Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (98)

Search Parameters:
Keywords = photosynthetic electron transport chain

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1757 KiB  
Article
Photosynthetic Electron Transport in Winter Wheat: Responses to Low-Temperature and Weak-Light Condition
by Cheng Yang, Minghan Liu, Simeng Du, Deqi Zhang, Xiangdong Li, Liting Wu, Yanhua Shi, Baoting Fang, Ge Yan and Fang Wei
Cells 2025, 14(16), 1275; https://doi.org/10.3390/cells14161275 - 18 Aug 2025
Viewed by 225
Abstract
Spring low temperatures are a serious natural threat to wheat production in the Huang-Huai wheat region, and they are often accompanied by weak light environments during the day. To elucidate the response patterns and adaptation mechanisms of winter wheat leaves to low-temperature and [...] Read more.
Spring low temperatures are a serious natural threat to wheat production in the Huang-Huai wheat region, and they are often accompanied by weak light environments during the day. To elucidate the response patterns and adaptation mechanisms of winter wheat leaves to low-temperature and weak-light environments, we simultaneously measured prompt chlorophyll a fluorescence, delayed chlorophyll a fluorescence, and modulated 820 nm light reflection; moreover, we analyzed the effects of low temperature and weak light treatment for different duration (2 h and 4 h) on the donor-side activity of photosystem II (PSII), the degree of PSII unit dissociation, the efficiency of light energy absorption and capture by PSII, electron transfer to QA and PSI terminal, PSI activity and cyclic electron transport activity in isolated wheat leaves under controlled conditions. The results, which were corroborated using the three methods, revealed that in low-temperature and weak-light environments, the degree of PSII unit dissociation, and the efficiency of light energy absorption, capture, and electron transfer to QA decreased, while the donor-side activity remained unaffected. In contrast, the efficiency of electron transfer to the PSI terminal and the overall performance of photosynthetic electron transport increased. Comprehensive analysis suggests that the increase in the electron receptor pool at the PSI terminal under low-temperature stress is a crucial factor contributing to the enhanced electron transfer efficiency to the PSI terminal and the improved overall performance of the photosynthetic electron transport chain, which is also a crucial factor in the high cold tolerance of winter wheat. Full article
Show Figures

Figure 1

24 pages, 7547 KiB  
Article
Raising pH Reduces Manganese Toxicity in Citrus grandis (L.) Osbeck by Efficient Maintenance of Nutrient Homeostasis to Enhance Photosynthesis and Growth
by Rong-Yu Rao, Wei-Lin Huang, Hui Yang, Qian Shen, Wei-Tao Huang, Fei Lu, Xin Ye, Lin-Tong Yang, Zeng-Rong Huang and Li-Song Chen
Plants 2025, 14(15), 2390; https://doi.org/10.3390/plants14152390 - 2 Aug 2025
Viewed by 344
Abstract
Manganese (Mn) excess and low pH often coexist in some citrus orchard soils. Little information is known about the underlying mechanism by which raising pH reduces Mn toxicity in citrus plants. ‘Sour pummelo’ (Citrus grandis (L.) Osbeck) seedlings were treated with 2 [...] Read more.
Manganese (Mn) excess and low pH often coexist in some citrus orchard soils. Little information is known about the underlying mechanism by which raising pH reduces Mn toxicity in citrus plants. ‘Sour pummelo’ (Citrus grandis (L.) Osbeck) seedlings were treated with 2 (Mn2) or 500 (Mn500) μM Mn at a pH of 3 (P3) or 5 (P5) for 25 weeks. Raising pH mitigated Mn500-induced increases in Mn, iron, copper, and zinc concentrations in roots, stems, and leaves, as well as nitrogen, phosphorus, potassium, calcium, magnesium, sulfur, copper, iron, and zinc distributions in roots, but it mitigated Mn500-induced decreases in nitrogen, phosphorus, potassium, calcium, magnesium, sulfur, and boron concentrations in roots, stems, and leaves, as well as nutrient imbalance. Raising pH mitigated Mn500-induced necrotic spots on old leaves, yellowing of young leaves, decreases in seedling growth, leaf chlorophyll concentration, and CO2 assimilation (ACO2), increase in root dry weight (DW)/shoot DW, and alterations of leaf chlorophyll a fluorescence (OJIP) transients and related indexes. Further analysis indicated that raising pH ameliorated Mn500-induced impairment of nutrient homeostasis, leaf thylakoid structure by iron deficiency and competition of Mn with magnesium, and photosynthetic electron transport chain (PETC), thereby reducing Mn500-induced declines in ACO2 and subsequent seedling growth. These results validated the hypothesis that raising pH reduced Mn toxicity in ‘Sour pummelo’ seedlings by (a) reducing Mn uptake, (b) efficient maintenance of nutrient homeostasis under Mn stress, (c) reducing Mn excess-induced impairment of thylakoid structure and PEPC and inhibition of chlorophyll biosynthesis, and (d) increasing ACO2 and subsequent seedling growth under Mn excess. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

