Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (86)

Search Parameters:
Keywords = photoelectrochemical solar cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6689 KiB  
Review
Classification, Functions, Development and Outlook of Photoanode Block Layer for Dye-Sensitized Solar Cells
by Youqing Wang, Wenxuan Wu and Peiling Ren
Inorganics 2025, 13(4), 103; https://doi.org/10.3390/inorganics13040103 - 27 Mar 2025
Viewed by 705
Abstract
The block layer situated between the active material and electrode in photoelectrochemical devices serves as a critical component for performance enhancement. Using dye-sensitized solar cells as a representative model, this review systematically examines the strategic positioning and material selection criteria of block layers [...] Read more.
The block layer situated between the active material and electrode in photoelectrochemical devices serves as a critical component for performance enhancement. Using dye-sensitized solar cells as a representative model, this review systematically examines the strategic positioning and material selection criteria of block layers following a concise discussion of their fundamental mechanisms. We categorize block layer architectures into three distinct configurations: single layer, doped layer, and multilayer structures. The electron generation and transport mechanisms to photoelectrodes are analyzed through structural design variations across these configurations. Through representative literature examples, we demonstrate the correlation between material properties and photoconversion efficiency, accompanied by comprehensive performance comparisons. In the single-layer section, we comparatively evaluate the merits and limitations of TiO2- and ZnO-based block layers. The doped layer discussion traces the evolutionary trajectory from single-dopant systems to co-doping strategies. For multilayer architectures, we elaborate on the flexibility of its functional regulation. Finally, we present a forward-looking perspective on the hot issues that need to be urgently addressed in photoelectrochemical device block layers. Full article
(This article belongs to the Section Inorganic Solid-State Chemistry)
Show Figures

Figure 1

17 pages, 6829 KiB  
Article
Titanosilicate ETS-10-Modified Cu2O for Enhanced Visible-Light Photoelectrochemical Activity
by Ewelina Szaniawska-Białas, Aleksandra Parzuch, Linh Trinh, Pavla Eliášová and Renata Solarska
Catalysts 2025, 15(4), 313; https://doi.org/10.3390/catal15040313 - 26 Mar 2025
Viewed by 563
Abstract
Copper(I) oxide (Cu2O)-based photocathodes are promising materials for carbon dioxide (CO2) reduction under visible light due to copper’s abundance and favorable energy band alignment. However, Cu2O suffers from photocorrosion and chemical instability. Here, we present a novel [...] Read more.
Copper(I) oxide (Cu2O)-based photocathodes are promising materials for carbon dioxide (CO2) reduction under visible light due to copper’s abundance and favorable energy band alignment. However, Cu2O suffers from photocorrosion and chemical instability. Here, we present a novel approach utilizing a porous titanosilicate material (ETS-10) as a protective layer for Cu2O, addressing these limitations. The Cu2O was electrodeposited and coated with a thin ETS-10 layer, which prevents photocorrosion, enhances charge separation and transfer, and facilitates CO2 capture through its highly porous structure. Comprehensive structural, compositional, and morphological analyses confirmed that ETS-10 effectively stabilized Cu2O while maintaining its electronic properties (UV–Vis, XPS). The Cu2O/ETS-10 photocathode exhibited a 25% enhancement in the photocurrent density at 0.0–0.1 V vs. RHE and significantly improved stability compared to bare Cu2O. The thin ETS-10 layer acted as a passivation layer, improving charge transfer via tunneling mechanisms. This study introduces a multicomponent photocathode system, demonstrating a new application of ETS-10 in photoelectrochemical cells. The results highlight the potential of ETS-10 to enhance the efficiency and stability of photocathodes, offering a pathway for the design of advanced systems for solar-driven CO2 reduction and artificial photosynthesis. Full article
Show Figures

