used to provide the excitation signal
during measurement.
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Figure 4. Photograph of the equipment for measuring the vibration mode of the piezoelectric
vibrator [29].

Figure 5 shows the frequency sweep curves of the vibration velocity and amplitude magnitude.
It can be seen that the change trend of the vibration velocity and amplitude is nearly consistent.
The experimental results showed that the resonance frequency of the piezoceramic vibrating mesh
atomizer was set as 15.9 kHz, 78.2 kHz, 106.1 kHz, 116.5 kHz, 121.1 kHz, and 148.3 kHz, respectively.
Compared to the previous simulation results, it suggests that there were another two resonance points
at 106.1 kHz and 116.5 kHz in the experimental results, respectively. There were still some deviations
in the corresponding resonance points between the simulation and experimental curves. The reasons
for these deviations in the simulation and experimental data can be explained as follows: the finite
element simulation is an ideal state, whereas the experimental process is inevitably interfered by some
external influencing factors such as errors in measurement.
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Figure 6 shows the vibration modes of the resonance points. As seen from Figure 6a,b, the resonance
frequencies were set as 15.9 kHz and 78.2 kHz, respectively, while the atomization could only be
produced under the condition of high frequency vibration. The atomization could not be generated at
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other lower resonance points. As shown in Figure 6c, the resonance frequency increased to 106.1 kHz.
At this resonance point, both the vibration amplitude and vibration speed increased, thus the pump
effect gradually forms, and ultimately, micro atomization is produced. Figure 6d shows the evidence
that the resonance frequency became higher with a value of 116.5 kHz. As the corresponding vibration
amplitude and pump effect are further increased, the atomization rate will also increase. As shown in
Figure 6e, at the resonance frequency point of 121.1 kHz, the vibration velocity and frequency of the
piezoelectric vibrator reached the maximum. Simultaneously, the volume change of the micro-tapered
aperture located in the center of the atomizing plate also reached a maximum, and the pump effect
was the strongest with the maximum atomizing rate achieved. However, as the working resonance
frequency reached the largest with a value of 148.3 kHz, as shown in Figure 4, it implies that the
amplitude of the piezoelectric vibrator is very small at this time, leading to the decrease in the volume
change of the micro-tapered aperture, thereby the resulting pump effect is relatively weak with an
atomization rate lower than the state at 121.1 kHz.
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4. Experimental Details of Atomization Rate

In this study, the process of making an ultrasonic atomizer can be described as follows. First,
there were about 400 micro-tapered apertures processed on the middle bulge of an atomizing film
via laser technology. Second, a circular piezoelectric ceramic was attached to the disperser. Finally,
a conductor was welded on the position between the piezoelectric ceramic ring and disperser.

Figure 7a shows the atomizing film structure used in this study, which consisted of a piezoelectric
ceramic ring, a disperser with a micro-tapered aperture, and the micro-tapered aperture group on
the substrate in the middle tapered blank part. Figure 7b,c show the front view and back view of the
atomizing film, respectively. During atomization progress, the surface in Figure 7c comes into contact
with the liquid chamber, while the surface, as shown in Figure 7b, makes contact with the external
environment. The description for the specific parameters of the atomizing film is provided as follows:
piezoelectric ceramic ring with an outer diameter of 15.96 mm; inner diameter of 7.69 mm; thickness of
0.63 mm; disperser with a diameter of 15.96 mm; and thickness of 0.05 mm. The measurements of
the outlet diameter and inlet diameter of the micro-tapered aperture were performed on the electron
microscope, and the specific parameters are given in the Results and Discussion.

Figure 8 shows the equipment of the atomization rate measurement. During the experimental
progress, a signal generator and power amplifier were utilized to supply power to the atomizer, and an
oscilloscope was used to control the driving signal. The atomizer was placed on a high-precision
analytical balance to measure the liquid’s decrease in the liquid chamber of the atomizer after 1 min.
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Figure 8. The equipment used for the measurement of the atomization rate.

In this study, the atomization rate represents the weight of the liquid atomized during one minute.
During the test of the atomization rate, the atomizer is placed on a high-precision analytical balance,
and the stopwatch is used for timing the power supply of the voltage to the atomizer. After one minute,
the supplying voltage to the atomizer and the atomization rate stopped being collected. Therefore,
the atomization rate was obtained by measuring the reduction of the liquid amount in the liquid
chamber per minute using a high-precision analytical balance.