21 pages, 3528 KiB  
Article
Confocal Laser Scanning Microscopy of Light-Independent ROS in Arabidopsis thaliana (L.) Heynh. TROL-FNR Mutants
by Ena Dumančić, Lea Vojta and Hrvoje Fulgosi
Int. J. Mol. Sci. 2025, 26(14), 7000; https://doi.org/10.3390/ijms26147000 - 21 Jul 2025
Viewed by 356
Abstract
Thylakoid rhodanese-like protein (TROL) serves as a thylakoid membrane hinge linking photosynthetic electron transport chain (PETC) complexes to nicotinamide adenine dinucleotide phosphate (NADPH) synthesis. TROL is the docking site for the flavoenzyme ferredoxin-NADP+ oxidoreductase (FNR). Our prior work indicates that the TROL-FNR [...] Read more.
Thylakoid rhodanese-like protein (TROL) serves as a thylakoid membrane hinge linking photosynthetic electron transport chain (PETC) complexes to nicotinamide adenine dinucleotide phosphate (NADPH) synthesis. TROL is the docking site for the flavoenzyme ferredoxin-NADP+ oxidoreductase (FNR). Our prior work indicates that the TROL-FNR complex maintains redox equilibrium in chloroplasts and systemically in plant cells. Improvement in the knowledge of redox regulation mechanisms is critical for engineering stress-tolerant plants in times of elevated global drought intensity. To further test this hypothesis and confirm our previous results, we monitored light-independent ROS propagation in the leaves of Arabidopsis wild type (WT), TROL knock-out (KO), and TROL ΔRHO (RHO-domain deletion mutant) mutant plants in situ by using confocal laser scanning microscopy with specific fluorescent probes for the three different ROS: O2·−, H2O2, and 1O2. Plants were grown under the conditions of normal substrate moisture and under drought stress conditions. Under the drought stress conditions, the TROL KO line showed ≈32% less O2·− while the TROL ΔRHO line showed ≈49% less H2O2 in comparison with the WT. This research confirms the role of dynamical TROL-FNR complex formation in redox equilibrium maintenance by redirecting electrons in alternative sinks under stress and also points it out as promising target for stress-tolerant plant engineering. Full article
(This article belongs to the Special Issue Molecular Insight into Oxidative Stress in Plants)
Show Figures

Figure 1

17 pages, 3699 KiB  
Article
Soybean Cultivar Breeding Has Increased Yields Through Extended Reproductive Growth Periods and Elevated Photosynthesis
by Hongbao Sun, Shuaijie Shen, Jingya Yang, Jun Zou, Matthew Tom Harrison, Zechen Wang, Jiaqi Hu, Haiyu Guo, Renan Caldas Umburanas, Yunlong Zhai, Xinya Wen, Fu Chen and Xiaogang Yin
Plants 2025, 14(11), 1675; https://doi.org/10.3390/plants14111675 - 30 May 2025
Viewed by 578
Abstract
Despite being one of China’s largest soybean (Glycine max L. Merr.) production areas, the Huanghuaihai Farming Region (HFR) has long been plagued by suboptimal yields. While cultivar development has contributed to yield gains in the past, whether such breeding will afford resilience [...] Read more.
Despite being one of China’s largest soybean (Glycine max L. Merr.) production areas, the Huanghuaihai Farming Region (HFR) has long been plagued by suboptimal yields. While cultivar development has contributed to yield gains in the past, whether such breeding will afford resilience under more adverse climatic conditions expected in future remains an open question. Here, we conducted two-year field experiments to contrast the growth and development of soybean cultivars released between 1960 and 2010 in the HFR. We found that cultivar breeding significantly influenced phenology, with contemporary cultivars having shorter and longer vegetative and reproductive growth phases, respectively. Grain filling duration of modern cultivars (LD11, HD14, JD21, and QH34) was 10 days longer than that of older cultivars (JX23 and WF7). Maturity height of modern cultivars decreased over time to a current value of ~80 cm, despite having higher leaf area index (LAI) and SPAD values compared with older cultivars during reproductive development. The quantum yield of electron transport in photosystem I, quantum yield of electron transport chain, photosynthetic performance index, stomatal conductance, net photosynthetic rate, and Rubisco activity of contemporary cultivars was stronger than those of older cultivars during grain filling. Prolonged grain filling duration, higher LAI, greater light interception, and stronger photosynthetic capacity evoked greater rates of grain filling, leading to higher grain weight, seed number, and yield. Genetic evolution of the cultivars over time, warmer conditions, and more precipitation together afforded longer reproductive stages. Our results indicate that yield gains have been realized primarily by cultivar breeding, and to a lesser extent, beneficial climate change. We highlight dynamic source/sink relationships underpinning the co-evolution of photosynthetic traits through soybean breeding, and provide practical advice to guide future breeding efforts. Full article
Show Figures