Figure 1

24 pages, 2365 KiB  
Article
Green Hydrogen Generation by Water Photoelectrolysis: Economic and Environmental Analysis
by Gaetano Maggio, Salvatore Vasta, Agatino Nicita, Stefano Trocino and Mauro Giorgianni
Energies 2025, 18(6), 1439; https://doi.org/10.3390/en18061439 - 14 Mar 2025
Viewed by 887
Abstract
Water photoelectrolysis cells based on photoelectrochemical water splitting seem to be an interesting alternative to other traditional green hydrogen generation processes (e.g., water electrolysis). Unfortunately, the practical application of this technology is currently hindered by several difficulties: low solar-to-hydrogen (STH) efficiency, expensive electrode [...] Read more.
Water photoelectrolysis cells based on photoelectrochemical water splitting seem to be an interesting alternative to other traditional green hydrogen generation processes (e.g., water electrolysis). Unfortunately, the practical application of this technology is currently hindered by several difficulties: low solar-to-hydrogen (STH) efficiency, expensive electrode materials, etc. A novel concept, based on a tandem photoelectrolysis cell configuration with an anion-conducting membrane separating the photoanode from the photocathode, has already been proposed in the literature. This approach allows the use of low-cost metal oxide electrodes and nickel-based co-catalysts. In this paper, we conducted a study to evaluate the economic and environmental sustainability of this technology, using the environmental life cycle cost. Preliminary results have revealed two main interesting aspects: the negligible percentage of externalities in the total cost (<0.15%), which means a positive environmental impact, and as evidenced by the net present value (NPV), there are potentially financial conditions that favour future investment. In fact, an NPV higher than 150,000 EUR can be achieved after 15 years. Full article
Show Figures

Figure 1

16 pages, 9711 KiB  
Article
Cr3+-Doped Anatase-Phase TiO2 Nanocrystals with (101) and (004) Dominant Facets: Synthesis and Characterization
by Rayhan Hossain and Allen Apblett
Catalysts 2025, 15(1), 33; https://doi.org/10.3390/catal15010033 - 2 Jan 2025
Cited by 3 | Viewed by 1091
Abstract
Anatase-phase rod-shaped TiO2 nanocrystals are prepared by the solvothermal method, the surface is metalated, and doped nanocrystals are achieved by thermal diffusion of surface metal ions. Incorporation of dopant ions into TiO2 lattice enhances the visible light absorption of the material [...] Read more.
Anatase-phase rod-shaped TiO2 nanocrystals are prepared by the solvothermal method, the surface is metalated, and doped nanocrystals are achieved by thermal diffusion of surface metal ions. Incorporation of dopant ions into TiO2 lattice enhances the visible light absorption of the material and in some cases can increase the rate of photocatalysis. Even though there are overflowing studies on the preparation of doped TiO2 materials, there are no methods that enable the precise control of dopant concentration in TiO2 nanocrystals. We have developed a method to load the surface of oleic acid stabilized anatase-phase rod-shaped TiO2 nanocrystals (approx. 3 ± 1 nm diameter and 40 ± 10 nm long) with transition metal ions followed by ion diffusion to prepare metal-doped nanocrystals with exact control of the dopant concentration. Specifically, in this work, Cr3+ adsorbs TiO2 nanorods to yield a green colloid, followed by ion diffusion at elevated temperature. After removal of any remaining surface Cr3+, tan-colored chromium-doped TiO2 nanorods can be obtained. Electron microscopy and powder X-ray diffraction indicate no change in nanocrystal size and morphology throughout the process. The TiO2 nanorods play an important role in photocatalysis owing to their excellent chemical and physical properties. Titanium dioxide is a low-cost, non-toxic, highly stable, chemically robust material. Doped TiO2 materials have found application in photocatalysis (oxidative degradation of organic molecules, hydrogen evolution), photovoltaics, solar cells, lithium-ion batteries, supercapacitors, and sensors. TiO2 photocatalysis is also the basis for clean energy technologies, such as dye-sensitized solar cells and photoelectrochemical cells. In photocatalysis applications, nanocrystalline TiO2 presents advantages of a high surface area, ability to control the surface facet, and minimized bulk recombination. Full article
(This article belongs to the Special Issue TiO2 Photocatalysts—Towards Sustainable Chemistry)
Show Figures

