Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = photonic Doppler velocimetry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1103 KiB  
Article
Shock Wave Pressure Measurement and Calibration Method Based on Bar Pressure Sensor
by Yong-Xiang Shi, Ying-Cheng Peng, Yuan-Ding Xing, Xue-Jie Jiao, Xiao-Fei Huang and Ze-Qun Ba
Sensors 2025, 25(15), 4743; https://doi.org/10.3390/s25154743 - 1 Aug 2025
Viewed by 174
Abstract
In order to correctly measure the shock wave pressure generated by a near-field explosion, and while considering the limitations of the measurement and calibration method of the current bar pressure sensor, an improved shock wave pressure measurement method was designed based on a [...] Read more.
In order to correctly measure the shock wave pressure generated by a near-field explosion, and while considering the limitations of the measurement and calibration method of the current bar pressure sensor, an improved shock wave pressure measurement method was designed based on a bar pressure sensor combined with photon Doppler velocimetry (PDV) and strain measurement. By measuring the strain on the pressure bar and the particle velocity on the rear-end face, the shock wave pressure applied on the front-end face of the pressure bar was calculated based on one-dimensional stress wave theory. On the other hand, a calibration method was designed to validate the reliability of the test system. Based on the split-Hopkinson pressure bar (SHPB) loading experiment, the transmission characteristics of stress wave in the bar and the accuracy of the system test results were verified. The results indicated that the stress wave measurement results were consistent with the one-dimensional elementary theoretical calculation results of stress wave propagation in different wave-impedance materials, and the peak deviation measured by PDV and strain measurement method was less than 1.5%, which proved the accuracy of the test method and the feasibility of the calibration method. Full article
(This article belongs to the Special Issue Sensors for Characterization of Energetic Materials Effects)
Show Figures

Figure 1

15 pages, 6112 KiB  
Article
Study on the Mechanism of the Micro-Charge-Detonation-Driven Flyer
by Shuang Li, Jie Ren, Chang Leng, Zhenhao Shi, Yan Ma, Mingyu Li and Qingxuan Zeng
Micromachines 2025, 16(4), 441; https://doi.org/10.3390/mi16040441 - 9 Apr 2025
Viewed by 376
Abstract
To investigate the energy transfer mechanisms during the micro-explosive initiator-driven flyer process and to guide the performance evaluation of micro-sized charges and the structural design of micro-initiators, a combined approach of numerical simulations and experimental tests was employed to study the detonation process [...] Read more.
To investigate the energy transfer mechanisms during the micro-explosive initiator-driven flyer process and to guide the performance evaluation of micro-sized charges and the structural design of micro-initiators, a combined approach of numerical simulations and experimental tests was employed to study the detonation process of copper-based azide micro-charges driving a flyer. The output pressure and detonation velocity of the copper-based azide micro-charge were measured using the manganese–copper piezoresistive method and electrical probe technique, and the corresponding JWL equation of the state parameters was subsequently fitted. A simulation model for the micro-charge-driven flyer was established and validated using Photonic Doppler Velocimetry (PDV), and the influence of charge conditions, structural parameters, and other factors on the flyer velocity and morphology was investigated. The results indicate that the flyer velocity decreases as its thickness increases, whereas the specific kinetic energy of the flyer initially increases and then decreases with increasing thickness. The optimal flyer thickness was found to be in the range of 30 to 70 μm. The flyer velocity increases with the density and height of the micro-charge; however, when the micro-charge density exceeds a certain threshold, the flyer velocity decreases. The flyer velocity exhibits an exponential decline as the diameter of the acceleration chamber increases, whereas it shows a slight increase with the increase in the length of the acceleration chamber. The diameter of the acceleration chamber should not exceed the charge diameter and must be no smaller than the critical diameter required for detonation initiation of the underlying charge. The use of a multi-layer accelerating chamber structure leads to a slight reduction in flyer velocity and further increases in the transmission hole diameter while having no significant impact on the flyer velocity. Full article
(This article belongs to the Special Issue Micro/Nanostructures in Sensors and Actuators, 2nd Edition)
Show Figures

