Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = photocatalytic degradation of amoxicillin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3361 KiB  
Article
SnS2-TiO2 Heterojunction Designed for Reductive Degradation of Contaminants of Emerging Concern
by Suresh Kumar Pandey, Sandra Romac, Josipa Papac Zjačić, Marijana Kraljić Roković, Marin Kovačić, Hrvoje Kušić, Boštjan Žener, Boštjan Genorio, Urška Lavrenčič Štangar and Ana Lončarić Božić
Nanomaterials 2025, 15(13), 969; https://doi.org/10.3390/nano15130969 - 22 Jun 2025
Viewed by 519
Abstract
Contaminants of emerging concern (CECs), including pharmaceuticals and perfluorinated compounds, pose a growing threat to water quality due to their persistence and resistance to conventional treatment methods. In this context, photocatalytic processes capable of promoting both oxidative and reductive transformations have attracted increasing [...] Read more.
Contaminants of emerging concern (CECs), including pharmaceuticals and perfluorinated compounds, pose a growing threat to water quality due to their persistence and resistance to conventional treatment methods. In this context, photocatalytic processes capable of promoting both oxidative and reductive transformations have attracted increasing attention. This study explores the synthesis and performance of a SnS2-TiO2 heterojunction photocatalyst, designed to facilitate such reactions under solar and UV-A light. The composite was synthesized via the hydrothermal method and thoroughly characterized for its morphological, structural, surface, and semiconducting properties. The results confirmed the formation of a type-II heterojunction with improved visible-light absorption and suppressed charge recombination. Photoelectrochemical measurements indicated enhanced charge separation and favorable band-edge alignment for reductive processes. Photocatalytic experiments with amoxicillin (AMX) and perfluorooctanoic acid (PFOA) revealed distinct degradation behaviors: AMX was predominantly degraded via superoxide-mediated reductive pathways, whereas PFOA exhibited limited transformation, likely proceeding via a combination of oxidative and reductive mechanisms. While overall removal efficiencies were moderate, this study highlights the role of band structure engineering and heterojunction design in tailoring photocatalytic behavior. The SnS2-TiO2 system serves as a promising platform for further development of composite materials to address the challenge of CECs in water treatment. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Graphical abstract

21 pages, 7262 KiB  
Article
Excellent Photocatalytic Performance Against Amoxicillin Antibiotic and Pt-Free Hydrogen Production Using Fe-Doped ZnS Nanostructures: Reaction Kinetics and Mechanistic Insights
by Ali Raza, Syeda Takmeel Zahra, Hadia Noor, Shahzad Naseem, Saira Riaz, Mohammad Ehtisham Khan, Wahid Ali, Mohammad S. Alomar, Anwar Ulla Khan, Syed Kashif Ali, Nazim Hasan and Waleed Zakri
Catalysts 2025, 15(2), 165; https://doi.org/10.3390/catal15020165 - 11 Feb 2025
Cited by 1 | Viewed by 880
Abstract
This research presents the synthesis of Fe-doped ZnS nanocomposites via a chemical route, exploring their photocatalytic activity against amoxicillin (AMX) and evaluating their hydrogen production potential. The synthesized nanocomposites were characterized by several state-of-the-art analytical techniques, such as XRD, SEM, PL, UV adsorption, [...] Read more.
This research presents the synthesis of Fe-doped ZnS nanocomposites via a chemical route, exploring their photocatalytic activity against amoxicillin (AMX) and evaluating their hydrogen production potential. The synthesized nanocomposites were characterized by several state-of-the-art analytical techniques, such as XRD, SEM, PL, UV adsorption, Raman, TEM, and AFM. The photocatalytic performance revealed significant degradation of AMX under optimal conditions. Specifically, Fe-doped ZnS nanocomposites achieved a degradation efficiency of 94% within 120 min at a photocatalyst dosage of 110 mg. The pristine ZnS nanoparticles exhibited a hydrogen production rate of 23.6 µmol·g−1·h−1, whereas Fe doping substantially enhanced this rate to 526.6 µmol·g−1·h−1 under optimized conditions. The optimal temperature for hydrogen production was 200 °C, with maximum efficiency at pH 7. Furthermore, the recyclability tests demonstrated that the photocatalyst maintained a considerable hydrogen production rate over multiple cycles, underscoring its potential for commercial nanotechnology and environmental science applications. Full article
(This article belongs to the Special Issue Photocatalytic/Photoelectrocatalysis Water Splitting)
Show Figures

