Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (93)

Search Parameters:
Keywords = phosphorene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4006 KB  
Article
Mechanism of Coupling Twist Angle and Projectile Radius on Ballistic Impact Performance of Bilayer Phosphorene Membranes
by Ning Liu, Ke Huang, Xuejian Yang, Dongdong Xu and Lihua Wang
Nanomaterials 2025, 15(18), 1414; https://doi.org/10.3390/nano15181414 - 14 Sep 2025
Viewed by 408
Abstract
This study investigated the coupling mechanism between interlayer twist angle and projectile size on the ballistic performance of bilayer phosphorene membranes, a topic essential for designing efficient nano-protective materials, yet still poorly understood. Using coarse-grained molecular dynamic simulations, we systematically explored how twist [...] Read more.
This study investigated the coupling mechanism between interlayer twist angle and projectile size on the ballistic performance of bilayer phosphorene membranes, a topic essential for designing efficient nano-protective materials, yet still poorly understood. Using coarse-grained molecular dynamic simulations, we systematically explored how twist angles (0–90°) and projectile radii (2–10 nm) jointly influence impact response for membranes with a radius equal to 48 nm. We found that the effect of twist angle becomes significant only beyond a critical projectile size (~8 nm). Below this threshold, deformation remains local and twist-independent. However, for larger projectiles, the twist angle drastically alters wave propagation and failure modes. Specifically, a 90° twist induces severe wave reflection and interference, leading to a dramatic force amplification (up to 82%) and a 28% reduction in ballistic limit velocity, making it the most susceptible configuration. These results underline the critical role of twist–boundary–wave interaction in governing impact resistance and provide practical insights for the design of phosphorene-based nano-armor systems tailored to specific impact conditions. Full article
Show Figures

Figure 1

21 pages, 5387 KB  
Article
Cu@Phosphorene as a Promising Catalyst for CO2 to Formic Acid Conversion: A Mechanistic DFT Approach
by Zonia Bibi, Muhammad Ajmal, Shahaab Jilani, Aqsa Kamran, Fatima Yaseen, Muhammad Abid Zia, Ahmed Lakhani and Muhammad Ali Hashmi
Reactions 2025, 6(3), 45; https://doi.org/10.3390/reactions6030045 - 23 Aug 2025
Viewed by 489
Abstract
Carbon dioxide is naturally present in the Earth’s atmosphere and plays a role in regulating and balancing the planet’s temperature. However, due to various human activities, the amount of carbon dioxide is increasing beyond safe limits, disrupting the Earth’s natural temperature regulation system. [...] Read more.
Carbon dioxide is naturally present in the Earth’s atmosphere and plays a role in regulating and balancing the planet’s temperature. However, due to various human activities, the amount of carbon dioxide is increasing beyond safe limits, disrupting the Earth’s natural temperature regulation system. Today, CO2 is the most prevalent greenhouse gas; as its concentration rises, significant climate change occurs. Therefore, there is a need to utilize anthropogenically released carbon dioxide in valuable fuels, such as formic acid (HCOOH). Single-atom catalysts are widely used, where a single metal atom is anchored on a surface to catalyze chemical reactions. In this study, we investigated the potential of Cu@Phosphorene as a single-atom catalyst (SAC) for CO2 reduction using quantum chemical calculations. All computations for Cu@Phosphorene were performed using density functional theory (DFT). Mechanistic studies were conducted for both bimolecular and termolecular pathways. The bimolecular mechanism involves one CO2 and one H2 molecule adsorbing on the surface, while the termolecular mechanism involves two CO2 molecules adsorbing first, followed by H2. Results indicate that the termolecular mechanism is preferred for formic acid formation due to its lower activation energy. Further analysis included charge transfer assessment via NBO, and interactions between the substrate, phosphorene, and the Cu atom were confirmed using quantum theory of atoms in molecules (QTAIM) and non-covalent interactions (NCI) analysis. Ab initio molecular dynamics (AIMD) calculations examined the temperature stability of the catalytic complex. Overall, Cu@Phosphorene appears to be an effective catalyst for converting CO2 to formic acid and remains stable at higher temperatures, supporting efforts to mitigate climate change. Full article
Show Figures

