Bio-Inspired Hydrogel–Elastomer Actuator with Bidirectional Bending and Dynamic Structural Color
Abstract
:1. Introduction
2. Results and Discussion
2.1. Fabrication of Bilayer Anisotropic PNIPAM-PDMS Actuator
2.2. Color-Tunable Hydrogel Actuator
3. Experimental Section
3.1. Materials
3.2. Preparation of the Thermoresponsive PNIPAMST Microgels
3.3. The Preparation and Modification of PDMS Film
3.4. Preparation of the Hydrogel-Elastomer Actuator with Structural Color
3.5. Characterization of the Actuator
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Feng, X.; Wang, C.; Shang, S.; Liu, H.; Huang, X.; Jiang, J.; Zhang, H. Multicolor fluorescent cellulose hydrogels actuators: Lanthanide-ligand metal coordination, synergetic color-changing and shape-morphing, and antibacterial activity. Chem. Eng. J. 2022, 450, 138356. [Google Scholar] [CrossRef]
- Meng, H.; Yang, X.; Wang, Y.; Wang, C.; Ye, W.; Ma, F.; Han, T.; Qi, J.; Wang, C. Bio-inspired fluorescence color-tunable soft actuators with a self-healing and reconfigurable nature. Mater. Today Chem. 2022, 24, 100855. [Google Scholar] [CrossRef]
- Nie, M.; Huang, C.; Du, X. Recent advances in colour-tunable soft actuators. Nanoscale 2021, 13, 2780–2791. [Google Scholar] [CrossRef]
- Yu, R.; Zhu, L.; Xia, Y.; Liu, J.; Liang, J.; Xu, J.; Wang, B.; Wang, S. Octopus Inspired Hydrogel Actuator with Synergistic Structural Color and Shape Change. Adv. Mater. Interfaces 2022, 9, 2200401. [Google Scholar] [CrossRef]
- Zuo, X.; Wang, S.; Zhou, Y.; Wu, C.; Huang, A.; Wang, T.; Yang, Y. Fluorescent hydrogel actuators with simultaneous morphing- and color/brightness-changes enabled by light-activated 3D printing. Chem. Eng. J. 2022, 447, 137492. [Google Scholar] [CrossRef]
- Zhang, P.; de Haan, L.T.; Debije, M.G.; Schenning, A.P.H.J. Liquid crystal-based structural color actuators. Light-Sci. Appl. 2022, 11, 248. [Google Scholar] [CrossRef]
- Jiang, S.; Liu, F.; Lerch, A.; Ionov, L.; Agarwal, S. Unusual and Superfast Temperature-Triggered Actuators. Adv. Mater. 2015, 27, 4865–4870. [Google Scholar] [CrossRef]
- He, Z.; Zhou, Z.; Yuan, W. Highly Adhesive, Stretchable, and Antifreezing Hydrogel with Excellent Mechanical Properties for Sensitive Motion Sensors and Temperature-/Humidity-Driven Actuators. ACS Appl. Mater. Interfaces 2022, 14, 38205–38215. [Google Scholar] [CrossRef]
- Chi, D.; Gu, H.; Wang, J.; Wu, C.; Wang, R.; Cheng, Z.; Zhang, D.; Xie, Z.; Liu, Y. Narrow response temperature range with excellent reversible shape memory effect for semi-crystalline networks as soft actuators. Mater. Horiz. 2023, 10, 2464–2475. [Google Scholar] [CrossRef]
- Belmonte, A.; Ussembayev, Y.Y.; Bus, T.; Nys, I.; Neyts, K.; Schenning, A.P.H.J. Dual Light and Temperature Responsive Micrometer-Sized Structural Color Actuators. Small 2020, 16, e1905219. [Google Scholar] [CrossRef]
- Strachota, B.; Strachota, A.; Šlouf, M.; Brus, J.; Cimrová, V. Monolithic intercalated PNIPAm/starch hydrogels with very fast and extensive one-way volume and swelling responses to temperature and pH: Prospective actuators and drug release systems. Soft Matter 2019, 15, 752–769. [Google Scholar] [CrossRef]
- Yu, C.; Yuan, P.; Erickson, E.M.; Daly, C.M.; Rogers, J.A.; Nuzzo, R.G. Oxygen reduction reaction induced pH-responsive chemo-mechanical hydrogel actuators. Soft Matter 2015, 11, 7953–7959. [Google Scholar] [CrossRef]
- Zeng, W.; Jiang, C.; Wu, D. Heterogeneity Regulation of Bilayer Polysaccharide Hydrogels for Integrating pH- and Humidity-Responsive Actuators and Sensors. ACS Appl. Mater. Interfaces 2023, 15, 16097–16108. [Google Scholar] [CrossRef]