5. Results and Discussion

Figure 9 shows the atomization rate results measured with an interval of 2 kHz within the
frequency range of 100–150 kHz at driving voltages of 100 V, 120 V, and 140 V, respectively. The liquid
used in the experiment was pure water at room temperature (25 ◦C), and the pore diameter of the
micro-tapered aperture was 12 µm. It can be observed that the atomization rate had a total of four
peak points located at f 1 = 106 kHz, f 2 = 116 kHz, f 3 = 122 kHz and f 4 = 148 kHz, respectively. Table 2
shows the atomization rates at different resonance frequencies, when the driving voltage was set at
120 V. The atomization rates at the three driving voltages reached a peak when the driving frequency
was f = 122 kHz. The atomization rate was 2.48 mL/min, 3.06 mL/min, and 3.18 mL/min, respectively.



Appl. Sci. 2020, 10, 2422 9 of 14

Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 14 

Table 2. Atomization rates at different resonance frequencies, when the driving voltage is 120 V. 

Frequency (kHz) Atomization rate (mL/min) 
106 0.73 
116 2.23 
122 3.06 
148 1.05 

According to the comparisons among the vibration modes of several different resonance points, 
during the progress of driving frequency at 121.1 kHz, the micro-tapered aperture volume had the 
highest variation rate. This gives rise to a higher variation rate of the tapered angle and a greater 
difference between the forward and reverse flow resistance, and further leads to a higher atomization 
rate. Furthermore, in combination with the data recorded in Figure 5, it can be seen that there were 
some deviations between the four resonance frequencies obtained in the frequency sweep and the 
four peak frequencies in the atomization. This is because the atomizer was in a no-load state during 
the frequency sweep experiment. Additionally, during the atomization experiment, due to the action 
of the liquid on the piezoelectric vibrator, the resonance frequency experienced some variations, and 
thus resulted in some deviations in the resonance points and the optimal atomization frequency. 

 

Figure 9. Relationship between atomization rate and frequency. 

Figure 10 shows the relationship between the atomization rate and voltage at different resonance 
frequencies. The liquid used in the experiment was pure water at room temperature (25 °C), and the 
pore diameter of the micro-tapered aperture was 12 μm. It can be observed that obvious atomization 
started to emerge when the driving voltage reached 60 V. All of the atomization rates at these four 
resonance frequencies increased with the increase in driving voltage. Table 3 shows the atomization 
rates at different driving voltages, when the driving frequency was set as 122 kHz. This can be explained 
by the fact that as the applied voltage increased, the variation of the micro-tapered aperture volume 
also increased, leading to the increase of the aperture angle variation; as a result, the difference between 
the forward and reverse flow resistance of the micro-tapered aperture also increased, thus exerting a 
more obvious pumping effect. According to Equation (4), a micro-tapered aperture produces a higher 
atomization rate in this case. 

Table 3. Atomization rates at different driving voltages, when the driving frequency is 122 kHz. 

Voltage (V) Atomization rate (mL/min) 
60 1.24 
80 2.07 

100 2.49 
120 3.06 
140 3.18 

Figure 9. Relationship between atomization rate and frequency.

Table 2. Atomization rates at different resonance frequencies, when the driving voltage is 120 V.

Frequency (kHz) Atomization Rate (mL/min)

106 0.73
116 2.23
122 3.06
148 1.05

According to the comparisons among the vibration modes of several different resonance points,
during the progress of driving frequency at 121.1 kHz, the micro-tapered aperture volume had the
highest variation rate. This gives rise to a higher variation rate of the tapered angle and a greater
difference between the forward and reverse flow resistance, and further leads to a higher atomization
rate. Furthermore, in combination with the data recorded in Figure 5, it can be seen that there were
some deviations between the four resonance frequencies obtained in the frequency sweep and the four
peak frequencies in the atomization. This is because the atomizer was in a no-load state during the
frequency sweep experiment. Additionally, during the atomization experiment, due to the action of
the liquid on the piezoelectric vibrator, the resonance frequency experienced some variations, and thus
resulted in some deviations in the resonance points and the optimal atomization frequency.

Figure 10 shows the relationship between the atomization rate and voltage at different resonance
frequencies. The liquid used in the experiment was pure water at room temperature (25 ◦C), and the
pore diameter of the micro-tapered aperture was 12 µm. It can be observed that obvious atomization
started to emerge when the driving voltage reached 60 V. All of the atomization rates at these four
resonance frequencies increased with the increase in driving voltage. Table 3 shows the atomization
rates at different driving voltages, when the driving frequency was set as 122 kHz. This can be
explained by the fact that as the applied voltage increased, the variation of the micro-tapered aperture
volume also increased, leading to the increase of the aperture angle variation; as a result, the difference
between the forward and reverse flow resistance of the micro-tapered aperture also increased, thus
exerting a more obvious pumping effect. According to Equation (4), a micro-tapered aperture produces
a higher atomization rate in this case.