Figure 1

9 pages, 1352 KB  
Article
Ultrasensitive and Selective ZPNRs-H Sensor for Sulfur Gas Molecules Detection
by Shaolong Su, Xiaodong Lv, Jian Gong and Zhi-Qiang Fan
Nanomaterials 2025, 15(16), 1273; https://doi.org/10.3390/nano15161273 - 18 Aug 2025
Viewed by 472
Abstract
The exceptional sensing properties of hydrogen-saturated zigzag phosphorene nanoribbons (ZPNRs-H) for sulfur-containing gases, namely SO3, SO2, and H2S, were investigated using first-principles calculations based on density functional theory. The total energy, adsorption energy, and Mulliken charge transfer [...] Read more.
The exceptional sensing properties of hydrogen-saturated zigzag phosphorene nanoribbons (ZPNRs-H) for sulfur-containing gases, namely SO3, SO2, and H2S, were investigated using first-principles calculations based on density functional theory. The total energy, adsorption energy, and Mulliken charge transfer were assessed to evaluate the adsorption properties of the ZPNRs-H towards these gases. Notably, the ZPNRs-H exhibits physical adsorption for SO2 and H2S gas molecules, while demonstrating chemical adsorption for SO3, characterized by a substantial adsorption energy and pronounced charge transfer. Furthermore, the adsorption of SO3 significantly modulates the electronic density of states near the Fermi level of ZPNRs-H. The current–voltage (I–V) characteristics unveil a remarkable enhancement in conductivity post-SO3 adsorption, underscoring the high sensitivity of ZPNRs-H towards SO3. Our findings provide profound theoretical insights, heralding the potential of ZPNRs-H as a cutting-edge sensor for SO3 detection. Full article
Show Figures

Figure 1

11 pages, 1295 KB  
Article
Research on the Poisson’s Ratio of Black Phosphorene Nanotubes Under Axial Tension
by Xinjun Tan, Touwen Fan and Kaiwang Zhang
Nanomaterials 2025, 15(16), 1259; https://doi.org/10.3390/nano15161259 - 15 Aug 2025
Cited by 1 | Viewed by 427
Abstract
In this paper, the Poisson’s ratio of black phosphorene nanotubes was examined through the molecular dynamics simulation method. Our research discovered that for the armchair black phosphorene nanotubes, the radial strain and the wall thickness strain are negatively linearly correlated with the axial [...] Read more.
In this paper, the Poisson’s ratio of black phosphorene nanotubes was examined through the molecular dynamics simulation method. Our research discovered that for the armchair black phosphorene nanotubes, the radial strain and the wall thickness strain are negatively linearly correlated with the axial strain, and both the radial Poisson’s ratio and the thickness Poisson’s ratio are positive. For the zigzag black phosphorene nanotubes, the wall thickness strain is negatively, linearly correlated with the axial strain, while the radial strain has a cubic polynomial function relationship with the axial strain. The thickness Poisson’s ratio is positive, while the radial Poisson’s ratio is a quantity related to the axial strain. As the axial strain increases, the radial Poisson’s ratio progressively diminishes from a positive value and becomes negative upon reaching a specific critical axial strain threshold. During the tensile deformation along the axial direction of the zigzag black phosphorene nanotubes, the radial strain initially decreases before subsequently increasing. Notably, the diameter of the nanotube may even surpass its initial value, demonstrating a radial expansion in response to axial tension. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Graphical abstract