Figure 1

25 pages, 3226 KiB  
Review
Solar Hydrogen Production and Storage in Solid Form: Prospects for Materials and Methods
by Kathalingam Adaikalam, Dhanasekaran Vikraman, K. Karuppasamy and Hyun-Seok Kim
Nanomaterials 2024, 14(19), 1560; https://doi.org/10.3390/nano14191560 - 27 Sep 2024
Cited by 6 | Viewed by 3801
Abstract
Climatic changes are reaching alarming levels globally, seriously impacting the environment. To address this environmental crisis and achieve carbon neutrality, transitioning to hydrogen energy is crucial. Hydrogen is a clean energy source that produces no carbon emissions, making it essential in the technological [...] Read more.
Climatic changes are reaching alarming levels globally, seriously impacting the environment. To address this environmental crisis and achieve carbon neutrality, transitioning to hydrogen energy is crucial. Hydrogen is a clean energy source that produces no carbon emissions, making it essential in the technological era for meeting energy needs while reducing environmental pollution. Abundant in nature as water and hydrocarbons, hydrogen must be converted into a usable form for practical applications. Various techniques are employed to generate hydrogen from water, with solar hydrogen production—using solar light to split water—standing out as a cost-effective and environmentally friendly approach. However, the widespread adoption of hydrogen energy is challenged by transportation and storage issues, as it requires compressed and liquefied gas storage tanks. Solid hydrogen storage offers a promising solution, providing an effective and low-cost method for storing and releasing hydrogen. Solar hydrogen generation by water splitting is more efficient than other methods, as it uses self-generated power. Similarly, solid storage of hydrogen is also attractive in many ways, including efficiency and cost-effectiveness. This can be achieved through chemical adsorption in materials such as hydrides and other forms. These methods seem to be costly initially, but once the materials and methods are established, they will become more attractive considering rising fuel prices, depletion of fossil fuel resources, and advancements in science and technology. Solid oxide fuel cells (SOFCs) are highly efficient for converting hydrogen into electrical energy, producing clean electricity with no emissions. If proper materials and methods are established for solar hydrogen generation and solid hydrogen storage under ambient conditions, solar light used for hydrogen generation and utilization via solid oxide fuel cells (SOFCs) will be an efficient, safe, and cost-effective technique. With the ongoing development in materials for solar hydrogen generation and solid storage techniques, this method is expected to soon become more feasible and cost-effective. This review comprehensively consolidates research on solar hydrogen generation and solid hydrogen storage, focusing on global standards such as 6.5 wt% gravimetric capacity at temperatures between −40 and 60 °C. It summarizes various materials used for efficient hydrogen generation through water splitting and solid storage, and discusses current challenges in hydrogen generation and storage. This includes material selection, and the structural and chemical modifications needed for optimal performance and potential applications. Full article
(This article belongs to the Special Issue Nanomaterials for Water-Food-Energy Nexus)
Show Figures