Figure 1

14 pages, 5855 KiB  
Article
Electrospun Nanofiber Dopped with TiO2 and Carbon Quantum Dots for the Photocatalytic Degradation of Antibiotics
by Valentina Silva, Diana L. D. Lima, Etelvina de Matos Gomes, Bernardo Almeida, Vânia Calisto, Rosa M. F. Baptista and Goreti Pereira
Polymers 2024, 16(21), 2960; https://doi.org/10.3390/polym16212960 - 22 Oct 2024
Cited by 5 | Viewed by 1788
Abstract
Novel photocatalysts were synthesized through the association of carbon quantum dots (CQDs) with commercial (P25) titanium dioxide (TiO2) by sonication. The resulting TiO2/CQDs composite was then incorporated into the polyamide 66 (PA66) biopolymer nanofibers using the electrospinning technique, considering [...] Read more.
Novel photocatalysts were synthesized through the association of carbon quantum dots (CQDs) with commercial (P25) titanium dioxide (TiO2) by sonication. The resulting TiO2/CQDs composite was then incorporated into the polyamide 66 (PA66) biopolymer nanofibers using the electrospinning technique, considering a composite nanoparticles-to-polymer ratio of 1:2 in the electrospinning precursor solution. The produced nanofibers presented suitable morphology and were tested for the photocatalytic degradation under simulated solar radiation of 10 mg L−1 of amoxicillin (AMX) and sulfadiazine (SDZ), in phosphate buffer solution (pH 8.06) and river water, using 1.5 g L−1 of photocatalyst. The presence of the photocatalyst increased the removal of AMX in phosphate buffer solution by 30 times, reducing the AMX degradation half-life time from 62 ± 1 h (without catalyst) to 1.98 ± 0.06 h. Moreover, SDZ degradation half-life time in phosphate buffer solution was reduced from 5.4 ± 0.1 h (without catalyst) to 1.87 ± 0.05 h in the presence of the photocatalyst. Furthermore, the PA66/TiO2/CQDs were also efficient in river water samples and maintained their performance in at least three cycles of SDZ photodegradation in river water. The presented results evidence that the produced photocatalyst can be a promising and sustainable solution for antibiotics’ efficient removal from water. Full article
Show Figures

Figure 1

17 pages, 4656 KiB  
Article
Layered Double Hydroxide-Based Composites for Concerted Decontamination of Water
by Qays Al Hasnawi, Sabina Gabriela Ion, Mădălina Tudorache, Octavian Dumitru Pavel and Bogdan Cojocaru
Catalysts 2024, 14(10), 668; https://doi.org/10.3390/catal14100668 - 27 Sep 2024
Cited by 2 | Viewed by 1027
Abstract
A series of composites was prepared starting from five types of LDHs, which were then exchanged with three types of metallo-phthalocyanines, and, in the end, magnetic nanoparticles were attached. In the case of LDHs containing Fe, characterization data showed that there was a [...] Read more.
A series of composites was prepared starting from five types of LDHs, which were then exchanged with three types of metallo-phthalocyanines, and, in the end, magnetic nanoparticles were attached. In the case of LDHs containing Fe, characterization data showed that there was a partial oxidation from Fe2+ to Fe3+. Samples containing evident LDH structures performed better in general than the ones containing iron oxide mixtures, the composites being more active towards amoxicillin removal compared with ampicillin removal. The nature of the phthalocyanine did not have such a great influence, although some differences in the activity were observed. The removal was a combination between adsorption and photocatalytic degradation. The best composites for this application were those based on Mg0.325Fe0.325Al0.25-LDH prepared by co-precipitation in the presence of NaOH and Na2CO3. They presented high adsorption capacity in 10 min and, at the same time, high photocatalytic activity for both amoxicillin and ampicillin. Full article
Show Figures