Figure 11 shows the outlet diameters of micro-tapered apertures used in this experiment. Figure 12
exhibits the relationship between the atomization rate and the micro-tapered aperture size under the
same working condition. The liquid used in the experiment was pure water at room temperature
(25 ◦C), and the working frequency was 122 kHz. Under the same working conditions, the larger the
outlet diameter of the micro-tapered aperture, the higher the atomization rate will be. Table 4 shows the
atomization rate of different micro-tapered aperture sizes under the same conditions. The micro-tapered
apertures basically had a constant inlet diameter. When the outlet diameter increased, the aperture
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volume also increased. Under the same driving conditions, the variation of the micro-tapered aperture
volume becomes higher, leading to a stronger pumping effect and a higher atomization rate.Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 14 
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Table 4. Atomization rate of different micro-tapered aperture sizes.

Micro-Tapered Aperture Size (µm) Atomization Rate (mL/min)

8 0.73
10 2.05
12 3.06

In order to verify the effect of liquid temperature on atomization rate, pure water with temperatures
of 10 ◦C, 15 ◦C, 20 ◦C, 25 ◦C, and 30 ◦C was applied accordingly. The outlet diameter of the used
micro-tapered aperture was 12 µm, and the driving frequency of the atomizer was 122 kHz. Figure 13
shows the relationship between the atomization rate and liquid temperature. Table 5 shows the
atomization rate of pure water at different temperatures under the same conditions. It indicated that
under the same working conditions, the higher the liquid temperature is set, the higher the atomization
rate achieved. This phenomenon can be explained as follows: when the states have the same driving
signal, micro-tapered aperture, and liquid concentration, a higher temperature can lead to larger gaps
and smaller attraction between the liquid’s molecules. Additionally, such larger gaps and smaller
attraction could further make the viscosity of the liquid decrease and the Reynolds number of the
liquid increase, which weakens the flow resistances of the micro-tapered aperture. Thereby, it is easier
for liquid to pass through the micro-tapered aperture and produce a higher atomization rate. Under
the same conditions, the higher the liquid temperature reaches, the higher the atomization rate of the
aperture achieved.
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Table 5. Atomization rate of pure water at different temperatures.

Temperature (◦C) Atomization Rate (mL/min)

10 2.11
15 2.37
20 2.82
25 3.06
30 3.13

In order to verify the effect of solution concentration on atomization rate, the NaCl solutions with
different concentrations of 5%, 10%, 15%, and 20% were prepared, respectively. The outlet diameter of
the micro-tapered aperture was 12 µm. The driving frequency of the atomizer was 122 kHz, and the
liquid temperature was 25 ◦C. Figure 14 shows the relationship between the atomization rate and
liquid concentration. Table 6 presents the atomization rates at different concentrations of NaCl solution
under the same conditions and revealed that under the same working conditions, a lower atomization
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rate is obtained as a higher liquid concentration is applied. The explanation responsible for this
phenomenon is given as follows: under a state with the same parameters including the driving signal,
micro-tapered aperture, and the liquid’s temperature, the higher liquid concentration means a higher
solute content in the solution, producing a higher viscosity of the liquid and a smaller Reynolds
number of the liquid. The higher viscosity and smaller Reynolds number can further strengthen the
flow resistances of the micro-tapered aperture, which makes it more difficult for liquid to pass through
the micro-tapered aperture and thus generate a lower atomization rate. Consequently, under the same
experimental conditions, a higher liquid concentration used here could induce a lower atomization
rate of the aperture.
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Table 6. Atomization rates at different concentrations of NaCl solution.

Concentration (%) Atomization Rate (mL/min)

0 3.06
5 2.55

10 2.21
15 1.87
20 1.52

6. Conclusions

In this study, the root cause of atomization can be ascribed to two aspects: one is the periodic
variation of the micro-tapered aperture volume, and the other is the difference between the forward
and reverse flow resistance. For simplification, it is proposed that the micro-tapered aperture can
be regarded as a micron-sized tapered flow tube valveless piezoelectric pump. The vibration mode
characteristics of the piezoelectric vibrator were simulated using ANSYS software, and the optimal
resonant frequency was confirmed as the value of 121.1 kHz. Through measuring the atomization rates
at different working frequencies (f ), it was found that the f set as a value of 122 kHz corresponds to
achieving the maximum atomization rate. By investigating the relationship between atomization rate
and voltage at the resonance frequency, it revealed that the atomization rate increased with the increase
of the driving voltage. In addition, the micro-tapered apertures of three different outlet diameters were
used to measure their atomization rates, and it can be observed that the atomization rate increased
with the increase in the micro-tapered aperture diameter. When the atomization rates were measured
at different temperatures, the atomization rate increased with the increase in temperature; by changing
the liquid concentration, it can be seen that the atomization rate increased with an increase in the liquid
concentration. As a conclusion, the root cause of the variation experienced by the atomization rate
contributed to the variation experienced by the flow resistance.
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