14 pages, 2753 KB  
Article
Phosphorene-Supported Au(I) Fragments for Highly Sensitive Detection of NO
by Huimin Guo, Yuhan Liu and Xin Liu
Molecules 2025, 30(15), 3085; https://doi.org/10.3390/molecules30153085 - 23 Jul 2025
Viewed by 422
Abstract
The fabrication and application of single-site heterogeneous reaction centers are new frontiers in chemistry. Single-site heterogeneous reaction centers are analogous to metal centers in enzymes and transition-metal complexes: they are charged and decorated with ligands and would exhibit superior reactivity and selectivity in [...] Read more.
The fabrication and application of single-site heterogeneous reaction centers are new frontiers in chemistry. Single-site heterogeneous reaction centers are analogous to metal centers in enzymes and transition-metal complexes: they are charged and decorated with ligands and would exhibit superior reactivity and selectivity in chemical conversion. Such high reactivity would also result in significant response, such as a band gap or resistance change, to approaching molecules, which can be used for sensing applications. As a proof of concept, the electronic structure and reaction pathways with NO and NO2 of Au(I) fragments dispersed on phosphorene (Pene) were investigated with first-principle-based calculations. Atomic-deposited Au atoms on Pene (Au1-Pene) have hybridized Au states in the bulk band gap of Pene and a decreased band gap of 0.14 eV and would aggregate into clusters. Passivation of the Au hybrid states with -OH and -CH3 forms thermodynamically plausible HO-Au1-Pene and H3C-Au1-Pene and restores the band gap to that of bulk Pene. Inspired by this, HO-Au1-Pene and H3C-Au1-Pene were examined for detection of NO and NO2 that would react with -OH and -CH3, and the resulting decrease of band gap back to that of Au1-Pene would be measurable. HO-Au1-Pene and H3C-Au1-Pene are highly sensitive to NO and NO2, and their calculated theoretical sensitivities are all 99.99%. The reaction of NO2 with HO-Au1-Pene is endothermic, making the dissociation of product HNO3 more plausible, while the barriers for the reaction of CH3-Au1-Pene with NO and NO2 are too high for spontaneous detection. Therefore, HO-Au1-Pene is not eligible for NO2 sensing and CH3-Au1-Pene is not eligible for NO and NO2 sensing. The calculated energy barrier for the reaction of HO-Au-Pene with NO is 0.36 eV, and the reaction is about thermal neutral, suggesting HO-Au-Pene is highly sensitive for NO sensing and the reaction for NO detection is spontaneous. This work highlights the potential superior sensing performance of transition-metal fragments and their potential for next-generation sensing applications. Full article
Show Figures

Figure 1

12 pages, 5726 KB  
Article
A Theoretical Study on Electrocatalytic Nitrogen Reduction at Boron-Doped Monolayer/Bilayer Black Phosphorene Edges
by Wenkai Bao, Jianling Xiong and Ziwei Xu
Coatings 2025, 15(7), 755; https://doi.org/10.3390/coatings15070755 - 25 Jun 2025
Viewed by 458
Abstract
The catalytic activity of monolayer and bilayer boron-doped edge black phosphorene nanoribbons (BPNRs) as electrocatalysts for the nitrogen reduction reaction (NRR) was investigated using first-principles calculations based on density functional theory (DFT). The results indicate that boron incorporation facilitates effective N2 adsorption [...] Read more.
The catalytic activity of monolayer and bilayer boron-doped edge black phosphorene nanoribbons (BPNRs) as electrocatalysts for the nitrogen reduction reaction (NRR) was investigated using first-principles calculations based on density functional theory (DFT). The results indicate that boron incorporation facilitates effective N2 adsorption at specific BPNR edges, thereby achieving superior NRR electrocatalytic performance. Through NRR screening criteria, six candidate edges (B@ZZ3-1, B@ZZ4-1, B@AC0-1, B@ZZ0AA-1, B@ZZ1AB-3, and B@ZZ4AA-3) were identified. Electronic property analysis revealed that boron doping significantly reduces the bandgap of BPNRs and enhances catalytic activity by promoting electron accumulation at boron sites. Free energy pathway calculations demonstrated that B@AC0-1, B@ZZ0AA-1, and B@ZZ1AB-3 exhibit overpotentials of 0.19 V, 0.28 V, and 0.15 V, respectively, during the NRR process, outperforming other phosphorus-based catalysts in activity. Full article
Show Figures