Graphical abstract

24 pages, 11966 KiB  
Review
Photodegradation of Amoxicillin in Aqueous Systems: A Review
by Mohammad Ashraf Ali and Ibrahim M. Maafa
Int. J. Mol. Sci. 2024, 25(17), 9575; https://doi.org/10.3390/ijms25179575 - 4 Sep 2024
Cited by 6 | Viewed by 2951
Abstract
Amoxicillin (AMX) is utilized in the treatment of several infectious diseases, and its concentration in wastewater has increased quite significantly over the years, posing high health hazards for humans and other living organisms. Investigations are in progress globally to eliminate AMX and other [...] Read more.
Amoxicillin (AMX) is utilized in the treatment of several infectious diseases, and its concentration in wastewater has increased quite significantly over the years, posing high health hazards for humans and other living organisms. Investigations are in progress globally to eliminate AMX and other related pollutants using several methods that include adsorption, photolysis, photocatalytic degradation, photoelectrocatalytic degradation, and electrochemical conversion. AMX can be eliminated efficiently from the environment using photodegradation, either by photolysis or a photocatalytic process. Several types of semiconductor NMs have been used to eliminate AMX and other related drugs present in wastewater. This review spans the photodegradation studies conducted during the years 2018–2024 to degrade and eliminate AMX in aquatic systems. Several studies have been reported to eliminate AMX from different water streams. These studies are categorized into TiO2-containing and non-TiO2-based catalysts for better comparison. A section on photolysis is also included, showing the use of UV alone or with H2O2 or PS without using any nanomaterial. A tabulated summary of both types of catalysts showing the catalysts, reaction conditions, and degradation efficiency is presented. Researchers have used a variety of reaction conditions that include radiation types (UV, solar, and visible), pH of the solution, concentration of AMX, number of nanomaterials, presence of other additives and activators such as H2O2 as oxidant, and the influence of different salts like NaCl and CaCl2 on the photodegradation efficiency. TiO2 was the best nanomaterial found that achieved the highest degradation of AMX in ultraviolet irradiation. TiO2 doped with other nanomaterials showed very good performance under visible light. WO3 was also used by several investigators and found quite effective for AMX degradation. Other metal oxides used for AMX elimination were derived from molybdenum, zinc, manganese, copper, cerium, silver, etc. Some researchers have used UV and/or visible irradiation or sunlight, without using solid catalysts, in the presence of oxidants such as H2O2. A summarized description of earlier published reviews is also presented. Full article
(This article belongs to the Special Issue Recent Advances in Photolysis and Photodegradation)
Show Figures

Figure 1

17 pages, 10577 KiB  
Article
Coating on Steel Discs with a Photocatalytic System CuO/SiO2 for the Degradation of the Ubiquitous Contaminants Methylene Blue and Amoxicillin
by Alberto Hernández-Reyes, Irina V. Lijanova, Aristeo Garrido-Hernández, Ángel de J. Morales-Ramirez, Carlos Hernández-Fuentes, Evelyn Y. Calvillo-Muñoz, Natalya V. Likhanova and Octavio Olivares-Xometl
Coatings 2024, 14(5), 523; https://doi.org/10.3390/coatings14050523 - 24 Apr 2024
Cited by 1 | Viewed by 1259
Abstract
The present research work describes the synthesis and characterization of CuO/SiO2 for coating-perforated 304 stainless steel (SS) substrates to degrade methylene blue and amoxicillin under visible light irradiation. The foregoing photocatalytic system was achieved through the coprecipitation method by adding pure CuO [...] Read more.
The present research work describes the synthesis and characterization of CuO/SiO2 for coating-perforated 304 stainless steel (SS) substrates to degrade methylene blue and amoxicillin under visible light irradiation. The foregoing photocatalytic system was achieved through the coprecipitation method by adding pure CuO to a SiO2 sol at 1:5, 1:10, and 1:15 molar ratios. The conditions for carrying out the depositions on the SS substrates (three per substrate) involved an immersion rate of 90 mm/min with a drying time of 20 min at 120 °C. The XRD technique confirmed the presence of the SiO2 amorphous phases and CuO monoclinic systems in the coatings, with a particle size distribution ranging from 0.5 to 2.5 μm (with an average of 1.26 ± 0.06 μm). As for SEM, it revealed a homogeneous coating surface without cracks. The produced photoactive CuO/SiO2 coatings were capable of degrading methylene blue (98%) at 1500 min and amoxicillin (55%) at 450 min. Full article
(This article belongs to the Special Issue Advances in Low-Cost Energy Materials and Thin Films)
Show Figures