Figure 1

23 pages, 6786 KiB  
Article
P-Type Pentatricopeptide Repeat Proteins YS1 and YS2 Function in Splicing of petB Intron to Maintain Chloroplast Homeostasis During Rice Seedling Development
by Hui Sun, Yanshen Nie, Li Yu, Xiaohong Yue, Xin Hou and Jie Zhao
Int. J. Mol. Sci. 2025, 26(9), 4459; https://doi.org/10.3390/ijms26094459 - 7 May 2025
Viewed by 492
Abstract
Regulating chloroplast gene expression is crucial for maintaining chloroplast function and plant development. Pentatricopeptide repeat (PPR) proteins form a vast protein family that regulates organelle genes and has multiple functions during plant development. Here, we found that two P-type PPR proteins, YS1 (yellow-green [...] Read more.
Regulating chloroplast gene expression is crucial for maintaining chloroplast function and plant development. Pentatricopeptide repeat (PPR) proteins form a vast protein family that regulates organelle genes and has multiple functions during plant development. Here, we found that two P-type PPR proteins, YS1 (yellow-green seedling 1) and YS2, jointly regulated seedling development in rice. The loss of YS1 and YS2 exhibited the collapsed chloroplast thylakoids and decreased photosynthetic activity, leading to the yellowing and death of rice seedlings. YS1 and YS2 could directly bind to the transcript of the psbH-petB intergenic region to facilitate the splicing of petB intron, thereby affecting the splicing efficiency of petD, which is located downstream of petB in the five-cistronic transcription unit psbB-psbT-psbH-petB-petD. The mutations in YS1 and YS2 led to decreased mature transcripts of petB and petD after splicing, significantly reducing the protein levels of PetB and PetD. This further led to deficiencies in the cytochrome b6/f and photosystem I complexes of the electron transport chain (ETC), ultimately resulting in decreased ETC-produced NADPH and reduced contents of carbohydrates in ys mutants. Moreover, transcriptome sequencing analysis revealed that YS1 and YS2 were vital for chloroplast organization and carbohydrate metabolism, as well as chloroplast RNA processing. In previous studies, the mechanism of petB intron splicing in the five-cistronic transcription unit psbB-psbT-psbH-petB-petD of rice is unclear. Our study revealed that the two highly conserved proteins YS1 and YS2 were functionally redundant and played critical roles in photosynthesis and seedling development through their involvement in petB intron splicing to maintain chloroplast homeostasis in rice. This work broadened the perspective on PPR-mediated chloroplast development and laid a foundation for exploring the biofunctions of duplicated genes in higher plants. Full article
Show Figures

