Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = photonic elastomer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 5633 KiB  
Review
Fundamental Aspects of Stretchable Mechanochromic Materials: Fabrication and Characterization
by Christina Tang
Materials 2024, 17(16), 3980; https://doi.org/10.3390/ma17163980 - 10 Aug 2024
Cited by 7 | Viewed by 3466
Abstract
Mechanochromic materials provide optical changes in response to mechanical stress and are of interest in a wide range of potential applications such as strain sensing, structural health monitoring, and encryption. Advanced manufacturing such as 3D printing enables the fabrication of complex patterns and [...] Read more.
Mechanochromic materials provide optical changes in response to mechanical stress and are of interest in a wide range of potential applications such as strain sensing, structural health monitoring, and encryption. Advanced manufacturing such as 3D printing enables the fabrication of complex patterns and geometries. In this work, classes of stretchable mechanochromic materials that provide visual color changes when tension is applied, namely, dyes, polymer dispersed liquid crystals, liquid crystal elastomers, cellulose nanocrystals, photonic nanostructures, hydrogels, and hybrid systems (combinations of other classes) are reviewed. For each class, synthesis and processing, as well as the mechanism of color change are discussed. To enable materials selection across the classes, the mechanochromic sensitivity of the different classes of materials are compared. Photonic systems demonstrate high mechanochromic sensitivity (Δnm/% strain), large dynamic color range, and rapid reversibility. Further, the mechanochromic behavior can be predicted using a simple mechanical model. Photonic systems with a wide range of mechanical properties (elastic modulus) have been achieved. The addition of dyes to photonic systems has broadened the dynamic range, i.e., the strain over which there is an optical change. For applications in which irreversible color change is desired, dye-based systems or liquid crystal elastomer systems can be formulated. While many promising applications have been demonstrated, manufacturing uniform color on a large scale remains a challenge. Standardized characterization methods are needed to translate materials to practical applications. The sustainability of mechanochromic materials is also an important consideration. Full article
(This article belongs to the Section Smart Materials)
Show Figures

Figure 1

15 pages, 3812 KiB  
Article
Characterization of Photocurable IP-PDMS for Soft Micro Systems Fabricated by Two-Photon Polymerization 3D Printing
by Rishikesh Srinivasaraghavan Govindarajan, Stanislav Sikulskyi, Zefu Ren, Taylor Stark and Daewon Kim
Polymers 2023, 15(22), 4377; https://doi.org/10.3390/polym15224377 - 10 Nov 2023
Cited by 7 | Viewed by 3620
Abstract
Recent developments in micro-scale additive manufacturing (AM) have opened new possibilities in state-of-the-art areas, including microelectromechanical systems (MEMS) with intrinsically soft and compliant components. While fabrication with soft materials further complicates micro-scale AM, a soft photocurable polydimethylsiloxane (PDMS) resin, IP-PDMS, has recently entered [...] Read more.
Recent developments in micro-scale additive manufacturing (AM) have opened new possibilities in state-of-the-art areas, including microelectromechanical systems (MEMS) with intrinsically soft and compliant components. While fabrication with soft materials further complicates micro-scale AM, a soft photocurable polydimethylsiloxane (PDMS) resin, IP-PDMS, has recently entered the market of two-photon polymerization (2PP) AM. To facilitate the development of microdevices with soft components through the application of 2PP technique and IP-PDMS material, this research paper presents a comprehensive material characterization of IP-PDMS. The significance of this study lies in the scarcity of existing research on this material and the thorough investigation of its properties, many of which are reported here for the first time. Particularly, for uncured IP-PDMS resin, this work evaluates a surface tension of 26.7 ± 4.2 mN/m, a contact angle with glass of 11.5 ± 0.6°, spin-coating behavior, a transmittance of more than 90% above 440 nm wavelength, and FTIR with all the properties reported for the first time. For cured IP-PDMS, novel characterizations include a small mechanical creep, a velocity-dependent friction coefficient with glass, a typical dielectric permittivity value of 2.63 ± 0.02, a high dielectric/breakdown strength for 3D-printed elastomers of up to 73.3 ± 13.3 V/µm and typical values for a spin coated elastomer of 85.7 ± 12.4 V/µm, while the measured contact angle with water of 103.7 ± 0.5°, Young’s modulus of 5.96 ± 0.2 MPa, and viscoelastic DMA mechanical characterization are compared with the previously reported values. Friction, permittivity, contact angle with water, and some of the breakdown strength measurements were performed with spin-coated cured IP-PDMS samples. Based on the performed characterization, IP-PDMS shows itself to be a promising material for micro-scale soft MEMS, including microfluidics, storage devices, and micro-scale smart material technologies. Full article
(This article belongs to the Special Issue Polymer Materials: Microstructure and Macroproperties Representation)
Show Figures