Figure 1

16 pages, 6525 KiB  
Article
Effective Reinforcement of Visible Light Photocatalytic and Gas Sensing Characteristics of Nanocrystalline TiO2: Gd-Based Nb and Mo Dopants
by Ghayah M. Alsulaim
Molecules 2023, 28(21), 7239; https://doi.org/10.3390/molecules28217239 - 24 Oct 2023
Cited by 2 | Viewed by 1409
Abstract
Efficient compositions for the selective detection of ethanol gas and the removal of organic contaminants were realized by codoping of (Gd, Nb) and (Gd, Mo) ions into TiO2. TiO2, Ti0.96Gd0.01Nb0.03O2, and [...] Read more.
Efficient compositions for the selective detection of ethanol gas and the removal of organic contaminants were realized by codoping of (Gd, Nb) and (Gd, Mo) ions into TiO2. TiO2, Ti0.96Gd0.01Nb0.03O2, and Ti0.96Gd0.01Mo0.03O2 samples were prepared by a coprecipitation method. For all compositions, a crystalline anatase phase of TiO2 was detected. Compared to pure TiO2, the absorption edges of Ti0.96Gd0.01Nb0.03O2 and Ti0.96Gd0.01Mo0.03O2 samples were red-shifted, further broadening towards visible light. The morphological studies demonstrate that the grains of TiO2 were more refined after (Gd, Nb) and (Gd, Mo) codoping. The photocatalytic efficiency of the Ti0.96Gd0.01Mo0.03O2 catalyst for degrading 20 mg/L reactive yellow 145, brilliant green, and amoxicillin was 98, 95, and 93% in 90 min, respectively. The reusability experiments indicate that the Ti0.96Gd0.01Mo0.03O2 catalyst had high stability during reuse. The high photocatalytic activity of the Ti0.96Gd0.01Mo0.03O2 catalyst was correlated to the broad visible-light absorption and effective separation of electron–hole pairs by Gd3+ and Mo6+ cations. The gas sensing characteristic is reflected by the high sensitivity of the Ti0.96Gd0.01Nb0.03O2 sensor to ethanol gas in the presence of different gases at 275 °C. The obtained results indicated that the (Gd, Mo) mixture could more effectively induce the photocatalytic properties of TiO2 while (Gd, Nb) dopants were the best for reinforcing its sensing characteristics. Full article
(This article belongs to the Section Inorganic Chemistry)
Show Figures