Figure 1

24 pages, 7165 KiB  
Review
Synthetic Biology Strategies and Tools to Modulate Photosynthesis in Microbes
by Shujin Fu, Kaiyu Ma, Xinyu Song, Tao Sun, Lei Chen and Weiwen Zhang
Int. J. Mol. Sci. 2025, 26(7), 3116; https://doi.org/10.3390/ijms26073116 - 28 Mar 2025
Cited by 1 | Viewed by 1353
Abstract
The utilization of photosynthetic microbes, such as cyanobacteria and microalgae, offers sustainable solutions to addressing global resource shortages and pollution. While these microorganisms have demonstrated significant potential in biomanufacturing, their industrial application is limited by suboptimal photosynthetic efficiency. Synthetic biology integrates molecular biology, [...] Read more.
The utilization of photosynthetic microbes, such as cyanobacteria and microalgae, offers sustainable solutions to addressing global resource shortages and pollution. While these microorganisms have demonstrated significant potential in biomanufacturing, their industrial application is limited by suboptimal photosynthetic efficiency. Synthetic biology integrates molecular biology, systems biology, and engineering principles to provide a powerful tool for elucidating photosynthetic mechanisms and rationally optimizing photosynthetic platforms. This review summarizes recent advancements in regulating photosynthesis in cyanobacteria and microalgae via synthetic biology, focusing on strategies to enhance light energy absorption, optimize electron transport chains, and improve carbon assimilation. Furthermore, we discuss key challenges in translating these genetic modifications to large-scale bioproduction, highlighting specific bottlenecks in strain stability, metabolic burden, and process scalability. Finally, we propose potential solutions, such as AI-assisted metabolic engineering, synthetic microbial consortia, and next-generation photobioreactor designs, to overcome these limitations. Overall, while synthetic biology holds great promise for enhancing photosynthetic efficiency in cyanobacteria and microalgae, further research is needed to refine genetic strategies and develop scalable production systems. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

17 pages, 4663 KiB  
Article
Differences in Tolerance of Alnus cordata (Loisel.) Duby and Tilia × europaea L. ‘Pallida’ to Environmental Stress in the First Year After Planting in Urban Conditions
by Marek Kościesza, Mateusz Korbik, Agata Jędrzejuk, Tatiana Swoczyna and Piotr Latocha
Forests 2025, 16(2), 277; https://doi.org/10.3390/f16020277 - 6 Feb 2025
Viewed by 1007
Abstract
The success of establishing new trees in cities and their subsequent growth depend, among others, on the proper selection of tree species which can easily tolerate the post-planting stress. In the spring of 2023, young Italian alder (Alnus cordata (Loisel.) Duby) and [...] Read more.
The success of establishing new trees in cities and their subsequent growth depend, among others, on the proper selection of tree species which can easily tolerate the post-planting stress. In the spring of 2023, young Italian alder (Alnus cordata (Loisel.) Duby) and common lime (Tilia × europaea L. ‘Pallida’) trees were planted in a street of heavy traffic in Warsaw. In the summer of 2023, leaf samples were collected during the growing season for chlorophyll a fluorescence measurements and chemical analyses. Additionally, the autumn phenological phases were monitored. Chlorophyll a fluorescence measurements revealed higher values of Fv/Fm, density of reaction centers per cross-section, and electron transport chain efficiency between photosystems II and I, as well as lower energy dissipation rate per active reaction center of photosystem II in A. cordata. Moreover, A. cordata revealed higher chlorophyll a, chlorophyll b, and carotenoid content. The flavonoid and proline content in both species was the highest by the end of July and then decreased. In T. × europea ‘Pallida’, the contents of these stress biomarkers increased in the late growing season. Our results showed that T. × europaea ‘Pallida’ is less resistant to post-planting stress in urban conditions, while A. cordata showed higher resistance to variable weather conditions, high photosynthetic efficiency, and long foliage lifespan. Full article
(This article belongs to the Section Urban Forestry)
Show Figures

Figure 1

17 pages, 5030 KiB  
Article
Beneficial Roles of 1-MCP on Regulation of Photosynthetic Electron Transport and Energy Dissipation in Chrysanthemum Under Heat Stress
by Runtian Miao, Xiaoman Liu, Yilin Zhao, Yanli Zhao, Han Dong, Gan Huang and Yonghua Li
Horticulturae 2025, 11(1), 68; https://doi.org/10.3390/horticulturae11010068 - 10 Jan 2025
Viewed by 835
Abstract
1-Methyl cyclopropene (1-MCP) is known as an ethylene antagonist, yet its mechanisms in regulating photosynthetic electron transport and energy dissipation in chrysanthemum under heat stress are not well understood. Here, the chlorophyll a fluorescence and modulated 820 nm reflection transients were analyzed in [...] Read more.
1-Methyl cyclopropene (1-MCP) is known as an ethylene antagonist, yet its mechanisms in regulating photosynthetic electron transport and energy dissipation in chrysanthemum under heat stress are not well understood. Here, the chlorophyll a fluorescence and modulated 820 nm reflection transients were analyzed in heat-tolerant and heat-sensitive chrysanthemum plants. This study demonstrates that 1-MCP pre-treatment helps maintain the net photosynthetic rate (Pn) and the reaction center activity of photosystems I and II (PSI and PSII) during heat stress. Specifically, 1-MCP treatment significantly increases the fraction of active oxygen-evolving complex (OEC) centers and reduces relative variable fluorescence intensity at the J step (VJ) as well as the efficiency of electron transfer at the PSI acceptor side (δRo). These effects mitigate damage to the photosynthetic electron transport chain. Additionally, 1-MCP-treated plants exhibit decreased quantum yield of energy dissipation (φDo) and reduced energy flux per reaction center (DIo/RC). Overall, 1-MCP enhances light utilization efficiency and excitation energy dissipation in the PSII antennae, alleviating heat stress-induced damage to PSI and PSII structures and functions. This study not only advances our understanding of 1-MCP’s regulatory role in photosynthetic processes under heat stress but also provides a basis for using exogenous substances to improve chrysanthemum heat resistance. Full article
Show Figures