Figure 1

16 pages, 3976 KiB  
Article
Influence of Augmentation Compositions and Confinement Layers on Flyer Velocity in Laser Impact Welding
by Mohammed Abdelmaola, Brian Thurston, Boyd Panton, Anupam Vivek and Glenn Daehn
Metals 2025, 15(2), 190; https://doi.org/10.3390/met15020190 - 12 Feb 2025
Viewed by 862
Abstract
Small-scale impact welding may have several advantages over rivets: the strength can be higher, it can be applied right at the edges in lap joints, and it can be lighter and more easily installed if simple systems can be developed. Laser Impact Welding [...] Read more.
Small-scale impact welding may have several advantages over rivets: the strength can be higher, it can be applied right at the edges in lap joints, and it can be lighter and more easily installed if simple systems can be developed. Laser Impact Welding (LIW) is compact and simple, adapting the technologies of laser shock peening. It is limited in terms of the energy that can be delivered to the joint. Augmented Laser Impact Welding (ALIW) complements optical energy with a small volume of an exothermic detonable compound and has been shown to be an effective welding approach. The scope of this study is extended to build upon previous work by investigating varied augmentation chemistries and confinement layers, specifically borosilicate glass, sapphire, and water. The evaluation of these compositions involved the use of two aluminum alloys: Al 2024 and Al 6061. Photonic Doppler Velocimetry (PDV) was utilized to measure the flyer velocity and assess the detonation energy. The findings indicated that adding micro-air bubbles (GPN-3 scenario) to the original GPN-1 enhanced the flyer velocity by improving the sensitivity, which promoted gas release during detonation. Hence, employing 1 mm thick Al 2024 as a flyer with GPN-3 enhances the flyer velocity by 36.4% in comparison to GPN-1, thereby improving the feasibility of using 1 mm thick material as a flyer and ensuring a successful welded joint with the thickest flyer ever welded with laser impact welding. When comparing the confinement layers, sapphire provided slightly lower flyer velocities compared to borosilicate glass. However, due to its higher resistance to damage and fracture, sapphire is likely more suitable for industrial applications from an economic perspective. Furthermore, the lap shear tests and microstructural evaluations confirmed that GPN-3 provided higher detonation energy, as emphasized by the tendency of the interfacial waves to have a higher amplitude than the less pronounced waves of the original GPN-1. Consequently, this approach demonstrates the key characteristics of a practical process, being simple, cost-effective, and efficient. Full article
(This article belongs to the Special Issue Advanced Metal Welding and Joining Technologies—2nd Edition)
Show Figures

Figure 1

15 pages, 4580 KiB  
Article
The Effects of Target Thicknesses and Backing Materials on a Ti-Cu Collision Weld Interface Using Laser Impact Welding
by Mohammed Abdelmaola, Brian Thurston, Boyd Panton, Anupam Vivek and Glenn Daehn
Metals 2024, 14(3), 342; https://doi.org/10.3390/met14030342 - 16 Mar 2024
Cited by 1 | Viewed by 1884
Abstract
This study demonstrates that the thickness of the target and its backing condition have a powerful effect on the development of a wave structure in impact welds. Conventional theories and experiments related to impact welds show that the impact angle and speed of [...] Read more.
This study demonstrates that the thickness of the target and its backing condition have a powerful effect on the development of a wave structure in impact welds. Conventional theories and experiments related to impact welds show that the impact angle and speed of the flyer have a controlling influence on the development of wave structure and jetting. These results imply that control of reflected stress waves can be effectively used to optimize welding conditions and expand the range of acceptable collision angle and speed for good welding. Impact welding and laser impact welding are a class of processes that can create solid-state welds, permitting the formation of strong and tough welds without the creation of significant heat affected zones, and can avoid the gross formation of intermetallic in dissimilar metal pairs. This study examined small-scale impact using a consistent launch condition for a 127 µm commercially pure titanium flyer impacted against commercially pure copper target with thicknesses between 127 µm and 1000 µm. Steel and acrylic backing layers were placed behind the target to change wave reflection characteristics. The launch conditions produced normal collision at about 900 m/s at the weld center, with decreasing impact speed and increasing angle moving toward the outer perimeter. The target thickness had a large effect on wave morphology, with the wave amplitude increasing with target thickness in both cases, peaking when target thickness is about twice flyer thickness, and then falling. The acrylic backing showed a consistently smaller unwelded central zone, indicating that impact welding is possible at a smaller angle in that case. Strength was measured in destructive tensile testing. Failure was controlled by the breakdown of the weaker of the two base metals over all thicknesses and backings. This demonstrates that laser impact welding is a robust method for joining dissimilar metals over a range of thicknesses. Full article
(This article belongs to the Special Issue Impact Welding Technology of Metal Alloys)
Show Figures