Figure 1

12 pages, 2156 KiB  
Article
Optimization of CdSe Thin-Film Photoelectrochemical Cells: Effects of NaOH/Na2S/S Redox Couple Concentration and Activity on Cell Efficiency
by Ahed H. Zyoud
Photochem 2024, 4(3), 334-345; https://doi.org/10.3390/photochem4030020 - 10 Aug 2024
Cited by 1 | Viewed by 1894
Abstract
This study investigates the relationships among redox couple activity, electrolyte concentration, and efficiency in CdSe thin-film photoelectrochemical solar cells. A CdSe photo-electrode was prepared using the electro-depositing technique to produce well-staged layering of CdSe, followed by chemical bath deposition to produce a layer [...] Read more.
This study investigates the relationships among redox couple activity, electrolyte concentration, and efficiency in CdSe thin-film photoelectrochemical solar cells. A CdSe photo-electrode was prepared using the electro-depositing technique to produce well-staged layering of CdSe, followed by chemical bath deposition to produce a layer with an acceptable thickness to absorb enough photons to create a suitable amount of photocurrent. The CdSe photo-electrochemical cell was tested under various concentrations of a NaOH/Na2S/S electrolyte solution. The results showed that the activity of the redox couple greatly affected the efficiencies of the solar cells. Correlation plots between ionic strength and PEC efficiency with the Debye–Hückel equation yielded an R² value of 0.96, while those between ionic strength and photocurrent density had an R² value of 0.92. The correlation between concentration and PEC efficiency was much weaker. This paper highlights how optimal ionic activity increases the performance of photoelectrochemical solar cells, which consequently improves the conversion efficiency of solar energy. Full article
Show Figures

Figure 1

38 pages, 22809 KiB  
Review
Nanoscale Cu2ZnSnSxSe(4−x) (CZTS/Se) for Sustainable Solutions in Renewable Energy, Sensing, and Nanomedicine
by Sayedmahdi Mohammadi, Navdeep Kaur and Daniela R. Radu
Crystals 2024, 14(5), 479; https://doi.org/10.3390/cryst14050479 - 19 May 2024
Cited by 2 | Viewed by 2769
Abstract
The importance and breadth of applications of the family of quaternary chalcogenides with the formula Cu2ZnSnSxSe(4−x) (CZTS/Se) where x = 0–4 are steadily expanding due to the tunable optoelectronic properties of these compounds and the Earth abundance of [...] Read more.
The importance and breadth of applications of the family of quaternary chalcogenides with the formula Cu2ZnSnSxSe(4−x) (CZTS/Se) where x = 0–4 are steadily expanding due to the tunable optoelectronic properties of these compounds and the Earth abundance of the elements in their composition. These p-type semiconductors are viewed as a viable alternative to Si, gallium arsenide, CdTe, and CIGS solar cells due to their cost effectiveness, Earth’s crust abundance, and non-toxic elements. Additionally, CZTS/Se compounds have demonstrated notable capabilities beyond solar cells, such as photoelectrochemical CO2 reduction, solar water splitting, solar seawater desalination, hydrogen production, and use as an antibacterial agent. Various routes have been explored for synthesizing pure CZTS/Se nanomaterials and significant efforts have been dedicated to reducing the occurrence of secondary phases. This review focuses on synthetic approaches for CZTS/Se nanomaterials, with emphasis on controlling the size and morphology of the nanoparticles and their recent application in solar energy harvesting and beyond, highlighting challenges in achieving the desired purity required in all these applications. Full article
(This article belongs to the Special Issue Semiconductor Nanocrystal Studies for Optoelectronic Applications)
Show Figures

Figure 1

23 pages, 2564 KiB  
Review
Advancements in Transparent Conductive Oxides for Photoelectrochemical Applications
by He Wen, Bo Weng, Bing Wang, Wenbo Xiao, Xiao Liu, Yiming Wang, Menglong Zhang and Haowei Huang
Nanomaterials 2024, 14(7), 591; https://doi.org/10.3390/nano14070591 - 27 Mar 2024
Cited by 26 | Viewed by 5005
Abstract
Photoelectrochemical cells (PECs) are an important technology for converting solar energy, which has experienced rapid development in recent decades. Transparent conductive oxides (TCOs) are also gaining increasing attention due to their crucial role in PEC reactions. This review comprehensively delves into the significance [...] Read more.
Photoelectrochemical cells (PECs) are an important technology for converting solar energy, which has experienced rapid development in recent decades. Transparent conductive oxides (TCOs) are also gaining increasing attention due to their crucial role in PEC reactions. This review comprehensively delves into the significance of TCO materials in PEC devices. Starting from an in-depth analysis of various TCO materials, this review discusses the properties, fabrication techniques, and challenges associated with these TCO materials. Next, we highlight several cost-effective, simple, and environmentally friendly methods, such as element doping, plasma treatment, hot isostatic pressing, and carbon nanotube modification, to enhance the transparency and conductivity of TCO materials. Despite significant progress in the development of TCO materials for PEC applications, we at last point out that the future research should focus on enhancing transparency and conductivity, formulating advanced theories to understand structure–property relationships, and integrating multiple modification strategies to further improve the performance of TCO materials in PEC devices. Full article
(This article belongs to the Special Issue Heterogeneous Photocatalysts Based on Nanocomposites)
Show Figures