Figure 1

22 pages, 5970 KiB  
Article
Search of Reflectance Indices for Estimating Photosynthetic Activity of Wheat Plants Under Drought Stress
by Firuz Abdullaev, Daria Churikova, Polina Pirogova, Maxim Lysov, Vladimir Vodeneev and Oksana Sherstneva
Plants 2025, 14(1), 91; https://doi.org/10.3390/plants14010091 - 31 Dec 2024
Viewed by 1008
Abstract
Global climate change and the associated increasing impact of droughts on crops challenges researchers to rapidly assess plant health on a large scale. Photosynthetic activity is one of the key physiological parameters related to future crop yield. The present study focuses on the [...] Read more.
Global climate change and the associated increasing impact of droughts on crops challenges researchers to rapidly assess plant health on a large scale. Photosynthetic activity is one of the key physiological parameters related to future crop yield. The present study focuses on the search for reflectance parameters for rapid screening of wheat genotypes with respect to photosynthetic activity under drought conditions. The development of drought stress modelled in laboratory conditions by stopping irrigation caused changes in chlorophyll fluorescence parameters that corresponded to a decrease in photosynthetic activity. In particular, a decrease in the photochemical quantum yield of photosystem II (ΦPSII), which characterizes the rate of linear electron transport in the photosynthetic electron transport chain and is one of the most sensitive parameters responding at the early stages of drought stress, was observed. Along with the measurement of the photosynthetic activity, spectral characteristics of wheat plants were recorded using hyperspectral imaging. Normalized difference indices (NDIs) were calculated using the reflectance intensity of wheat shoots in the range from 400 to 1000 nm. Four NDIs that showed a strong correlation with the level of photosynthetic activity estimated by ΦPSII were selected from different wavelength ranges (NDI610/450, NDI572/545, NDI740/700, and NDI820/630). The indices NDI572/545 and NDI820/630 showed the best combination of sensitivity to soil moisture deficit and strong relationship with photosynthetic activity under drought stress. Possible molecular and physiological causes of this relationship are discussed. The use of the proposed indices will allow to monitor in detail the specific features of wheat plant response and can serve as one of the criteria for selection of the most promising genotypes in breeding of drought-tolerant cultivars. Full article
Show Figures