Graphical abstract

14 pages, 6836 KB  
Article
Enhanced Thermoelectric Properties of Phosphorene via Quantum Size Effects and Relaxation Time Tuning
by Zhiqian Sun, Chenkai Zhang, Guixian Ge, Gui Yang and Jueming Yang
Materials 2025, 18(11), 2506; https://doi.org/10.3390/ma18112506 - 26 May 2025
Viewed by 629
Abstract
Black phosphorus is a promising thermoelectric (TE) material because of its high Seebeck coefficient and high electrical conductivity. In this work, the TE performance of bulk black phosphorus and single-layer phosphorene under uniaxial strain is studied using first-principles calculations and Boltzmann transport theory. [...] Read more.
Black phosphorus is a promising thermoelectric (TE) material because of its high Seebeck coefficient and high electrical conductivity. In this work, the TE performance of bulk black phosphorus and single-layer phosphorene under uniaxial strain is studied using first-principles calculations and Boltzmann transport theory. The results show relatively excellent TE performance along the armchair direction for both black phosphorus and phosphorene in our study. However, high lattice thermal conductivity is the key adverse factor for further enhancing the TE performance of phosphorus. The ZT value can only reach up to 0.97 and 0.73 for n- and p-type black phosphorus at 700 K, respectively. Owing to quantum size effects, black phosphorene has lower lattice thermal conductivity than black phosphorus. At the same time, two-dimensional (2D) phosphorene exhibits increased electronic energy compared with bulk black phosphorus, resulting in a larger bandgap and reduced electrical conductivity due to the quantum confinement effect. Thus, the TE performance of n-type phosphorene can be partially improved, and the ZT value reaches up to 1.41 at 700 K. However, the ZT value decreases from 0.73 to 0.70 for p-type phosphorene compared with bulk phosphorus at 700 K. To further improve the TE performance of phosphorene, a tensile strain is applied along the armchair direction. Subsequent work indicates that uniaxial strain can further optimize phosphorene’s TE properties by tuning hole relaxation time to improve electrical conductivity. Strikingly, the ZT values exceed 1.7 for both n- and p-type phosphorene under 4.5% tensile strain along the armchair direction at 700 K because of increased electrical conductivity and decreased lattice thermal conductivity. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

52 pages, 16956 KB  
Review
Advances in 2D Group IV Monochalcogenides: Synthesis, Properties, and Applications
by Angel-Theodor Buruiana, Claudia Mihai, Victor Kuncser and Alin Velea
Materials 2025, 18(7), 1530; https://doi.org/10.3390/ma18071530 - 28 Mar 2025
Cited by 1 | Viewed by 1461
Abstract
The field of newly developed two-dimensional (2D) materials with low symmetry and structural in-plane anisotropic properties has grown rapidly in recent years. The phosphorene analog of group IV monochalcogenides is a prominent subset of this group that has attracted a lot of attention [...] Read more.
The field of newly developed two-dimensional (2D) materials with low symmetry and structural in-plane anisotropic properties has grown rapidly in recent years. The phosphorene analog of group IV monochalcogenides is a prominent subset of this group that has attracted a lot of attention because of its unique in-plane anisotropic electronic and optical properties, crystalline symmetries, abundance in the earth’s crust, and environmental friendliness. This article presents a review of the latest research advancements concerning 2D group IV monochalcogenides. It begins with an exploration of the crystal structures of these materials, alongside their optical and electronic properties. The review continues by discussing the various techniques employed for the synthesis of layered group IV monochalcogenides, including both bottom-up methods such as vapor-phase deposition and top-down techniques like mechanical and/or liquid-phase exfoliation. In the final part, the article emphasizes the application of 2D group IV monochalcogenides, particularly in the fields of photocatalysis, photodetectors, nonlinear optics, sensors, batteries, and photovoltaic cells. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Figure 1