Figure 1

12 pages, 3654 KiB  
Article
Upconversion Photonic Doppler Velocimetry Based on Stimulated Brillouin Scattering
by Long Chen, Cangli Liu, Heli Ma, Longhuang Tang, Xing Jia, Tianjiong Tao, Shenggang Liu, Yongchao Chen, Xiang Wang, Jian Wu, Chengjun Li and Jidong Weng
Photonics 2024, 11(2), 177; https://doi.org/10.3390/photonics11020177 - 16 Feb 2024
Viewed by 1803
Abstract
Optical up-conversion photonic Doppler velocimetry (PDV) based on stimulated Brillouin Scattering (SBS) with an all-fiber link structure is proposed in this article. Because SBS limits the laser power transmitted by a fiber over long distances, the probe does not have enough outgoing light [...] Read more.
Optical up-conversion photonic Doppler velocimetry (PDV) based on stimulated Brillouin Scattering (SBS) with an all-fiber link structure is proposed in this article. Because SBS limits the laser power transmitted by a fiber over long distances, the probe does not have enough outgoing light to reach the measured surface and cannot receive the signal light. Traditionally, SBS is avoided, but it is a phase-conjugated light and shifts down relative to the source light, so it can be used as a reference light in the laser interference structure to achieve up-conversion heterodyne velocimetry. Compared with general homodyne velocimetry (DPS), SBS-PDV naturally upconverts and has more interference fringes and higher resolution at low-speed measurement. In the gas multiple reflection impact compression experiment, the velocity measurement results of SBS-PDV and dual-laser heterodyne Velocimetry (DLHV) are basically consistent, and the accuracy is better than 0.8%. Due to its coaxial heterodyne optical path, this kind of photonic Doppler velocimetry is suitable for low-velocity and long-distance practical applications in the field of shock wave physics. Full article
Show Figures

Figure 1

15 pages, 7986 KiB  
Article
Structural Response of Double-Layer Steel Cylinders under Inside-Explosion Loading
by Xuejun Qin, Jun Yang, Junyi Guan, Zhen Liao, Yanjun Ma and Dezhi Zhang
Appl. Sci. 2023, 13(2), 709; https://doi.org/10.3390/app13020709 - 4 Jan 2023
Cited by 2 | Viewed by 1899
Abstract
The research on the structural response of explosive vessel is an important basis for the design of explosive vessels. Double-layer cylinder structures are widely used in the design of various explosive vessels. This paper studied the deformation of a steel cylindrical shell under [...] Read more.
The research on the structural response of explosive vessel is an important basis for the design of explosive vessels. Double-layer cylinder structures are widely used in the design of various explosive vessels. This paper studied the deformation of a steel cylindrical shell under internal explosion and proposes a new method for measuring shell deformation by PDV (photonic Doppler velocimetry). We carried out many spherical explosive experiments and obtained useful results that show displacement of the double-layer cylinders and the explosion time. The above process is a simulated LS-DYNA with a finite element numerical simulation. The vibration period of the outer cylindrical shell and the time for reflection of the stress wave in the outer cylindrical shell were obtained by numerical simulation and PDV measurement, respectively. The results of both can be verified against each other. Through the above research, the structural response of the multilayer cylinders can be obtained, which can provide further help with research of the structural design of multilayer cylinders. Full article
Show Figures