Figure 1

25 pages, 17721 KiB  
Article
The Ameliorative Effect of Coumarin on Copper Toxicity in Citrus sinensis: Insights from Growth, Nutrient Uptake, Oxidative Damage, and Photosynthetic Performance
by Wei-Lin Huang, Hui Yang, Xu-Feng Chen, Fei Lu, Rong-Rong Xie, Lin-Tong Yang, Xin Ye, Zeng-Rong Huang and Li-Song Chen
Plants 2024, 13(24), 3584; https://doi.org/10.3390/plants13243584 - 22 Dec 2024
Cited by 2 | Viewed by 1146
Abstract
Excessive copper (Cu) has become a common physiological disorder restricting the sustainable production of citrus. Coumarin (COU) is a hydroxycinnamic acid that can protect plants from heavy metal toxicity. No data to date are available on the ameliorative effect of COU on plant [...] Read more.
Excessive copper (Cu) has become a common physiological disorder restricting the sustainable production of citrus. Coumarin (COU) is a hydroxycinnamic acid that can protect plants from heavy metal toxicity. No data to date are available on the ameliorative effect of COU on plant Cu toxicity. ‘Xuegan’ (Citrus sinensis (L.) Osbeck) seedlings were treated for 24 weeks with nutrient solution containing two Cu levels (0.5 (Cu0.5) and 400 (Cu400) μM CuCl2) × four COU levels (0 (COU0), 10 (COU10), 50 (COU50), and 100 (COU100) μM COU). There were eight treatments in total. COU supply alleviated Cu400-induced increase in Cu absorption and oxidative injury in roots and leaves, decrease in growth, nutrient uptake, and leaf pigment concentrations and CO2 assimilation (ACO2), and photo-inhibitory impairment to the whole photosynthetic electron transport chain (PETC) in leaves, as revealed by chlorophyll a fluorescence (OJIP) transient. Further analysis suggested that the COU-mediated improvement of nutrient status (decreased competition of Cu2+ with Mg2+ and Fe2+, increased uptake of nutrients, and elevated ability to maintain nutrient balance) and mitigation of oxidative damage (decreased formation of reactive oxygen species and efficient detoxification system in leaves and roots) might lower the damage of Cu400 to roots and leaves (chloroplast ultrastructure and PETC), thereby improving the leaf pigment levels, ACO2, and growth of Cu400-treated seedlings. Full article
(This article belongs to the Special Issue Molecular Regulation of Plant Stress Responses)
Show Figures

Figure 1

17 pages, 2399 KiB  
Article
Pathways of Oxygen-Dependent Oxidation of the Plastoquinone Pool in the Dark After Illumination
by Ilya Naydov, Marina Kozuleva, Boris Ivanov, Maria Borisova-Mubarakshina and Daria Vilyanen
Plants 2024, 13(24), 3479; https://doi.org/10.3390/plants13243479 (registering DOI) - 12 Dec 2024
Cited by 3 | Viewed by 1110
Abstract
The redox state of the plastoquinone (PQ) pool in thylakoids plays an important role in the regulation of chloroplast metabolism. In the light, the PQ pool is mostly reduced, followed by oxidation after light cessation. It has been believed for a long time [...] Read more.
The redox state of the plastoquinone (PQ) pool in thylakoids plays an important role in the regulation of chloroplast metabolism. In the light, the PQ pool is mostly reduced, followed by oxidation after light cessation. It has been believed for a long time that dark oxidation depends on oxygen, although the precise mechanisms of the process are still unknown and debated. In this work, we analyzed PQ pool oxidation kinetics in isolated pea (Pisum sativum) thylakoids by tracking the changes in the area above the OJIP fluorescence curve (Afl) over time intervals from 0.1 s to 10 min in the dark following illumination. Afl served as an indirect measure of the redox state of the PQ pool that enabled quantification of the rate of PQ pool oxidation. The results showed a two-phase increase in Afl. The “fast” phase appeared to be linked to electron flow from the PQ pool to downstream acceptors of the photosynthetic electron transport chain. The “slow” phase involved oxidation of PQH2 through oxygen-dependent mechanisms. Adding octyl gallate, an inhibitor of plastid terminal oxidase (PTOX), to isolated thylakoid suspensions decreased the rate of the “slow” phase of PQ pool oxidation in the dark after illumination. The addition of either H2O2 or catalase, an enzyme that decomposes H2O2, revealed that H2O2 accelerates oxidation of the PQ pool. This indicates that under conditions that favor H2O2 accumulation, H2O2 can contribute substantially to PQ pool oxidation in the dark after illumination. The contribution of PTOX and H2O2 to the modulation of the PQ pool redox state in plants in the dark after illumination is discussed. Full article
(This article belongs to the Special Issue Photosynthesis and Carbon Metabolism in Higher Plants and Algae)
Show Figures