Figure 1

16 pages, 4422 KiB  
Article
Porous Electropolymerized Films of Ruthenium Complex: Photoelectrochemical Properties and Photoelectrocatalytic Synthesis of Hydrogen Peroxide
by Hong-Ju Yin and Ke-Zhi Wang
Molecules 2024, 29(3), 734; https://doi.org/10.3390/molecules29030734 - 5 Feb 2024
Cited by 1 | Viewed by 1622
Abstract
The photoelectrochemical cells (PECs) performing high-efficiency conversions of solar energy into both electricity and high value-added chemicals are highly desirable but rather challenging. Herein, we demonstrate that a PEC using the oxidatively electropolymerized film of a heteroleptic Ru(II) complex of [Ru(bpy)(L) [...] Read more.
The photoelectrochemical cells (PECs) performing high-efficiency conversions of solar energy into both electricity and high value-added chemicals are highly desirable but rather challenging. Herein, we demonstrate that a PEC using the oxidatively electropolymerized film of a heteroleptic Ru(II) complex of [Ru(bpy)(L)2](PF6)2 Ru1 {bpy and L stand for 2,2′-bipyridine and 1-phenyl-2-(4-vinylphenyl)-1H-imidazo[4,5-f][1,10]phenanthroline respectively}, polyRu1, as a working electrode performed both efficient in situ synthesis of hydrogen peroxide and photocurrent generation/switching. Specifically, when biased at −0.4 V vs. saturated calomel electrode and illuminated with 100 mW·cm−2 white light, the PEC showed a significant cathodic photocurrent density of 9.64 μA·cm−2. Furthermore, an increase in the concentrations of quinhydrone in the electrolyte solution enabled the photocurrent polarity to switch from cathodic to anodic, and the anodic photocurrent density reached as high as 11.4 μA·cm−2. Interestingly, in this single-compartment PEC, the hydrogen peroxide yield reached 2.63 μmol·cm−2 in the neutral electrolyte solution. This study will serve as a guide for the design of high-efficiency metal-complex-based molecular systems performing photoelectric conversion/switching and photoelectrochemical oxygen reduction to hydrogen peroxide. Full article
(This article belongs to the Special Issue Synthesis and Applications of Transition Metal Complexes)
Show Figures