Graphical abstract

19 pages, 6507 KiB  
Article
Co- and Ni-Doped TiO2 Nanoparticles Supported on Zeolite Y with Photocatalytic Properties
by Gabriela Petcu, Florica Papa, Irina Atkinson, Adriana Baran, Nicoleta G. Apostol, Simona Petrescu, Lionel Richaudeau, Jean-Luc Blin and Viorica Parvulescu
Nanomaterials 2023, 13(15), 2200; https://doi.org/10.3390/nano13152200 - 28 Jul 2023
Cited by 9 | Viewed by 2581
Abstract
Zeolite Y samples with microporous and hierarchical structures containing Ti–Ni and Ti–Co oxides were obtained as active photocatalysts. Different Ti amounts (5, 10% TiO2) were supported, followed by the loading of Ni or Co oxides (5%). X-ray diffraction evidenced the presence [...] Read more.
Zeolite Y samples with microporous and hierarchical structures containing Ti–Ni and Ti–Co oxides were obtained as active photocatalysts. Different Ti amounts (5, 10% TiO2) were supported, followed by the loading of Ni or Co oxides (5%). X-ray diffraction evidenced the presence of TiO2 as an anatase. N2 adsorption–desorption results showed type IV isotherms for hierarchical zeolite Y samples, and a combination of type IV and I isotherms for zeolite Y samples. UV–Vis diffuse reflectance spectra showed a shift in the absorption band to visible with increasing Ti loading and especially after Co and Ni addition. A significant effect of the support was evidenced for Ti and its interaction with Co/Ni species. The zeolite Y support stabilized Ti in the 4+ oxidation state while hierarchical zeolite Y support favored the formation of Ti3+ species, Ni0 and Ni2+ and the oxidation of Co to 3+ oxidation state. Photocatalytic activity, under UV and visible light irradiation, was evaluated by the degradation of amoxicillin, used as a model test. The photocatalytic mechanism was investigated using ethanol, p-benzoquinone and KI as ·OH and ·O2 radicals and hole (h+) scavengers. The best results were obtained for the immobilized Ni-Ti species on the hierarchical zeolite Y support. Full article
Show Figures

Figure 1

22 pages, 7035 KiB  
Article
Effects of Aluminosilicate Gel Treatment and TiO2 Loading on Photocatalytic Properties of Au–TiO2/Zeolite Y
by Gabriela Petcu, Florica Papa, Elena Maria Anghel, Irina Atkinson, Silviu Preda, Simona Somacescu, Daniela C. Culita, Adriana Baran, Elena Madalina Ciobanu, Luiza Maria Jecu, Mariana Constantin and Viorica Parvulescu
Gels 2023, 9(6), 503; https://doi.org/10.3390/gels9060503 - 20 Jun 2023
Cited by 6 | Viewed by 2531
Abstract
The present work reports the synthesis of efficient Ti–Au/zeolite Y photocatalysts by different processing of aluminosilicate gel and studies the effect of titania content on the structural, morphological, textural, and optical properties of the materials. The best characteristics of zeolite Y were obtained [...] Read more.
The present work reports the synthesis of efficient Ti–Au/zeolite Y photocatalysts by different processing of aluminosilicate gel and studies the effect of titania content on the structural, morphological, textural, and optical properties of the materials. The best characteristics of zeolite Y were obtained by aging the synthesis gel in static conditions and mixing the precursors under magnetic stirring. Titania (5, 10, 20%) and gold (1%) species were incorporated in zeolite Y support by the post-synthesis method. The samples were characterized by X-ray diffraction, N2-physisorption, SEM, Raman, UV–Vis and photoluminescence spectroscopy, XPS, H2-TPR, and CO2-TPD. The photocatalyst with the lowest TiO2 loading shows only metallic Au on the outermost surface layer, while a higher content favors the formation of additional species such as: cluster type Au, Au1+, and Au3+. A high TiO2 content contributes to increasing the lifetime of photogenerated charge careers, and the adsorption capacity of the pollutant. Therefore, an increase in the photocatalytic performances (evaluated in degradation of amoxicillin in water under UV and visible light) was evidenced with the titania content. The effect is more significant in visible light due to the surface plasmon resonance (SPR) effect of gold interacting with the supported titania. Full article
(This article belongs to the Special Issue Designing Gels for Catalysts)
Show Figures