Figure 1

18 pages, 4051 KiB  
Article
Photosynthetic Efficiency of Plants as an Indicator of Tolerance to Petroleum-Contaminated Soils
by Piotr Dąbrowski, Ilona Małuszyńska, Marcin J. Małuszyński, Bogumiła Pawluśkiewicz, Tomasz Gnatowski, Aneta H. Baczewska-Dąbrowska and Hazem M. Kalaji
Sustainability 2024, 16(24), 10811; https://doi.org/10.3390/su162410811 - 10 Dec 2024
Cited by 2 | Viewed by 1216
Abstract
Significant efforts have been made to develop environmentally friendly remediation methods to restore petroleum-damaged ecosystems. One such approach is cultivating plant species that exhibit high resistance to contamination. This study aimed to assess the impact of petroleum-derived soil pollutants on the photosynthetic performance [...] Read more.
Significant efforts have been made to develop environmentally friendly remediation methods to restore petroleum-damaged ecosystems. One such approach is cultivating plant species that exhibit high resistance to contamination. This study aimed to assess the impact of petroleum-derived soil pollutants on the photosynthetic performance of selected plant species used in green infrastructure development. A pot experiment was conducted using both contaminated and uncontaminated soils to grow six plant species under controlled conditions. Biometric parameters and chlorophyll a fluorescence measurements were taken, followed by statistical analyses to compare plant responses under stress and control conditions. This study is the first to simultaneously analyze PF, DF, and MR820 signals in plant species exposed to petroleum contamination stress. The results demonstrated that petroleum exposure reduced the activity of both PSII and PSI, likely due to increased nonradiative energy dissipation in PSII antenna chlorophylls, decreased antenna size, and/or damage to the photosynthetic apparatus. Additionally, petroleum contamination affected the electron transport chain efficiency, limiting electron flow between PSII and PSI. The most resistant species to petroleum-induced stress were Lolium perenne, Poa pratensis, and Trifolium repens. Full article
(This article belongs to the Section Pollution Prevention, Mitigation and Sustainability)
Show Figures

Figure 1

25 pages, 10880 KiB  
Article
Differential Photosynthetic and Proteomics Responses Between Male and Female Populus deltoides W. Bartram ex Marshall Infected by Alternaria alternata (Fr.) Keissler
by Huimin Tian, Yaseen Khan, Lingfeng Miao and Fan Yang
Forests 2024, 15(12), 2093; https://doi.org/10.3390/f15122093 - 26 Nov 2024
Viewed by 957
Abstract
Alternaria alternata (Fr.) Keissler is a widespread leaf blight pathogen that disrupts many plants; including poplars. Despite its broad impact, the sex-specific responses of male and female plants to this pathogen remain poorly studied. This study investigated sex differences in the morphological; photosynthetic; [...] Read more.
Alternaria alternata (Fr.) Keissler is a widespread leaf blight pathogen that disrupts many plants; including poplars. Despite its broad impact, the sex-specific responses of male and female plants to this pathogen remain poorly studied. This study investigated sex differences in the morphological; photosynthetic; and proteomic responses between male and female Populus deltoides W. Bartram ex Marshall infected with A. alternata. The results showed that the female plants had a faster onset of infection and more inhibited growth in comparison to males. In terms of photosynthetic parameters, the infected females were more severely affected, with 2 subunits in the photosynthetic electron transport chain expressed at higher levels and 12 subunits expressed at lower levels than in the infected males. Regarding the antioxidant system; the infected female plants exhibited higher reactive oxygen species (ROS) contents but lower antioxidant activities, with significantly lower expressions of 2 superoxide dismutases (SODs); 2 peroxidases (PODs); 2 ascorbate peroxidases (APXs); 2 glutathione peroxidases; and 4 glutathione S-transferases compared to the infected males. In the phenylpropanoid biosynthesis pathway, the expressions of shikimate O-hydroxycinnamoyl transferase and ferulate-5-hydroxylase were upregulated in both male and female plants after infection. However, the expression of shikimate O-hydroxycinnamoyl transferase in female plants was consistently higher, while the expression of caffeic acid 3-O-methyltransferase was lower in females compared to males. These indicate that A. alternata infection induces significant alterations in the photosynthetic capacity; antioxidant system; and phenylpropanoid biosynthetic pathway in both male and female poplars. Moreover, bimodal regulation was observed, with male poplars demonstrating greater stability in both photosynthetic and antioxidant systems. Full article
(This article belongs to the Special Issue Application of Molecular Genetic Tools for Forest Pathology)
Show Figures