Figure 1

17 pages, 5179 KiB  
Article
Physicochemical Properties of Tungsten Trioxide Photoanodes Fabricated by Wet Coating of Soluble, Particulate, and Mixed Precursors
by Valli Kamala Laxmi Ramya Chittoory, Marketa Filipsika, Radim Bartoš, Marcela Králová and Petr Dzik
Photochem 2024, 4(1), 111-127; https://doi.org/10.3390/photochem4010006 - 1 Feb 2024
Cited by 1 | Viewed by 1836
Abstract
Advanced oxidation processes are emerging technologies for the decomposition of organic pollutants in various types of water by harnessing solar energy. The purpose of this study is to examine the physicochemical characteristics of tungsten(VI) oxide (WO3) photoanodes, with the aim of [...] Read more.
Advanced oxidation processes are emerging technologies for the decomposition of organic pollutants in various types of water by harnessing solar energy. The purpose of this study is to examine the physicochemical characteristics of tungsten(VI) oxide (WO3) photoanodes, with the aim of enhancing oxidation processes in the treatment of water. The fabrication of WO3 coatings on conductive fluorine-doped tin oxide (FTO) substrates was achieved through a wet coating process that utilized three different liquid formulations: a dispersion of finely milled WO3 particles, a fully soluble WO3 precursor (acetylated peroxo tungstic acid), and a combination of both (applying a brick-and-mortar strategy). Upon subjecting the WO3 coatings to firing at a temperature of 450 °C, it was observed that their properties exhibited marked variations. The fabricated photoanodes are examined using a range of analytical techniques, including profilometry, thermo-gravimetric analysis (TGA), X-ray diffraction (XRD), and voltammetry. The experimental data suggest that the layers generated through the combination of particulate ink and soluble precursor (referred to as the brick-and-mortar building approach) display advantageous physicochemical properties, rendering them suitable for use as photoanodes in photoelectrochemical cells. Full article
(This article belongs to the Topic New Materials and Advanced Applications in Photocatalysis)
Show Figures

Graphical abstract

14 pages, 3579 KiB  
Article
Scalability and Investigation of the Geometrical Features and Shapes of a Tandem Photo-Electrolysis Cell Based on Non-Critical Raw Materials
by Carmelo Lo Vecchio, Giosuè Giacoppo, Orazio Barbera, Alessandra Carbone, Vincenzo Baglio, Antonino Salvatore Aricò, Giuseppe Monforte and Stefano Trocino
Catalysts 2024, 14(2), 98; https://doi.org/10.3390/catal14020098 - 24 Jan 2024
Cited by 2 | Viewed by 1719
Abstract
Tandem photoelectrochemical cells (PECs) are devices useful for water splitting (WS) with the production of oxygen at the photoanode (PA) and hydrogen at the photocathode (PC) by adsorbing more than 75% of the solar irradiation; a portion of the UV/Vis direct solar irradiation [...] Read more.
Tandem photoelectrochemical cells (PECs) are devices useful for water splitting (WS) with the production of oxygen at the photoanode (PA) and hydrogen at the photocathode (PC) by adsorbing more than 75% of the solar irradiation; a portion of the UV/Vis direct solar irradiation is captured by the PA and a diffused or transmitted IR/Vis portion by the PC. Herein, Ti-doped hematite (PA) and CuO (PC) were employed as abundant and non-critical raw semiconductors characterised by proper band gap and band edge banding for the photoelectrochemical WS and absorption of sunlight. The investigation of inexpensive PEC was focused on the scalability of an active area from 0.25 cm2 to 40 cm2 with a rectangular or square shape. For the first time, this study introduces the novel concept of a glass electrode membrane assembly (GEMA), which was developed with an ionomeric glue to improve the interfacial contact between the membrane and photoelectrodes. On a large scale, the electron–hole recombination and the non-optimal photoelectrodes/electrolyte interface were optimized by inserting a glass support at the photocathode and drilled fluorine tin oxide (FTO) at the photoanode to ensure the flow of reagents and products. Rectangular 40 cm2 PEC showed a larger maximum enthalpy efficiency of 0.6% compared to the square PEC, which had a value of 0.37% at a low bias-assisted voltage (−0.6 V). Furthermore, throughput efficiency reached a maximum value of 1.2% and 0.8%, demonstrating either an important effect of the PEC geometries or a non-significant variation of the photocurrent within the scalability. Full article
Show Figures