- Wang, M.; Zhou, L.; Deng, W.; Hou, Y.; He, W.; Yu, L.; Sun, H.; Ren, L.; Hou, X. Ultrafast Response and Programmable Locomotion of Liquid/Vapor/Light-Driven Soft Multifunctional Actuators. ACS Nano 2022, 16, 2672–2681. [Google Scholar] [CrossRef]
- Zhang, X.; Xue, P.; Yang, X.; Valenzuela, C.; Chen, Y.; Lv, P.; Wang, Z.; Wang, L.; Xu, X. Near-Infrared Light-Driven Shape-Programmable Hydrogel Actuators Loaded with Metal-Organic Frameworks. ACS Appl. Mater. Interfaces 2022, 14, 11834–11841. [Google Scholar] [CrossRef]
- Li, Y.; Wang, J.; Guo, J.; Fu, C.; Huang, L.; Chen, L.; Ni, Y.; Zheng, Q. UV and IR dual light triggered cellulose-based invisible actuators with high sensitivity. Int. J. Biol. Macromol. 2023, 238, 124031. [Google Scholar] [CrossRef]
- Méry, A.; Ruppel, A.; Revilloud, J.; Balland, M.; Cappello, G.; Boudou, T. Light-driven biological actuators to probe the rheology of 3D microtissues. Nat. Commun. 2023, 14, 717. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, J.; Zhang, X.; Feng, Y.; Zeng, H.; Wang, L.; Feng, W. Light-driven bimorph soft actuators: Design, fabrication, and properties. Mater. Horiz. 2021, 8, 728–757. [Google Scholar] [CrossRef]
- Chen, P.; Ruan, Q.; Nasseri, R.; Zhang, H.; Xi, X.; Xia, H.; Xu, G.; Xie, Q.; Yi, C.; Sun, Z.; et al. Light-Fueled Hydrogel Actuators with Controlled Deformation and Photocatalytic Activity. Adv. Sci. 2022, 9, e2204730. [Google Scholar] [CrossRef]
- Li, X.; Duan, H.; Lv, P.; Yi, X. Soft Actuators Based on Liquid-Vapor Phase Change Composites. Soft Robot. 2021, 8, 251–261. [Google Scholar] [CrossRef]
- Muralter, F.; Greco, F.; Coclite, A.M. Applicability of Vapor-Deposited Thermoresponsive Hydrogel Thin Films in Ultrafast Humidity Sensors/Actuators. ACS Appl. Polym. Mater. 2020, 2, 1160–1168. [Google Scholar] [CrossRef] [PubMed]
- Hou, G.; Wang, F.; Qu, Z.; Cheng, Z.; Zhang, Y.; Cai, S.; Xie, T.; Feng, X. Reversible Semicrystalline Polymer as Actuators Driven by Organic Solvent Vapor. Macromol. Rapid Commun. 2018, 39, e1700716. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Ren, K.; Yang, D.; Wei, J. Bilayer-type fluorescence hydrogels with intelligent response serve as temperature/pH driven soft actuators. Sensor. Actuat. B Chem. 2018, 255, 3117–3126. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, Z.; Wang, Y.; Chi, J.; Wang, Y.; Zhao, Y. Bioinspired Bilayer Structural Color Hydrogel Actuator with Multienvironment Responsiveness and Survivability. Small Methods 2019, 3, 1900519. [Google Scholar] [CrossRef]
- He, X.; Sun, Y.; Wu, J.; Wang, Y.; Chen, F.; Fan, P.; Zhong, M.; Xiao, S.; Zhang, D.; Yang, J.; et al. Dual-stimulus bilayer hydrogel actuators with rapid, reversible, bidirectional bending behaviors. J. Mater. Chem. C 2019, 7, 4970–4980. [Google Scholar] [CrossRef]
- Li, J.; Ma, Q.; Xu, Y.; Yang, M.; Wu, Q.; Wang, F.; Sun, P. Highly Bidirectional Bendable Actuator Engineered by LCST-UCST Bilayer Hydrogel with Enhanced Interface. ACS Appl. Mater. Interfaces 2020, 12, 55290–55298. [Google Scholar] [CrossRef]
- Zheng, J.; Xiao, P.; Le, X.; Lu, W.; Théato, P.; Ma, C.; Du, B.; Zhang, J.; Huang, Y.; Chen, T. Mimosa inspired bilayer hydrogel actuator functioning in multi-environments. J. Mater. Chem. C 2018, 6, 1320–1327. [Google Scholar] [CrossRef]
- Dallinger, A.; Kindlhofer, P.; Greco, F.; Coclite, A.M. Multiresponsive Soft Actuators Based on a Thermoresponsive Hydrogel and Embedded Laser-Induced Graphene. ACS Appl. Polym. Mater. 2021, 3, 1809–1818. [Google Scholar] [CrossRef]
- Liu, S.; Boatti, E.; Bertoldi, K.; Kramer-Bottiglio, R. Stimuli-induced bi-directional hydrogel unimorph actuators. Extreme Mech. Lett. 2018, 21, 35–43. [Google Scholar] [CrossRef]
- Terasawa, N. Self-Standing High-Performance Transparent Actuator Based on Poly(dimethylsiloxane)/TEMPO-Oxidized Cellulose Nanofibers/Ionic Liquid Gel. Langmuir 2020, 36, 6154–6159. [Google Scholar] [CrossRef]