Figure 1

11 pages, 2655 KiB  
Article
Bio-Inspired Hydrogel–Elastomer Actuator with Bidirectional Bending and Dynamic Structural Color
by Yongqing Xia, Yaru Meng, Ronghua Yu, Ziqi Teng, Jie Zhou and Shengjie Wang
Molecules 2023, 28(19), 6752; https://doi.org/10.3390/molecules28196752 - 22 Sep 2023
Cited by 2 | Viewed by 2179
Abstract
In nature, some creatures can change their body shapes and surface colors simultaneously to respond to the external environments, which greatly inspired researchers in the development of color-tunable soft actuators. In this work, we present a facile method to prepare a smart hydrogel [...] Read more.
In nature, some creatures can change their body shapes and surface colors simultaneously to respond to the external environments, which greatly inspired researchers in the development of color-tunable soft actuators. In this work, we present a facile method to prepare a smart hydrogel actuator that can bend bidirectionally and change color simultaneously, just like an octopus. The actuator is fabricated by elastomer/hydrogel bilayer and the hydrogel layer was decorated with thermoresponsive microgels as the photonic crystal blocks. Compared with the previously reported poly(N-isopropylacrylamide) hydrogel-based bilayer hydrogel actuators, which are generally limited to one-directional deformation, the elastomer/hydrogel bilayer actuator prepared in our work exhibits unique bidirectional bending behavior in accordance with the change of structural color. The bending degrees can be changed from −360° to 270° in response to solution temperatures ranging from 20 °C to 60 °C. At the same time, the surface color changes from red to green, and then to blue, covering the full visible light spectrum. The bending direction and degree of the hydrogel actuator can easily be adjusted by tuning the layer thickness ratio of the elastomer/hydrogel or the composition of the hydrogel. The color-tunable hydrogel-elastomer actuator reported in this work can achieve both programmable deformations and color-changing highly resembling the natural actuating behaviors of creatures. Full article
(This article belongs to the Special Issue Chemical Research on Photosensitive Materials)
Show Figures

Graphical abstract

12 pages, 3615 KiB  
Article
Chameleon-Inspired Mechanochromic Photonic Elastomer with Brilliant Structural Color and Stable Optical Response for Human Motion Visualization
by Yanbo Zhao, Kai Zhao, Zhumin Yu and Changqing Ye
Polymers 2023, 15(12), 2635; https://doi.org/10.3390/polym15122635 - 9 Jun 2023
Cited by 5 | Viewed by 3225
Abstract
Flexible and stretchable electronic devices are indispensable parts of wearable devices. However, these electronics employ electrical transducing modes and lack the ability to visually respond to external stimuli, restricting their versatile application in the visualized human–machine interaction. Inspired by the color variation of [...] Read more.
Flexible and stretchable electronic devices are indispensable parts of wearable devices. However, these electronics employ electrical transducing modes and lack the ability to visually respond to external stimuli, restricting their versatile application in the visualized human–machine interaction. Inspired by the color variation of chameleons’ skin, we developed a series of novel mechanochromic photonic elastomers (PEs) with brilliant structural colors and a stable optical response. Typically, these PEs with a sandwich structure were prepared by embedding PS@SiO2 photonic crystals (PCs)within the polydimethylsiloxane (PDMS) elastomer. Benefiting from this structure, these PEs exhibit not only bright structural colors, but also superior structural integrity. Notably, they possess excellent mechanochromism through lattice spacing regulation, and their optical responses are stably maintained even when suffering from 100 stretching–releasing cycles, showing superior stability and reliability and excellent durability. Moreover, a variety of patterned PEs were successfully obtained through a facile mask method, which provides great inspiration to create intelligent patterns and displays. Based on these merits, such PEs can be utilized as visualized wearable devices for detecting various human joint movements in real time. This work offers a new strategy for realizing visualized interactions based on PEs, showing huge application prospects in photonic skins, soft robotics, and human–machine interactions. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