Figure 1

12 pages, 2933 KiB  
Article
High-Strain Rate Spall Strength Measurement for CoCrFeMnNi High-Entropy Alloy
by Andrew Ehler, Abhijeet Dhiman, Tyler Dillard, Remi Dingreville, Erin Barrick, Andrew Kustas and Vikas Tomar
Metals 2022, 12(9), 1482; https://doi.org/10.3390/met12091482 - 7 Sep 2022
Cited by 8 | Viewed by 2934
Abstract
In this study, we experimentally investigate the high stain rate and spall behavior of Cantor high-entropy alloy (HEA), CoCrFeMnNi. First, the Hugoniot equations of state (EOS) for the samples are determined using laser-driven CoCrFeMnNi flyers launched into known Lithium Fluoride (LiF) windows. Photon [...] Read more.
In this study, we experimentally investigate the high stain rate and spall behavior of Cantor high-entropy alloy (HEA), CoCrFeMnNi. First, the Hugoniot equations of state (EOS) for the samples are determined using laser-driven CoCrFeMnNi flyers launched into known Lithium Fluoride (LiF) windows. Photon Doppler Velocimetry (PDV) recordings of the velocity profiles find the EOS coefficients using an impedance mismatch technique. Following this set of measurements, laser-driven aluminum flyer plates are accelerated to velocities of 0.5–1.0 km/s using a high-energy pulse laser. Upon impact with CoCrFeMnNi samples, the shock response is found through PDV measurements of the free surface velocities. From this second set of measurements, the spall strength of the alloy is found for pressures up to 5 GPa and strain rates in excess of 106 s−1. Further analysis of the failure mechanisms behind the spallation is conducted using fractography revealing the occurrence of ductile fracture at voids presumed to be caused by chromium oxide deposits created during the manufacturing process. Full article
(This article belongs to the Special Issue Dynamic Response of Metals under Extreme Conditions)
Show Figures

Figure 1

11 pages, 2814 KiB  
Article
Observations on Detonation Growth of Lead Azide at Microscale
by Yunfei Mu, Wei Zhang, Ruiqi Shen and Yinghua Ye
Micromachines 2022, 13(3), 451; https://doi.org/10.3390/mi13030451 - 16 Mar 2022
Cited by 10 | Viewed by 3362
Abstract
Lead azide (LA) is a commonly used primary explosive, the detonation growth of which is difficult to study because it is so sensitive and usually has a small charge size in applications. We used photon Doppler velocimetry (PDV) and calibrated polyvinylidene fluoride (PVDF) [...] Read more.
Lead azide (LA) is a commonly used primary explosive, the detonation growth of which is difficult to study because it is so sensitive and usually has a small charge size in applications. We used photon Doppler velocimetry (PDV) and calibrated polyvinylidene fluoride (PVDF) gauges to reveal the detonation growth in LA, which was pressed in the confinements with controlled heights. The particle-velocity profiles, output pressure, unsteady detonation velocity, reaction time, and reaction-zone width were obtained and analyzed. Three phases of detonation propagation of LA microcharges are discussed. The volume reactions occur at the beginning of detonation in LA microcharges without forming complete shock profiles. Then the shock front is fast with a slow chemistry reaction zone, which is compressed continuously between the height of 0.8 mm and 2.5 mm. Finally, the steady detonation is built at a height of 2.5 mm. The stable detonation velocity and CJ pressure are 4726 ± 8 m/s and 17.12 ± 0.22 GPa. Additionally, the stable reaction zone time and width are 44 ± 7 ns and 148 ± 11 μm. The detailed detonation process has not previously been quantified in such a small geometry. Full article
(This article belongs to the Special Issue Microsystems for Space and Defense Applications)
Show Figures