Figure 1

48 pages, 16435 KiB  
Review
Metal Complexes for Dye-Sensitized Photoelectrochemical Cells (DSPECs)
by Edoardo Marchini, Stefano Caramori and Stefano Carli
Molecules 2024, 29(2), 293; https://doi.org/10.3390/molecules29020293 - 5 Jan 2024
Cited by 7 | Viewed by 3075
Abstract
Since Mallouk’s earliest contribution, dye-sensitized photoelectrochemical cells (DSPECs) have emerged as a promising class of photoelectrochemical devices capable of storing solar light into chemical bonds. This review primarily focuses on metal complexes outlining stabilization strategies and applications. The ubiquity and safety of water [...] Read more.
Since Mallouk’s earliest contribution, dye-sensitized photoelectrochemical cells (DSPECs) have emerged as a promising class of photoelectrochemical devices capable of storing solar light into chemical bonds. This review primarily focuses on metal complexes outlining stabilization strategies and applications. The ubiquity and safety of water have made its splitting an extensively studied reaction; here, we present some examples from the outset to recent advancements. Additionally, alternative oxidative pathways like HX splitting and organic reactions mediated by a redox shuttle are discussed. Full article
(This article belongs to the Special Issue Coordination Compounds in Dye-Sensitized Solar Cells)
Show Figures

Graphical abstract

22 pages, 6161 KiB  
Article
Tailored Nanoscale Architectures for White Light Photoelectrochemistry: Zinc Oxide Nanorod-Based Copper Oxide Heterostructures
by Yu-Chih Fu, Yu-Che Chen, Chieh-Ming Wu and Vincent K. S. Hsiao
Coatings 2023, 13(12), 2051; https://doi.org/10.3390/coatings13122051 - 6 Dec 2023
Cited by 2 | Viewed by 1888
Abstract
This study investigates the morphological evolution, optical properties, and photoelectrochemical (PEC) performance of copper-oxide-coated ZnO nanorods under different annealing conditions. Distinct effects of annealing temperature and atmosphere on Cu2O and CuO growth on ZnO nanorods were observed. SEM images revealed the [...] Read more.
This study investigates the morphological evolution, optical properties, and photoelectrochemical (PEC) performance of copper-oxide-coated ZnO nanorods under different annealing conditions. Distinct effects of annealing temperature and atmosphere on Cu2O and CuO growth on ZnO nanorods were observed. SEM images revealed the transformation of Cu2O from silk-like to mushroom-like structures, while CuO formed interconnecting nanomaterials. XRD and XPS analyses showed peak shifts and binding energy changes, highlighting structural and electronic modifications induced by annealing. Moreover, PEC measurements demonstrated the superior photoresponse of CuO-coated ZnO nanorods, especially under negative bias, attributed to favorable band structure, charge carrier separation, and annealing stability compared to Cu2O-coated ones. A noteworthy discovery is that ZnO nanorods coated with CuO nanostructures, prepared under air conditions at 400 °C annealing temperature, exhibit exceptional photocurrents. Applying a 0.4 V voltage increases the photocurrent by approximately 10 mA/cm2. The findings provide valuable insights into tailoring metal oxide semiconductor nanostructures for potential applications in diverse areas, including photoelectrochemistry. This study offers practical guidance on modulating nanostructure growth through annealing to enhance performance. The results hold significance for PEC water splitting and have far-reaching impacts on photocatalysis, environmental remediation, and solar cells. Full article
Show Figures

