Optimization of CdSe Thin-Film Photoelectrochemical Cells: Effects of NaOH/Na2S/S Redox Couple Concentration and Activity on Cell Efficiency
Abstract
:1. Introduction
2. Experimental
2.1. Chemicals
2.2. Equipment
2.3. The CdSe Thin-Film Electrode Preparation
2.3.1. Electrodeposition Step, ED
2.3.2. The Chemical Bath Deposition Step, CBD
2.4. The Photoelectrochemical Experiment
3. Results and Discussion
3.1. Thin Film Characterization
3.2. J–V Characterization
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zyoud, A.; Al-Yamani, S.; Bsharat, H.; Helal, M.H.; Kwon, H.; Park, D.; Hilal, H.S. Recycled polycrystalline CdS film electrodes with enhanced photo-electrochemical characteristics. Mater. Sci. Semicond. Process. 2018, 74, 277–283. [Google Scholar] [CrossRef]
- Zyoud, A.; Saa’Deddin, I.; Khudruj, S.; Hawash, Z.M.; Park, D.; Campet, G.; Hilal, H.S. CdS/FTO thin film electrodes deposited by chemical bath deposition and by electrochemical deposition: A comparative assessment of photo-electrochemical characteristics. Solid State Sci. 2013, 18, 83–90. [Google Scholar] [CrossRef]
- Zyoud, S.H.; Zyoud, A.H. Simulation and Numerical Investigation of the Effect of Temperature and Defect on ZnTe/ZnSe/ZnO Thin-Film Photovoltaic Solar Cell Performance Efficiency. Int. J. Eng. Appl. 2023, 11, 1–10. [Google Scholar] [CrossRef]
- Sbeah, M.; Zyoud, A.; Ishteiwi, M.; Hajjyahya, M.; Al Armouzi, N.; Qamhieh, N.; Hajamohideen, A.R.; Zyoud, S.; Helal, H.H.; Bsharat, H.; et al. Assessment of flexible pristine CdS film electrodes in photoelectrochemical light-to-electricity conversions. Mater. Chem. Phys. 2023, 293, 126967. [Google Scholar] [CrossRef]
- Zyoud, S.H.; Zyoud, A.H. Investigating the Impact of Temperature and Interlayer Defects on the Efficiency of Mo/ZnTe/ZnSe/SnO2 Heterojunction Thin Film Solar Cells: A SCAPS-1D Simulation Study. Int. Rev. Model. Simul. 2023, 16, 120–128. [Google Scholar] [CrossRef]
- Zyoud, A.; Abdul-Rahman, N.N.; Campet, G.; Park, D.; Kwon, H.; Kim, T.W.; Choi, H.-J.; Helal, M.H.; Hilal, H.S. Enhanced PEC characteristics for CdSe polycrystalline film electrodes prepared by combined electrochemical/chemical bath depositions. J. Electroanal. Chem. 2016, 774, 7–13. [Google Scholar] [CrossRef]
- Sabri, H.; Saleh, S.; Zyoud, A.; Abdel-Rahman, N.N.; Saadeddin, I.; Campet, G.; Park, D.; Faroun, M.; Hilal, H.S. Enhancement of CdSe film electrode PEC characteristics by metalloporphyrin/polysiloxane matrices. Electrochim. Acta 2014, 136, 138–145. [Google Scholar] [CrossRef]
- Li, J.; Wu, N. Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: A review. Catal. Sci. Technol. 2015, 5, 1360–1384. [Google Scholar] [CrossRef]
- Wang, M.; Nie, T.; She, Y.; Tao, L.; Luo, X.; Xu, Q.; Guo, L. Study on the behavior of single oxygen bubble regulated by salt concentration in photoelectrochemical water splitting. Int. J. Hydrogen Energy 2023, 48, 23387–23401. [Google Scholar] [CrossRef]