Graphical abstract

13 pages, 3444 KiB  
Article
Enhanced Photocatalytic Degradation of Amoxicillin with Mn-Doped Cu2O under Sunlight Irradiation
by Yohannes Teklemariam Gaim, Simachew Mekides Yimanuh and Zaid Girmay Kidanu
J. Compos. Sci. 2022, 6(10), 317; https://doi.org/10.3390/jcs6100317 - 17 Oct 2022
Cited by 30 | Viewed by 3814
Abstract
In this work, we report the synthesis of Mn-doped Cu2O nanoparticles using aloe vera leaves extract. X-ray diffraction data revealed that the Mn-doped Cu2O crystals have a cubic crystal structure. The surface morphology of the as-synthesized catalyst indicated truncated [...] Read more.
In this work, we report the synthesis of Mn-doped Cu2O nanoparticles using aloe vera leaves extract. X-ray diffraction data revealed that the Mn-doped Cu2O crystals have a cubic crystal structure. The surface morphology of the as-synthesized catalyst indicated truncated octahedral and spherical-like shapes. The photocatalytic activity of the catalyst is efficient at pH 9, initial concentration of amoxicillin 15 mg/L, and photocatalyst dosage 1 g/L under sunlight irradiation. 92% of amoxicillin was degraded in the presence of Mn-doped Cu2O. The enhancement in photocatalytic performance is due to the incorporation of Mn, which delays the rapid recombination rate by trapping the photogenerated electron. Therefore, Mn-doped Cu2O could remove pharmaceuticals from pharmaceutical factory and hospital wastes. Full article
(This article belongs to the Special Issue Metal Composites)
Show Figures

Figure 1

19 pages, 2684 KiB  
Article
Au/Ti Synergistically Modified Supports Based on SiO2 with Different Pore Geometries and Architectures
by Gabriela Petcu, Elena Maria Anghel, Elena Buixaderas, Irina Atkinson, Simona Somacescu, Adriana Baran, Daniela Cristina Culita, Bogdan Trica, Corina Bradu, Madalina Ciobanu and Viorica Parvulescu
Catalysts 2022, 12(10), 1129; https://doi.org/10.3390/catal12101129 - 28 Sep 2022
Cited by 8 | Viewed by 2673
Abstract
New photocatalysts were obtained by immobilization of titanium and gold species on zeolite Y, hierarchical zeolite Y, MCM-48 and KIT-6 supports with microporous, hierarchical and mesoporous cubic structure. The obtained samples were characterized by X-ray diffraction (XRD), N2-physisorption, scanning and transmission [...] Read more.
New photocatalysts were obtained by immobilization of titanium and gold species on zeolite Y, hierarchical zeolite Y, MCM-48 and KIT-6 supports with microporous, hierarchical and mesoporous cubic structure. The obtained samples were characterized by X-ray diffraction (XRD), N2-physisorption, scanning and transmission electron microscopy (SEM/TEM), diffuse reflectance UV–Vis spectroscopy (DRUV-Vis), X-ray photoelectron spectroscopy (XPS), Raman and photoluminescence spectroscopy. The photocatalytic properties were evaluated in degradation of amoxicillin (AMX) from water, under UV (254 nm) and visible light (532 nm) irradiation. The higher degradation efficiency and best apparent rate constant were obtained under UV irradiation for Au-TiO2-KIT-6, while in the visible condition for the Au-TiO2-MCM-48 sample containing anatase, rutile and the greatest percent of Au metallic clusters were found (evidenced by XPS). Although significant values of amoxicillin degradation were obtained, total mineralization was not achieved. These results were explained by different reaction mechanisms, in which Au species act as e trap in UV and e generator in visible light. Full article
(This article belongs to the Special Issue Effect of the Modification of Catalysts on the Catalytic Performance)
Show Figures