Figure 1

23 pages, 18099 KiB  
Article
Alleviative Effect of Exogenous Application of Fulvic Acid on Nitrate Stress in Spinach (Spinacia oleracea L.)
by Kangning Han, Jing Zhang, Cheng Wang, Youlin Chang, Zeyu Zhang and Jianming Xie
Agronomy 2024, 14(10), 2280; https://doi.org/10.3390/agronomy14102280 - 3 Oct 2024
Viewed by 1274
Abstract
Salt stress could be a significant factor limiting the growth and development of vegetables. In this study, Fulvic Acid (FA) (0.05%, 0.1%, 0.15%, 0.2%, and 0.25%) was applied under nitrate stress (150 mM), with normal Hoagland nutrient solution as a control to investigate [...] Read more.
Salt stress could be a significant factor limiting the growth and development of vegetables. In this study, Fulvic Acid (FA) (0.05%, 0.1%, 0.15%, 0.2%, and 0.25%) was applied under nitrate stress (150 mM), with normal Hoagland nutrient solution as a control to investigate the influence of foliar spray FA on spinach growth, photosynthesis, and oxidative stress under nitrate stress. The results showed that nitrate stress significantly inhibited spinach growth, while ROS (reactive oxygen species) accumulation caused photosystem damage, which reduced photosynthetic capacity. Different concentrations of FA alleviated the damage caused by nitrate stress in spinach to varying degrees in a concentration-dependent manner. The F3 treatment (0.15% FA + 150 mM NO3) exhibited the most significant mitigating effect. FA application promoted the accumulation of biomass in spinach under nitrate stress and increased chlorophyll content, the net photosynthetic rate, the maximum photochemical quantum yield of PSII (Photosystem II) (Fv/Fm), the quantum efficiency of PSII photochemistry [Y(II)], the electron transport rate, and the overall functional activity index of the electron transport chain between the PSII and PSI systems (PItotal); moreover, FA decreased PSII excitation pressure (1 − qP), quantum yields of regulated energy dissipation of PSII [Y(NPQ)], and the relative variable initial slope of fluorescence. FA application increased superoxide dismutase, peroxidase, and catalase activities and decreased malondialdehyde, H2O2, and O2 levels in spinach under nitrate stress. FA can enhance plant resistance to nitrate by accelerating the utilization of light energy in spinach to mitigate excess light energy and ROS-induced photosystem damage and increase photosynthetic efficiency. Full article
(This article belongs to the Special Issue Crop and Vegetable Physiology under Environmental Stresses)
Show Figures

Figure 1

12 pages, 1644 KiB  
Article
Impact of Pulse Electric Field Stimulation on Negative Air Ion Release Capacity of Snake Plants
by Jin Liu, Deyao Huang, Zhiyuan Cheng and Renye Wu
Agronomy 2024, 14(10), 2248; https://doi.org/10.3390/agronomy14102248 - 29 Sep 2024
Viewed by 1379
Abstract
To investigate the effects of pulse electric field stimulation on the photosynthetic electron transport chain and negative air ion (NAI) release capacity of snake plants, the chlorophyll content, fluorescence induction kinetics curve (OJIP curve), chlorophyll fluorescence parameters, and NAI release concentration of snake [...] Read more.
To investigate the effects of pulse electric field stimulation on the photosynthetic electron transport chain and negative air ion (NAI) release capacity of snake plants, the chlorophyll content, fluorescence induction kinetics curve (OJIP curve), chlorophyll fluorescence parameters, and NAI release concentration of snake plants kept under identical greenhouse conditions under different pulse electric field stimulations were compared and analyzed. The experimental results show that (1) after pulse electric field stimulation, the chlorophyll content in treatment group T1 (5 kv) and T2 (7 kv) of snake plants increased by 6.30% and 6.70%, respectively, with significant differences observed between the two treatment groups and the control group (CK). (2) In both treatment groups, the OJIP curve exhibited higher values for the inflection point (I) and peak (P) compared to the origin (O) and inflection point (J) values, with the rising trend in the I–P segment being more gentle than that of the O–J segment. Additionally, the J band was above 0, with the peak value in the T2 group being higher than that in the T1 group. (3) The chlorophyll fluorescence parameters showed fluctuating variations. Specifically, Fm, TRo/CSo, ETo/CSo, and DIo/CSo showed ascending trends in the treatment groups. Fv/Fo, Sm, and ABS/RC exhibited descending trends; Fv/Fm, Vj, ETo/RC, and φEo showed relatively minor changes. The PIabs displayed a decreasing trend. The PItotal in the CK was greater than that in the T1 and T2 groups. (4) After 4 h of pulse electric field stimulation, the NAI concentration increased by 87.60% in the T1 group and by 62.09% in the T2 group, compared to the same measurement taken at 3 h. Pulse electric field impacts the photosynthetic electron transport chain of snake plants, thereby influencing their NAI release capacity. This study aims to elucidate the physiological responses of the chloroplasts in snake plants to pulsed electric field stimulation and to lay the foundation for enhancing the plant’s release of negative air ion concentrations through physical and technological means. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

Back to TopTop