- Patel, D.B.; Chauhan, K.R.; Mukhopadhyay, I. Impedance Analysis of Inherently Redox-Active Ionic-Liquid-Based Photoelectrochemical Cells: Charge-Transfer Mechanism in the Presence of an Additional Redox Couple. ChemPhysChem 2015, 16, 1750–1756. [Google Scholar] [CrossRef]
- Biswas, N.K.; Srivastav, A.; Saxena, S.; Verma, A.; Dutta, R.; Srivastava, M.; Upadhyay, S.; Satsangi, V.R.; Shrivastav, R.; Dass, S. The impact of electrolytic pH on photoelectrochemical water oxidation. RSC Adv. 2023, 13, 4324–4330. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhao, X.; Song, K.; Sun, X.; Xi, N.; Zhang, X.; Sang, Y.; Liu, H.; Yu, X. Polyol-assisted efficient hole transfer and utilization at the Si-based photoanode/electrolyte interface. Appl. Catal. B Environ. Energy 2024, 350, 123901. [Google Scholar] [CrossRef]
- Kong, H.; Gupta, S.; Pérez-Torres, A.F.; Höhn, C.; Bogdanoff, P.; Mayer, M.T.; van de Krol, R.; Favaro, M.; Abdi, F.F. Electrolyte selection toward efficient photoelectrochemical glycerol oxidation on BiVO4. Chem. Sci. 2024, 15, 10425–10435. [Google Scholar] [CrossRef]
- Wang, M.; Xu, Q.; Nie, T.; Luo, X.; She, Y.; Guo, L. Growth characteristics and the mass transfer mechanism of single bubble on a photoelectrode at different electrolyte concentrations. Phys. Chem. Chem. Phys. 2023, 25, 28497–28509. [Google Scholar] [CrossRef] [PubMed]
- Amelia, M.; Avellini, T.; Monaco, S.; Impellizzeri, S.; Yildiz, I.; Raymo, F.M.; Credi, A. Redox properties of CdSe and CdSe–ZnS quantum dots in solution. Pure Appl. Chem. 2010, 83, 1–8. [Google Scholar] [CrossRef]
- Lee, J.; Srimuk, P.; Fleischmann, S.; Su, X.; Hatton, T.A.; Presser, V. Redox-electrolytes for non-flow electrochemical energy storage: A critical review and best practice. Prog. Mater. Sci. 2019, 101, 46–89. [Google Scholar] [CrossRef]
- Nam, D.-H.; Lumley, M.A.; Choi, K.-S. Electrochemical redox cells capable of desalination and energy storage: Addressing challenges of the water–energy nexus. ACS Energy Lett. 2021, 6, 1034–1044. [Google Scholar] [CrossRef]
- Xu, D.; Zhang, S.; Yu, Y.; Zhang, S.; Ding, Q.; Lei, Y.; Shi, W. Ultrathin metal Ni layer on ZnO/TiO2 photoelectrodes with excellent photoeletrochemical performance in multiple electrolyte solutions. Fuel 2023, 351, 128774. [Google Scholar] [CrossRef]
- Prather, K.V.; Stoffel, J.T.; Tsui, E.Y. Redox reactions at colloidal semiconductor nanocrystal surfaces. Chem. Mater. 2023, 35, 3386–3403. [Google Scholar] [CrossRef]
- Faasse, R. Theoretical & Experimental Analysis of PEC Redox Flow Battery Kinetics; Delft University of Technology: Delft, The Netherlands, 2019. [Google Scholar]
- Wu, C.-Q.; Liu, A.-A.; Li, X.; Tu, J.-W.; Kong, J.; Yang, L.-L.; Jia, J.-H.; Wang, C.; Hu, B.; Xie, Z.-X.; et al. Intracellular redox potential-driven live-cell synthesis of CdSe quantum dots in Staphylococcus aureus. Sci. China Chem. 2024, 67, 990–999. [Google Scholar] [CrossRef]
- Mugisa, J.; Chukwu, R.; Brogioli, D.; La Mantia, F. Effect of ion-paring on the kinetics of redox systems with concentrated supporting electrolyte. Electrochim. Acta 2024, 473, 143473. [Google Scholar] [CrossRef]