9 pages, 2440 KiB  
Communication
Practical Preparation of Elastomer-Immobilized Nonclose-Packed Colloidal Photonic Crystal Films with Various Uniform Colors
by Momoko Kobori, Yuna Hirano, Mikako Tanaka and Toshimitsu Kanai
Polymers 2023, 15(10), 2294; https://doi.org/10.3390/polym15102294 - 12 May 2023
Cited by 4 | Viewed by 2009
Abstract
Colloidal photonic crystals, which are three-dimensional periodic structures of monodisperse submicron-sized particles, are expected to be suitable for novel photonic applications and color materials. In particular, nonclose-packed colloidal photonic crystals immobilized in elastomers exhibit significant potential for use in tunable photonic applications and [...] Read more.
Colloidal photonic crystals, which are three-dimensional periodic structures of monodisperse submicron-sized particles, are expected to be suitable for novel photonic applications and color materials. In particular, nonclose-packed colloidal photonic crystals immobilized in elastomers exhibit significant potential for use in tunable photonic applications and strain sensors that detect strain based on color change. This paper reports a practical method for preparing elastomer-immobilized nonclose-packed colloidal photonic crystal films with various uniform Bragg reflection colors using one kind of gel-immobilized nonclose-packed colloidal photonic crystal film. The degree of swelling was controlled by the mixing ratio of the precursor solutions, which used a mixture of solutions with high and low affinities for the gel film as the swelling solvent. This facilitated color tuning over a wide range, enabling the facile preparation of elastomer-immobilized nonclose-packed colloidal photonic crystal films with various uniform colors via subsequent photopolymerization. The present preparation method can contribute to the development of practical applications of elastomer-immobilized tunable colloidal photonic crystals and sensors. Full article
(This article belongs to the Special Issue Recent Advances in Elastomer Materials)
Show Figures

Figure 1

12 pages, 2558 KiB  
Article
Micro 3D Printing Elastomeric IP-PDMS Using Two-Photon Polymerisation: A Comparative Analysis of Mechanical and Feature Resolution Properties
by Pieter F. J. van Altena and Angelo Accardo
Polymers 2023, 15(8), 1816; https://doi.org/10.3390/polym15081816 - 7 Apr 2023
Cited by 17 | Viewed by 5406
Abstract
The mechanical properties of two-photon-polymerised (2PP) polymers are highly dependent on the employed printing parameters. In particular, the mechanical features of elastomeric polymers, such as IP-PDMS, are important for cell culture studies as they can influence cell mechanobiological responses. Herein, we employed optical-interferometer-based [...] Read more.
The mechanical properties of two-photon-polymerised (2PP) polymers are highly dependent on the employed printing parameters. In particular, the mechanical features of elastomeric polymers, such as IP-PDMS, are important for cell culture studies as they can influence cell mechanobiological responses. Herein, we employed optical-interferometer-based nanoindentation to characterise two-photon-polymerised structures manufactured with varying laser powers, scan speeds, slicing distances, and hatching distances. The minimum reported effective Young’s modulus (YM) was 350 kPa, while the maximum one was 17.8 MPa. In addition, we showed that, on average, immersion in water lowered the YM by 5.4%, a very important point as in the context of cell biology applications, the material must be employed within an aqueous environment. We also developed a printing strategy and performed a scanning electron microscopy morphological characterisation to find the smallest achievable feature size and the maximum length of a double-clamped freestanding beam. The maximum reported length of a printed beam was 70 µm with a minimum width of 1.46 ± 0.11 µm and a thickness of 4.49 ± 0.05 µm. The minimum beam width of 1.03 ± 0.02 µm was achieved for a beam length of 50 µm with a height of 3.00 ± 0.06 µm. In conclusion, the reported investigation of micron-scale two-photon-polymerized 3D IP-PDMS structures featuring tuneable mechanical properties paves the way for the use of this material in several cell biology applications, ranging from fundamental mechanobiology to in vitro disease modelling to tissue engineering. Full article
Show Figures