Graphical abstract

14 pages, 4247 KiB  
Article
Evaluation of the Photocatalytic Properties of Copper Oxides/Graphene/TiO2 Nanoparticles Composites
by Dragos Cosma, Alexandra Urda, Teodora Radu, Marcela C. Rosu, Maria Mihet and Crina Socaci
Molecules 2022, 27(18), 5803; https://doi.org/10.3390/molecules27185803 - 7 Sep 2022
Cited by 22 | Viewed by 2541
Abstract
Easy and cost-efficient modifications of titanium dioxide nanoparticles that improve their efficiency in the visible light domain represent a continuous and challenging research topic. In addition, the effect of graphene on the overall photocatalytic process is still debated. Consequently, herein, we prepared a [...] Read more.
Easy and cost-efficient modifications of titanium dioxide nanoparticles that improve their efficiency in the visible light domain represent a continuous and challenging research topic. In addition, the effect of graphene on the overall photocatalytic process is still debated. Consequently, herein, we prepared a series of TiO2 nanoparticle-based composites with different copper oxide mass content (1–3%) and co-doped with graphene of different oxidation degrees. Different characterization techniques were used to analyze the structural and physico-chemical properties of the obtained composites: Scanning Electron Microscopy (SEM)/Transmission Electron Microscopy (TEM)/Energy-dispersive X-ray spectroscopy (EDX) analysis, X-ray powder diffraction (XRD), Fourier-transformed infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The photocatalytic performance was evaluated by the degradation of methylene blue under both UVA and visible light irradiation. The nanocomposites show very good photocatalytic activity independent of the presence of reduced graphene oxide, due to the Cu2O/CuO-TiO2 heterojunctions. This finding has been confirmed by the very efficient visible-light-driven degradation of amoxicillin and ciprofloxacin. Full article
(This article belongs to the Section Photochemistry)
Show Figures

Figure 1

17 pages, 4841 KiB  
Article
Visible-Light-Active Black TiO2 Nanoparticles with Efficient Photocatalytic Performance for Degradation of Pharmaceuticals
by Luminita Andronic, Daniela Ghica, Mariana Stefan, Catalina Gabriela Mihalcea, Aurel-Mihai Vlaicu and Smagul Karazhanov
Nanomaterials 2022, 12(15), 2563; https://doi.org/10.3390/nano12152563 - 26 Jul 2022
Cited by 18 | Viewed by 3176
Abstract
Special attention has recently been paid to surface-defective titanium dioxide and black TiO2 with advanced optical, electrical, and photocatalytic properties. Synthesis of these materials for photodegradation and mineralization of persistent organic pollutants in water, especially under visible radiation, presents interest from scientific [...] Read more.
Special attention has recently been paid to surface-defective titanium dioxide and black TiO2 with advanced optical, electrical, and photocatalytic properties. Synthesis of these materials for photodegradation and mineralization of persistent organic pollutants in water, especially under visible radiation, presents interest from scientific and application points of view. Chemical reduction by heating a TiO2 and NaBH4 mixture at 350 °C successfully introduced Ti3+ defects and oxygen vacancies at the surface of TiO2, with an increase in the photocatalytic degradation of amoxicillin—an antibiotic that is present in wastewater due to its intense use in human and animal medicine. Three TiO2 samples were prepared at different annealing temperatures to control the ratio between anatase and rutile and were subjected to chemical reduction. Electron paramagnetic resonance investigations showed that the formation of surface Ti3+ defects in a high concentration occurred mainly in the anatase sample annealed at 400 °C, contributing to the bandgap reduction from 3.32 eV to 2.92 eV. The reduced band gap enhances visible light absorption and the efficiency of photocatalysis. The nanoparticles of ~90 m2/g specific surface area and 12 nm average size exhibit ~100% efficiency in the degradation of amoxicillin under simulated solar irradiation compared with pristine TiO2. Mineralization of amoxicillin and by-products was over 75% after 48 h irradiation for the anatase sample, where the Ti3+ defects were present in a higher concentration at the catalyst’s surface. Full article
Show Figures