- Biswas, N.K.; Srivastav, A.; Saxena, S.; Verma, A.; Dutta, R.; Srivastava, M.; Satsangi, V.R.; Shrivastav, R.; Dass, S. Role of varying ionic strength on the photoelectrochemical water splitting efficiency. Sol. Energy 2022, 247, 543–552. [Google Scholar] [CrossRef]
- Bekhit, M.; Blazek, T.; Gorski, W. Electroanalysis of enzyme activity in small biological samples: Alkaline phosphatase. Anal. Chem. 2021, 93, 14280–14286. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Xiao, Y.; Imel, A.; Barth, B.A.; Cantillo, N.M.; Nelms, K.M.; Zawodzinski, T.A. Electrolyte effects on the electrochemical performance of microemulsions. Electrochim. Acta 2021, 393, 139048. [Google Scholar] [CrossRef]
- Kontogeorgis, G.M.; Maribo-Mogensen, B.; Thomsen, K. The Debye-Hückel theory and its importance in modeling electrolyte solutions. Fluid Phase Equilibria 2018, 462, 130–152. [Google Scholar] [CrossRef]
- Manov, G.G.; Bates, R.G.; Hamer, W.J.; Acree, S.F. Values of the constants in the Debye—Hückel equation for activity coefficients. J. Am. Chem. Soc. 1943, 65, 1765–1767. [Google Scholar] [CrossRef]
- Shilov, I.Y.; Lyashchenko, A. Activity coefficient modeling for aqueous aluminum salt solutions in terms of the generalized Debye–Hückel theory. Russ. J. Inorg. Chem. 2019, 64, 1186–1189. [Google Scholar] [CrossRef]
- Ozmen, S.I.; Gubur, H.M. Characterization of CdSe thin film fabricated by electrodeposition. Optoelectron. Adv. Mater. Rapid Commun. 2022, 16, 453–457. [Google Scholar]
- Litaiem, Y.; Dridi, D.; Slimi, B.; Chtourou, R. Electrodeposition of Cadmium Selenide Based Photoanodes from TOMAC/Formamide Ionic Liquid System for Photoelectrochemical Water Splitting. Int. J. Nanosci. 2023, 22, 2350013. [Google Scholar] [CrossRef]
- Najm, A.S.; Naeem, H.S.; Alwarid, D.A.R.M.; Aljuhani, A.; Hasbullah, S.A.; Hasan, H.A.; Sopian, K.; Bais, B.; Al-Iessa, H.J.; Majdi, H.S.; et al. Mechanism of chemical bath deposition of CdS thin films: Influence of sulphur precursor concentration on microstructural and optoelectronic characterizations. Coatings 2022, 12, 1400. [Google Scholar] [CrossRef]
- Zyoud, A.; Saadeddin, I.; Khurduj, S.; Mari’e, M.; Hawash, Z.M.; Faroun, M.I.; Campet, G.; Park, D.; Hilal, H.S. Combined electrochemical/chemical bath depositions to prepare CdS film electrodes with enhanced PEC characteristics. J. Electroanal. Chem. 2013, 707, 117–121. [Google Scholar] [CrossRef]
- Hone, F.G.; Ampong, F.K.; Abza, T.; Nkrumah, I.; Nkum, R.K.; Boakye, F. Synthesis and characterization of CdSe nanocrystalline thin film by chemical bath deposition technique. Int. J. Thin. Fil. Sci. Tecnol. 2015, 4, 69–74. [Google Scholar]
- Jin, Y.S.; Kim, K.H.; Park, S.J.; Yoon, H.H.; Choi, H.W. Properties of TiO2 films prepared for use in dye-sensitized solar cells by using the sol-gel method at different catalyst concentrations. J. Korean Phys. Soc. 2010, 57, 1049–1053. [Google Scholar] [CrossRef]