Graphical abstract

10 pages, 2437 KiB  
Article
Maskless Writing of Surface-Attached Micro-Magnets by Two-Photon Crosslinking
by Nicolas Geid, Jan Ulrich Leutner, Oswald Prucker and Jürgen Rühe
Actuators 2023, 12(3), 124; https://doi.org/10.3390/act12030124 - 15 Mar 2023
Cited by 6 | Viewed by 2621
Abstract
Surface-bound 3D micro-magnets are fabricated from photoreactive copolymers filled with magnetic nanoparticles by maskless 3D writing. The structures are generated by 2-photon crosslinking (2PC), which allows direct writing into solid films of composites consisting of magnetic particles and a photoreactive elastomer precursor. With [...] Read more.
Surface-bound 3D micro-magnets are fabricated from photoreactive copolymers filled with magnetic nanoparticles by maskless 3D writing. The structures are generated by 2-photon crosslinking (2PC), which allows direct writing into solid films of composites consisting of magnetic particles and a photoreactive elastomer precursor. With this strategy, it is possible to directly write complex, surface-bound magnetic actuator structures, which generates new opportunities in the fields of microfluidics and bioanalytical systems. Compared to the common 2-photon polymerization, in which the writing process takes place in a liquid resin, the direct writing based on the 2PC method takes place in a solid polymer film (i.e., in the glassy state). Full article
(This article belongs to the Special Issue Cooperative Microactuator Devices and Systems)
Show Figures

Figure 1

17 pages, 14765 KiB  
Review
From Light-Powered Motors, to Micro-Grippers, to Crawling Caterpillars, Snails and Beyond—Light-Responsive Oriented Polymers in Action
by Mikołaj Rogóż, Zofia Dziekan, Klaudia Dradrach, Michał Zmyślony, Paweł Nałęcz-Jawecki, Przemysław Grabowski, Bartosz Fabjanowicz, Magdalena Podgórska, Anna Kudzia and Piotr Wasylczyk
Materials 2022, 15(22), 8214; https://doi.org/10.3390/ma15228214 - 18 Nov 2022
Cited by 6 | Viewed by 3555
Abstract
“How would you build a robot, the size of a bacteria, powered by light, that would swim towards the light source, escape from it, or could be controlled by means of different light colors, intensities or polarizations?” This was the question that Professor [...] Read more.
“How would you build a robot, the size of a bacteria, powered by light, that would swim towards the light source, escape from it, or could be controlled by means of different light colors, intensities or polarizations?” This was the question that Professor Diederik Wiersma asked PW on a sunny spring day in 2012, when they first met at LENS—the European Laboratory of Nonlinear Spectroscopy—in Sesto Fiorentino, just outside Florence in northern Italy. It was not just a vague question, as Prof. Wiersma, then the LENS director and leader of one of its research groups, already had an idea (and an ERC grant) about how to actually make such micro-robots, using a class of light-responsive oriented polymers, liquid crystal elastomers (LCEs), combined with the most advanced fabrication technique—two-photon 3D laser photolithography. Indeed, over the next few years, the LCE technology, successfully married with the so-called direct laser writing at LENS, resulted in a 60 micrometer long walker developed in Prof. Wiersma’s group (as, surprisingly, walking at that stage proved to be easier than swimming). After completing his post-doc at LENS, PW returned to his home Faculty of Physics at the University of Warsaw, and started experimenting with LCE, both in micrometer and millimeter scales, in his newly established Photonic Nanostructure Facility. This paper is a review of how the ideas of using light-powered soft actuators in micromechanics and micro-robotics have been evolving in Warsaw over the last decade and what the outcomes have been so far. Full article
(This article belongs to the Special Issue Polish Achievements in Materials Science and Engineering)
Show Figures