Graphical abstract

21 pages, 4921 KiB  
Article
Photodegradation of Pharmaceutical Pollutants: New Photocatalytic Systems Based on 3D Printed Scaffold-Supported Ag/TiO2 Nanocomposite
by Laura Bergamonti, Claudia Graiff, Carlo Bergonzi, Marianna Potenza, Cinzia Reverberi, Maria Cristina Ossiprandi, Pier Paolo Lottici, Ruggero Bettini and Lisa Elviri
Catalysts 2022, 12(6), 580; https://doi.org/10.3390/catal12060580 - 25 May 2022
Cited by 11 | Viewed by 3274
Abstract
Due to the release of active pharmaceutical compounds in wastewater and their persistence in the environment, dangerous consequences can develop in the aquatic and terrestrial organisms. Chitosan/Ag/TiO2 3D printed scaffolds, at different Ag nanoparticle concentrations (10, 100, 1000 ppm) are investigated here [...] Read more.
Due to the release of active pharmaceutical compounds in wastewater and their persistence in the environment, dangerous consequences can develop in the aquatic and terrestrial organisms. Chitosan/Ag/TiO2 3D printed scaffolds, at different Ag nanoparticle concentrations (10, 100, 1000 ppm) are investigated here as promising materials for photocatalytic degradation under the UV–Vis irradiation of pharmaceutical compounds in wastewater. As target drugs, amoxicillin, paracetamol and their 1:1 mix were selected. Ag nanoparticles increase the photocatalytic efficiency of the system based on titanium dioxide embedded in the chitosan scaffold: in the presence of Chitosan/Ag100/TiO2, the selected pharmaceuticals (PhCs), monitored by UV–Vis spectroscopy, are completely removed in about 2 h. The photodegradation products of the PhCs were identified by Liquid Chromatography–Mass Spectroscopy and assessed for their toxicological impact on six different bacterial strains: no antibacterial activity was found towards the tested strains. This new system based on Ag/TiO2 supported on 3D chitosan scaffolds may represent an effective strategy to reduce wastewater pollution by emerging contaminants. Full article
(This article belongs to the Special Issue Photocatalytic Activity of TiO2 and Its Applications)
Show Figures

Graphical abstract

16 pages, 5073 KiB  
Article
Photocatalytic Efficiency of Metallo Phthalocyanine Sensitized TiO2 (MPc/TiO2) Nanocomposites for Cr(VI) and Antibiotic Amoxicillin
by Melek Koç Keşir, Münevver Sökmen and Zekeriya Bıyıklıoğlu
Water 2021, 13(16), 2174; https://doi.org/10.3390/w13162174 - 8 Aug 2021
Cited by 13 | Viewed by 4119
Abstract
Dye sensitization on semiconductor catalyst TiO2 was performed with four different metallophthalocyanine (MPc) derivates (M: Zn, Cu, Co, and Si) using a modified sol-gel method. MPc derivatives were loaded on TiO2 at 1% mass ratio aiming to increase its photocatalytic action [...] Read more.
Dye sensitization on semiconductor catalyst TiO2 was performed with four different metallophthalocyanine (MPc) derivates (M: Zn, Cu, Co, and Si) using a modified sol-gel method. MPc derivatives were loaded on TiO2 at 1% mass ratio aiming to increase its photocatalytic action and to shift the light absorption to higher UV region (365 nm). Non-ionic surfactant Triton X-100 (TX-100) was used to obtain a homogenous and mesa pore catalyst structure. The prepared catalysts were characterized by FT-IR, XRD, and SEM to determine the crystal and surface structural properties of nanocomposites. The nanocomposites were used for photocatalytic removal and degradation of Cr(VI) and amoxicillin (AMX) as model pollutants. Photocatalytic reduction capacities of the catalysts were tested for Cr(VI) (10 mg/L) and AMX (20 mg/L) aqueous solutions. ZnPc-TiO2 catalyst was successful for Cr(VI) photoreduction since all Cr(VI) ions in the solution were successfully removed. Presence of TX-100 in the sol-gel synthesis of ZnPc-TiO2 had a positive effect by increasing the Cr(VI) removal rate to 97.93% after 150 min exposure period. Prepared catalysts were also tested for photodegradation of AMX, applying similar procedures. In general, all catalysts exhibited low degradation rates under the studied condition but more effective with 254 nm UV light (50.38%). Neither surface modification with TX-100 nor MPc sensitization provided significant degradation of AMX. Full article
(This article belongs to the Special Issue New Perspectives in Photocatalytic Water Treatment)
Show Figures

Figure 1

Back to TopTop