- Katzer, K.; Kanan, A.; Pfeil, S.; Grellmann, H.; Gerlach, G.; Kaliske, M.; Cherif, C.; Zimmermann, M. Thermo-Electro-Mechanical Characterization of PDMS-Based Dielectric Elastomer Actuators. Materials 2021, 15, 221. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Xue, Y.; Han, M.; Palmer, L.C.; Rogers, J.A.; Huang, Y.; Stupp, S.I. Synergistic photoactuation of bilayered spiropyran hydrogels for predictable origami-like shape change. Matter 2021, 4, 1377–1390. [Google Scholar] [CrossRef]
- Cong, H.; Li, L.; Zheng, S. Poly(N-isopropylacrylamide)-block-poly(vinyl pyrrolidone) block copolymer networks: Synthesis and rapid thermoresponse of hydrogels. Polymer 2013, 54, 1370–1380. [Google Scholar] [CrossRef]
- Kamata, H.; Li, X.; Chung, U.I.; Sakai, T. Design of Hydrogels for Biomedical Applications. Adv. Healthc. Mater. 2015, 4, 2360–2374. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, D.; Chu, C.C. Synthesis and characterization of partially biodegradable, temperature and pH sensitive Dex-MA/PNIPAAm hydrogels. Biomaterials 2004, 25, 4719–4730. [Google Scholar] [CrossRef]
- Xia, Y.; Gao, S.; He, H.; Wang, X.; Zeng, Z.; Chen, B.; Zou, N.; Cao, M.; Wang, S. A New and Straightforward Strategy to Prepare an Optical Hydrogel Film with Dynamic Structural Colors. J. Phys. Chem. 2020, 124, 16083–16089. [Google Scholar] [CrossRef]
- Aguirre, C.I.; Reguera, E.; Stein, A. Colloidal Photonic Crystal Pigments with Low Angle Dependence. ACS Appl. Mater. Interfaces 2010, 2, 3257–3262. [Google Scholar] [CrossRef]
- Echeverri, M.; Patil, A.; Xiao, M.; Li, W.; Shawkey, M.D.; Dhinojwala, A. Developing Noniridescent Structural Color on Flexible Substrates with High Bending Resistance. ACS Appl. Mater. Interfaces 2019, 11, 21159–21165. [Google Scholar] [CrossRef]
- Yi, B.; Shen, H. Facile fabrication of crack-free photonic crystals with enhanced color contrast and low angle dependence. J. Mater. Chem. 2017, 5, 8194–8200. [Google Scholar] [CrossRef]
- Suzuki, N.; Iwase, E.; Onoe, H. Microfluidically Patterned Dome-Shaped Photonic Colloidal Crystals Exhibiting Structural Colors with Low Angle Dependency. Adv. Opt. Mater. 2017, 5, 1600900. [Google Scholar] [CrossRef]
- Park, J.-G.; Kim, S.-H.; Magkiriadou, S.; Choi, T.M.; Kim, Y.-S.; Manoharan, V.N. Full-Spectrum Photonic Pigments with Non-iridescent Structural Colors through Colloidal Assembly. Angew. Chem. Int. Ed. 2014, 53, 2899–2903. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Han, P.; Zhou, H.; Wu, N.; Wei, Y.; Yao, X.; Zhou, J.; Song, Y. Highly Brilliant Noniridescent Structural Colors Enabled by Graphene Nanosheets Containing Graphene Quantum Dots. Adv. Funct. Mater. 2018, 28, 1802585. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, Y.; Meng, Y.; Yu, R.; Teng, Z.; Zhou, J.; Wang, S. Bio-Inspired Hydrogel–Elastomer Actuator with Bidirectional Bending and Dynamic Structural Color. Molecules 2023, 28, 6752. https://doi.org/10.3390/molecules28196752
Xia Y, Meng Y, Yu R, Teng Z, Zhou J, Wang S. Bio-Inspired Hydrogel–Elastomer Actuator with Bidirectional Bending and Dynamic Structural Color. Molecules. 2023; 28(19):6752. https://doi.org/10.3390/molecules28196752
Chicago/Turabian StyleXia, Yongqing, Yaru Meng, Ronghua Yu, Ziqi Teng, Jie Zhou, and Shengjie Wang. 2023. "Bio-Inspired Hydrogel–Elastomer Actuator with Bidirectional Bending and Dynamic Structural Color" Molecules 28, no. 19: 6752. https://doi.org/10.3390/molecules28196752
APA StyleXia, Y., Meng, Y., Yu, R., Teng, Z., Zhou, J., & Wang, S. (2023). Bio-Inspired Hydrogel–Elastomer Actuator with Bidirectional Bending and Dynamic Structural Color. Molecules, 28(19), 6752. https://doi.org/10.3390/molecules28196752