Graphical abstract

17 pages, 10251 KiB  
Article
Reconstruction of Velocity Curve in Long Stroke and High Dynamic Range Laser Interferometry
by Jinbao Feng, Jinhui Wu, Yu Si, Yubin Gao, Ji Liu and Gao Wang
Sensors 2021, 21(22), 7520; https://doi.org/10.3390/s21227520 - 12 Nov 2021
Cited by 3 | Viewed by 2117
Abstract
To study the law that governs the complex movements of the mechanism in the process of automatic weapon operation, the velocity tracking test technology of photon Doppler velocimetry is introduced to accurately measure velocity, displacement and acceleration, on the condition that there are [...] Read more.
To study the law that governs the complex movements of the mechanism in the process of automatic weapon operation, the velocity tracking test technology of photon Doppler velocimetry is introduced to accurately measure velocity, displacement and acceleration, on the condition that there are long displacement and rapid velocity change. In the traditional way, out of interference signal time-frequency (TF) transformation draws TF distribution, and then by modulus maxima frequency extraction, comes to the law of velocity change. Due to the influence resulting from the change of fundamental signal as well as that of light intensity signal in the test, based on the TF distribution obtained by TF transformation, the traditional modulus maxima frequency extraction can extract frequency signals, but they show abnormal sudden changes at some moments, making the velocity discontinuous, unsmooth and unreal, which brings obvious errors to the subsequent calculation of acceleration and accurate displacement. Addressing the above-mentioned problems, this paper proposes a ridge extracting correction algorithm based on modulus maxima frequency extraction; this method, based on a large number of experiments where rodless cylinders are used to simulate the motion of a gun automatic mechanism, conducts a detailed calculation and analysis of the experimental results. A comparison of the two algorithms’ processing results, in terms of the speed, displacement and acceleration, suggests that the ridge extracting correction algorithm successfully corrects the frequency selection error, which draws a more continuous and, therefore, effective curve of the velocity change, and by so doing, the error of the displacement test (within 1.36 m displacement) is reduced from more than 3.6% to less than 0.58%, and the uncertainty dropped 97.07%. All these show that the accurate measurement of velocity, displacement and acceleration, with sudden and rapid velocity changes considered, is realized successfully. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

12 pages, 4428 KiB  
Article
A Rapid Throughput System for Shock and Impact Characterization: Design and Examples in Compaction, Spallation, and Impact Welding
by K. Sajun Prasad, Yu Mao, Anupam Vivek, Stephen R. Niezgoda and Glenn S. Daehn
J. Manuf. Mater. Process. 2020, 4(4), 116; https://doi.org/10.3390/jmmp4040116 - 10 Dec 2020
Cited by 6 | Viewed by 4007
Abstract
Many important physical phenomena are governed by intense mechanical shock and impulse. These can be used in material processing and manufacturing. Examples include the compaction or shearing of materials in ballistic, meteor, or other impacts, spallation in armor and impact to induce phase [...] Read more.
Many important physical phenomena are governed by intense mechanical shock and impulse. These can be used in material processing and manufacturing. Examples include the compaction or shearing of materials in ballistic, meteor, or other impacts, spallation in armor and impact to induce phase and residual stress changes. The traditional methods for measuring very high strain rate behavior usually include gas-guns that accelerate flyers up to km/s speeds over a distance of meters. The throughput of such experiments is usually limited to a few experiments per day and the equipment is usually large, requiring specialized laboratories. Here, a much more compact method based on the Vaporizing Foil Actuator (VFA) is used that can accelerate flyers to over 1 km/s over a few mm of travel is proposed for high throughput testing in a compact system. A system with this primary driver coupled with Photonic Doppler Velocimetry (PDV) is demonstrated to give insightful data in powder compaction allowing measurements of shock speed, spall testing giving fast and reasonable estimates of spall strength, and impact welding providing interface microstructure as a function of impact angle and speed. The essential features of the system are outlined, and it is noted that this approach can be extended to other dynamic tests as well. Full article
(This article belongs to the Special Issue Impulse-Based Manufacturing Technologies)
Show Figures