Figure 1

24 pages, 9105 KiB  
Review
Photothermal-Driven Liquid Crystal Elastomers: Materials, Alignment and Applications
by Wei Zhang, Yifei Nan, Zongxuan Wu, Yajing Shen and Dan Luo
Molecules 2022, 27(14), 4330; https://doi.org/10.3390/molecules27144330 - 6 Jul 2022
Cited by 29 | Viewed by 10163
Abstract
Liquid crystal elastomers (LCEs) are programmable deformable materials that can respond to physical fields such as light, heat, and electricity. Photothermal-driven LCE has the advantages of accuracy and remote control and avoids the requirement of high photon energy for photochemistry. In this review, [...] Read more.
Liquid crystal elastomers (LCEs) are programmable deformable materials that can respond to physical fields such as light, heat, and electricity. Photothermal-driven LCE has the advantages of accuracy and remote control and avoids the requirement of high photon energy for photochemistry. In this review, we discuss recent advances in photothermal LCE materials and investigate methods for mechanical alignment, external field alignment, and surface-induced alignment. Advances in the synthesis and orientation of LCEs have enabled liquid crystal elastomers to meet applications in optics, robotics, and more. The review concludes with a discussion of current challenges and research opportunities. Full article
Show Figures

Figure 1

11 pages, 4842 KiB  
Article
Photoresist Design for Elastomeric Light Tunable Photonic Devices
by Sara Nocentini, Daniele Martella, Camilla Parmeggiani and Diederik S. Wiersma
Materials 2016, 9(7), 525; https://doi.org/10.3390/ma9070525 - 29 Jun 2016
Cited by 39 | Viewed by 7859
Abstract
An increasing interest in tunable photonic structures is growing within the photonic community. The usage of Liquid Crystalline Elastomer (LCE) structures in the micro-scale has been motivated by the potential to remotely control their properties. In order to design elastic photonic structures with [...] Read more.
An increasing interest in tunable photonic structures is growing within the photonic community. The usage of Liquid Crystalline Elastomer (LCE) structures in the micro-scale has been motivated by the potential to remotely control their properties. In order to design elastic photonic structures with a three-dimensional lithographic technique, an analysis of the different mixtures used in the micro-printing process is required. Previously reported LCE microstructures suffer damage and strong swelling as a limiting factor of resolution. In this article, we reported a detailed study on the writing process with four liquid crystalline photoresists, in which the percentage of crosslinker is gradually increased. The experiments reveal that exploiting the crosslinking degree is a possible means in which to obtain suspended lines with good resolution, quite good rigidity, and good elasticity, thereby preserving the possibility of deformation by light irradiation. Full article
(This article belongs to the Special Issue Advances in Research on Elastomers)
Show Figures

Graphical abstract

17 pages, 1777 KiB  
Article
Interdiffusion and Spinodal Decomposition in Electrically Conducting Polymer Blends
by Antti Takala, Päivi Takala, Jukka Seppälä and Kalle Levon
Polymers 2015, 7(8), 1410-1426; https://doi.org/10.3390/polym7081410 - 4 Aug 2015
Cited by 2 | Viewed by 6487
Abstract
The impact of phase morphology in electrically conducting polymer composites has become essential for the efficiency of the various functional applications, in which the continuity of the electroactive paths in multicomponent systems is essential. For instance in bulk heterojunction organic solar cells, where [...] Read more.
The impact of phase morphology in electrically conducting polymer composites has become essential for the efficiency of the various functional applications, in which the continuity of the electroactive paths in multicomponent systems is essential. For instance in bulk heterojunction organic solar cells, where the light-induced electron transfer through photon absorption creating excitons (electron-hole pairs), the control of diffusion of the spatially localized excitons and their dissociation at the interface and the effective collection of holes and electrons, all depend on the surface area, domain sizes, and connectivity in these organic semiconductor blends. We have used a model semiconductor polymer blend with defined miscibility to investigate the phase separation kinetics and the formation of connected pathways. Temperature jump experiments were applied from a miscible region of semiconducting poly(alkylthiophene) (PAT) blends with ethylenevinylacetate-elastomers (EVA) and the kinetics at the early stages of phase separation were evaluated in order to establish bicontinuous phase morphology via spinodal decomposition. The diffusion in the blend was followed by two methods: first during a miscible phase separating into two phases: from the measurement of the spinodal decomposition. Secondly the diffusion was measured by monitoring the interdiffusion of PAT film into the EVA film at elected temperatures and eventually compared the temperature dependent diffusion characteristics. With this first quantitative evaluation of the spinodal decomposition as well as the interdiffusion in conducting polymer blends, we show that a systematic control of the phase separation kinetics in a polymer blend with one of the components being electrically conducting polymer can be used to optimize the morphology. Full article
Show Figures

Graphical abstract

Back to TopTop