- Vargas-Hernández, C.; Lara, V.C.; Vallejo, J.E.; Jurado, J.F.; Giraldo, O. XPS, SEM and XRD investigations of CdSe films prepared by chemical bath deposition. Phys. Status Solidi (B) 2005, 242, 1897–1901. [Google Scholar] [CrossRef]
- Singh, R.S.; Bhushan, S.; Singh, A.K.; Deo, S.R. Characterization and optical properties of CdSe nano-crystalline thin films. Dig. J. Nanomater. Biostructures 2011, 6, 403. [Google Scholar]
- Stern, F. Elementary Theory of the Optical Properties of Solids. In Solid State Physics; Elsevier: Amsterdam, The Netherlands, 1963; pp. 299–408. [Google Scholar]
- Zyoud, A.; Abu Alrob, S.; Kim, T.W.; Choi, H.-J.; Helal, M.H.; Bsharat, H.; Hilal, H.S. Electrochemically and chemically deposited polycrystalline CdSe electrodes with high photoelectrochemical performance by recycling from waste films. Mater. Sci. Semicond. Process. 2020, 107, 104852. [Google Scholar] [CrossRef]
Solution | NaOH | Na2S | [Na+], M | [OH−], M | [S2−], M | µ | γNa | γOH | γS | αNa | αOH | αS | α Solution | [solution], M |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a | 0.05 | 0.05 | 0.15 | 0.05 | 0.05 | 0.2 | 0.724 | 0.707 | 0.298 | 0.109 | 0.035 | 0.015 | 0.159 | 0.25 |
b | 0.1 | 0.1 | 0.3 | 0.1 | 0.1 | 0.4 | 0.675 | 0.650 | 0.233 | 0.203 | 0.065 | 0.023 | 0.291 | 0.5 |
c | 0.15 | 0.15 | 0.45 | 0.15 | 0.15 | 0.6 | 0.647 | 0.618 | 0.201 | 0.291 | 0.093 | 0.030 | 0.414 | 0.75 |
d | 0.2 | 0.2 | 0.6 | 0.2 | 0.2 | 0.8 | 0.628 | 0.596 | 0.182 | 0.377 | 0.119 | 0.036 | 0.532 | 1 |
Solution | Redox Molar Conc. | Redox Activity | Jm × 10−3 | Vm | Max Obs Power × 10−3 | Jsc × 10−3 | Voc | Ideal Power × 10−3 | FF | Efficiency% |
---|---|---|---|---|---|---|---|---|---|---|
a | 0.25 | 0.159 | 0.38 | −0.30 | 0.114 | 0.42 | −0.47 | 0.20 | 0.58 | 1.8 |
b | 0.5 | 0.291 | 0.52 | −0.31 | 0.1612 | 0.68 | −0.48 | 0.33 | 0.50 | 2.9 |
c | 0.75 | 0.414 | 0.64 | −0.31 | 0.1984 | 0.89 | −0.49 | 0.44 | 0.46 | 3.8 |
d | 1 | 0.532 | 0.78 | −0.31 | 0.2418 | 1.05 | −0.50 | 0.53 | 0.46 | 4.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zyoud, A.H. Optimization of CdSe Thin-Film Photoelectrochemical Cells: Effects of NaOH/Na2S/S Redox Couple Concentration and Activity on Cell Efficiency. Photochem 2024, 4, 334-345. https://doi.org/10.3390/photochem4030020
Zyoud AH. Optimization of CdSe Thin-Film Photoelectrochemical Cells: Effects of NaOH/Na2S/S Redox Couple Concentration and Activity on Cell Efficiency. Photochem. 2024; 4(3):334-345. https://doi.org/10.3390/photochem4030020
Chicago/Turabian StyleZyoud, Ahed H. 2024. "Optimization of CdSe Thin-Film Photoelectrochemical Cells: Effects of NaOH/Na2S/S Redox Couple Concentration and Activity on Cell Efficiency" Photochem 4, no. 3: 334-345. https://doi.org/10.3390/photochem4030020
APA StyleZyoud, A. H. (2024). Optimization of CdSe Thin-Film Photoelectrochemical Cells: Effects of NaOH/Na2S/S Redox Couple Concentration and Activity on Cell Efficiency. Photochem, 4(3), 334-345. https://doi.org/10.3390/photochem4030020