Figure 1

22 pages, 8610 KiB  
Article
Interface Formation during Collision Welding of Aluminum
by Benedikt Niessen, Eugen Schumacher, Jörn Lueg-Althoff, Jörg Bellmann, Marcus Böhme, Stefan Böhm, A. Erman Tekkaya, Eckhard Beyer, Christoph Leyens, Martin Franz-Xaver Wagner and Peter Groche
Metals 2020, 10(9), 1202; https://doi.org/10.3390/met10091202 - 8 Sep 2020
Cited by 17 | Viewed by 3242
Abstract
Collision welding is a high-speed joining technology based on the plastic deformation of at least one of the joining partners. During the process, several phenomena like the formation of a so-called jet and a cloud of particles occur and enable bond formation. However, [...] Read more.
Collision welding is a high-speed joining technology based on the plastic deformation of at least one of the joining partners. During the process, several phenomena like the formation of a so-called jet and a cloud of particles occur and enable bond formation. However, the interaction of these phenomena and how they are influenced by the amount of kinetic energy is still unclear. In this paper, the results of three series of experiments with two different setups to determine the influence of the process parameters on the fundamental phenomena and relevant mechanisms of bond formation are presented. The welding processes are monitored by different methods, like high-speed imaging, photonic Doppler velocimetry and light emission measurements. The weld interfaces are analyzed by ultrasonic investigations, metallographic analyses by optical and scanning electron microscopy, and characterized by tensile shear tests. The results provide detailed information on the influence of the different process parameters on the classical welding window and allow a prediction of the different bond mechanisms. They show that during a single magnetic pulse welding process aluminum both fusion-like and solid-state welding can occur. Furthermore, the findings allow predicting the formation of the weld interface with respect to location and shape as well as its mechanical strength. Full article
(This article belongs to the Special Issue Impact Welding of Materials)
Show Figures

Graphical abstract

11 pages, 19477 KiB  
Article
The Role of Helium on Ejecta Production in Copper
by Saryu Fensin, David Jones, Daniel Martinez, Calvin Lear and Jeremy Payton
Materials 2020, 13(6), 1270; https://doi.org/10.3390/ma13061270 - 11 Mar 2020
Cited by 13 | Viewed by 2687
Abstract
The effect of helium (He) concentration on ejecta production in OFHC-Copper was investigated using Richtmyer–Meshkov Instability (RMI) experiments. The experiments involved complex samples with periodic surface perturbations machined onto the surface. Each of the four target was implanted with a unique helium concentration [...] Read more.
The effect of helium (He) concentration on ejecta production in OFHC-Copper was investigated using Richtmyer–Meshkov Instability (RMI) experiments. The experiments involved complex samples with periodic surface perturbations machined onto the surface. Each of the four target was implanted with a unique helium concentration that varied from 0 to 4000 appm. The perturbation’s wavelengths were λ 65 μ m, and their amplitudes h 0 were varied to determine the wavenumber ( 2 π / λ ) amplitude product k h 0 at which ejecta production beganfor Cu with and without He. The velocity and mass of the ejecta produced was quantified using Photon Doppler Velocimetry (PDV) and Lithium-Niobate (LN) pins, respectively. Our results show that there was an increase of 30% in the velocity at which the ejecta cloud was traveling in Copper with 4000 appm as compared to its unimplanted counterpart. Our work also shows that there was a finer cloud of ejecta particles that was not detected by the PDV probes but was detected by the early arrival of a “signal” at the LN pins. While the LN pins were not able to successfully quantify the mass produced due to it being in the solid state, they did provide information on timing. Our results show that ejecta was produced for a longer time in the 4000 appm copper. Full article
(This article belongs to the Special Issue Radiation Damage in Materials: Helium Effects)
Show Figures