Figure 1

2 pages, 160 KiB  
Abstract
Plasma Electrolytic Oxidation Synthesis of Heterostructured TiO2 for Photoanode Applications
by Ramūnas Levinas, Vidas Pakštas, Algirdas Selskis, Tomas Murauskas, Roman Viter, Aldona Jagminienė, Ina Stankevičienė and Eugenijus Norkus
Proceedings 2023, 92(1), 51; https://doi.org/10.3390/proceedings2023092051 - 24 Nov 2023
Viewed by 1095
Abstract
In the renewable energy field, the conversion of solar light into electrical or chemical energy is considered essential to moving towards a truly green energy economy. Solar energy can be harnessed not just through generating electricity with photovoltaic cells but also by driving [...] Read more.
In the renewable energy field, the conversion of solar light into electrical or chemical energy is considered essential to moving towards a truly green energy economy. Solar energy can be harnessed not just through generating electricity with photovoltaic cells but also by driving photoelectrochemical (PEC) reactions such as water splitting or pollutant oxidation. In this study, TiO2 films were synthesized electrochemically through a procedure called plasma electrolytic oxidation (PEO). Under specific conditions, as the Ti substrate dissolves and the oxide film grows, electron discharges occur across the film, and this ionizes both the oxide and some amount of electrolyte that had been in contact with it. The mixture then cools, leaving a macroporous TiO2 structure. What is particularly interesting for PEC applications is that the films can be crystalline and doped after synthesis. XRD analysis revealed that a TiO2 film that had been obtained at a voltage of 200 V had an anatase crystal structure. In addition, during ionization and cooling, ions from the solution can be incorporated into the film. By adding 0.1 M Cu2SO4 into the synthesis electrolyte, we were able to incorporate Cu into the films, as proven EDX and XPS. The TiO2 and heterostructured films showed good PEC water-splitting activity and stability in alkaline media when illuminated with 365 nm LED light. It was found that the photocurrent obtained depends on the synthesis voltage and that the heterostructured films would generate ~2 times larger photocurrents. In addition, further surface functionalization (e.g., with Au) was investigated. Electron–hole recombination was evaluated using an advanced non-stationary photoelectrochemical technique—intensity-modulated photocurrent spectroscopy (IMPS). Generally, films have very little recombination and only at lower overpotentials up to ~1 V. Overall, the synthesis of oxide films through PEO may provide an efficient alternative to obtaining crystalline films via annealing, and various heterostructures can be created simply by modifying synthesis conditions. Full article
(This article belongs to the Proceedings of International Conference EcoBalt 2023 "Chemicals & Environment")
21 pages, 4263 KiB  
Review
Emergent CuWO4 Photoanodes for Solar Fuel Production: Recent Progress and Perspectives
by Jin Uk Lee, Jin Hyun Kim and Jae Sung Lee
Catalysts 2023, 13(11), 1408; https://doi.org/10.3390/catal13111408 - 30 Oct 2023
Cited by 3 | Viewed by 2404
Abstract
Solar fuel production using a photoelectrochemical (PEC) cell is considered as an effective solution to address the climate change caused by CO2 emissions, as well as the ever-growing global demand for energy. Like all other solar energy utilization technologies, the PEC cell [...] Read more.
Solar fuel production using a photoelectrochemical (PEC) cell is considered as an effective solution to address the climate change caused by CO2 emissions, as well as the ever-growing global demand for energy. Like all other solar energy utilization technologies, the PEC cell requires a light absorber that can efficiently convert photons into charge carriers, which are eventually converted into chemical energy. The light absorber used as a photoelectrode determines the most important factors for PEC technology—efficiency, stability, and the cost of the system. Despite intensive research in the last two decades, there is no ideal material that satisfies all these criteria to the level that makes this technology practical. Thus, further exploration and development of the photoelectode materials are necessary, especially by finding a new promising semiconductor material with a suitable band gap and photoelectronic properties. CuWO4 (n-type, Eg = 2.3 eV) is one of those emerging materials that has favorable intrinsic properties for photo(electro)catalytic water oxidation, yet it has been receiving less attention than it deserves. Nonetheless, valuable pioneering studies have been reported for this material, proving its potential to become a significant option as a photoanode material for PEC cells. Herein, we review recent progress of CuWO4-based photoelectrodes; discuss the material’s optoelectronic properties, synthesis methods, and PEC characteristics; and finally provide perspective of its applications as a photoelectrode for PEC solar fuel production. Full article
(This article belongs to the Special Issue Theme Issue in Honor of Prof. Dr. Jae Sung Lee)
Show Figures

Graphical abstract

Back to TopTop