Figure 1

11 pages, 2470 KiB  
Article
Characteristics of Flyer Velocity in Laser Impact Welding
by Huimin Wang and Yuliang Wang
Metals 2019, 9(3), 281; https://doi.org/10.3390/met9030281 - 1 Mar 2019
Cited by 8 | Viewed by 3559
Abstract
The flyer velocity is one of the critical parameters for welding to occur in laser impact welding (LIW) and plays a significant role on the welding mechanism study of LIW. It determines the collision pressure between the flyer and the target, and the [...] Read more.
The flyer velocity is one of the critical parameters for welding to occur in laser impact welding (LIW) and plays a significant role on the welding mechanism study of LIW. It determines the collision pressure between the flyer and the target, and the standoff working distance. In this study, the flyer velocity was measured with Photon Doppler Velocimetry under various experimental conditions. The laser energy efficiency was compared with measured flyer velocity for various laser energy and flyer thickness. In order to reveal the standoff working window, the peak flyer velocity and flyer velocity characteristic before and after the peak velocity and the flyer velocity was measured over long distance. In addition, the rebound behavior of the flyer was captured to confirm the non-metallurgical bonding in the center of the weld nugget in LIW. Furthermore, the flyer size and confinement layer effect on the flyer velocity were investigated. Full article
(This article belongs to the Special Issue Impact Welding of Materials)
Show Figures

Figure 1

6 pages, 8665 KiB  
Proceeding Paper
Dynamic Behavior of Metals at Elevated Temperatures and Ultra-High Strain Rates
by Tianxue Wang, Bryan Zuanetti and Vikas Prakash
Proceedings 2018, 2(8), 372; https://doi.org/10.3390/ICEM18-05204 - 7 May 2018
Cited by 1 | Viewed by 1888
Abstract
This paper presents the results of a series of reverse geometry normal plate impact experiments designed to investigate the onset of incipient plasticity in commercial purity polycrystalline magnesium (99.9%) under weak uniaxial-strain shock compression loading and elevated temperatures up to the melting point [...] Read more.
This paper presents the results of a series of reverse geometry normal plate impact experiments designed to investigate the onset of incipient plasticity in commercial purity polycrystalline magnesium (99.9%) under weak uniaxial-strain shock compression loading and elevated temperatures up to the melting point of magnesium. To enable the characterization of dynamic material behavior under extreme conditions, i.e., ultra-high strain rates (~106/s) and test temperatures up to sample melt (1000 °C), strategic modifications were made to the single-stage gas-gun facility at the Case Western Reserve University. In this configuration, thin metal samples (also representing the flyer plate), carried by a specially designed heat-resistant sabot, are heated uniformly across the diameter in a 100 mTorr vacuum prior to impact by a resistance coil heater at the breech end of the gun barrel. Moreover, a compact fiber-optics-based heterodyne normal displacement interferometer is designed and implemented to measure the normal component of the particle velocity history at the free surface of the target plate. Similar to the standard photonic Doppler velocimetry (PDV), this diagnostic tool is assembled using commercially available telecommunications hardware and uses a 1550-nm wavelength 2 W fiber-coupled laser, an optical probe and single mode fibers to transport light to and from the target. Using this unique approach, normal plate impact experiments are conducted on preheated (room temperature to near the melting point of magnesium) 99.9% polycrystalline magnesium using Inconel 718 target plates at impact velocities of 100–110 m/s. As inferred from the measured normal particle velocity history, the stress at the flyer/target interface shows progressive weakening with increasing sample temperatures below the melting point. At higher test temperatures, the rate of material softening under stress is observed to decrease and even reverse as the sample temperatures approach the melting point of magnesium samples. Scanning electron microscopy is utilized to understand the evolution of sample material microstructure including twinning following the impact event. Full article
(This article belongs to the Proceedings of The 18th International Conference on Experimental Mechanics)
Show Figures

Figure 1

Back to TopTop