12 pages, 6486 KB  
Article
Few-Layered Black Phosphorene as Hole Transport Layer for Novel All-Inorganic Perovskite Solar Cells
by Shihui Xu, Lin Yang, Zhe Wang, Fuyun Li, Xiaoping Zhang, Juan Zhou, Dongdong Lv, Yunfeng Ding and Wei Sun
Materials 2025, 18(2), 415; https://doi.org/10.3390/ma18020415 - 17 Jan 2025
Cited by 2 | Viewed by 1139
Abstract
The CsPbBr3 perovskite exhibits strong environmental stability under light, humidity, temperature, and oxygen conditions. However, in all-inorganic perovskite solar cells (PSCs), interface defects between the carbon electrode and CsPbBr3 limit the carrier separation and transfer rates. We used black phosphorus (BP) [...] Read more.
The CsPbBr3 perovskite exhibits strong environmental stability under light, humidity, temperature, and oxygen conditions. However, in all-inorganic perovskite solar cells (PSCs), interface defects between the carbon electrode and CsPbBr3 limit the carrier separation and transfer rates. We used black phosphorus (BP) nanosheets as the hole transport layer (HTL) to construct an all-inorganic carbon-based CsPbBr3 perovskite (FTO/c-TiO2/m-TiO2/CsPbBr3/BP/C) solar cell. BP can enhance hole extraction capabilities and reduce carrier recombination by adjusting the interface contact between the perovskite and the carbon layer. Due to the coordination of the energy structure related to interface charge extraction and transfer, BP, as a new type of hole transport layer for all-inorganic CsPbBr3 solar cells, achieves a power conversion efficiency (PCE) that is 1.43% higher than that of all-inorganic carbon-based CsPbBr3 perovskite solar cells without a hole transport layer, reaching 2.7% (Voc = 1.29 V, Jsc = 4.60 mA/cm2, FF = 48.58%). In contrast, the PCE of the all-inorganic carbon-based CsPbBr3 perovskite solar cells without a hole transport layer was only 1.27% (Voc = 1.22 V, Jsc = 2.65 mA/cm2, FF = 39.51%). The unencapsulated BP-based PSCs device maintained 69% of its initial efficiency after being placed in the air for 500 h. In contrast, the efficiency of the PSC without HTL significantly decreased to only 52% of its initial efficiency. This indicates that BP can effectively enhance the PCE and stability of PSCs, demonstrating its great potential as a hole transport material in all-inorganic perovskite solar cells. BP as the HTL for CsPbBr3 PSCs can passivate the perovskite interface, enhance the hole extraction capability, and improve the optoelectronic performance of the device. The subsequent doping and compounding of the BP hole transport layer can further enhance its photovoltaic conversion efficiency in PSCs. Full article
Show Figures

Figure 1

16 pages, 4124 KB  
Article
Two-Dimensional Pentagonal Materials with Parabolic Dispersion and High Carrier Mobility
by Xiaofei Shao, Xiaobiao Liu and Xikui Ma
Materials 2024, 17(22), 5543; https://doi.org/10.3390/ma17225543 - 13 Nov 2024
Viewed by 1218
Abstract
Materials with high carrier mobility, represented by graphene, have garnered significant interest. However, the zero band gap arising from linear dispersion cannot achieve an ideal on–off ratio in field-effect transistors (FETs), limiting practical applications in certain fields. In contrast, parabolic dispersion usually exhibits [...] Read more.
Materials with high carrier mobility, represented by graphene, have garnered significant interest. However, the zero band gap arising from linear dispersion cannot achieve an ideal on–off ratio in field-effect transistors (FETs), limiting practical applications in certain fields. In contrast, parabolic dispersion usually exhibits extremely high carrier mobility and an appropriate band gap. In this work, we predicted a planar pentagonal lattice composed entirely of pentagons (namely penta-MX2 monolayer), where M = Ni, Pd and Pt, X = group V elements. Using first-principles calculations, we demonstrated a parabolic dispersion within this framework, which results in intriguing phenomena, such as a direct band gap (0.551–1.105 eV) and extraordinary high carrier mobility. For penta-MX2 monolayer, the carrier mobility can attain ~1 × 108 cm2 V−1 s−1 (PBE), surpassing those of black phosphorene, graphene and 2D hexagonal materials. This monolayer also displays anisotropic mechanical properties and significant absorption peaks in the ultraviolet spectrum. Remarkably, 2D penta-MX2 monolayers are promising for successful experimental exfoliation, particularly when X is a nitrogen element, opening up new possibilities for designing two-dimensional semiconductor materials characterized by high carrier mobility. Full article
Show Figures

Graphical abstract

13 pages, 3277 KB  
Article
Highly Conductive and Long-Term Stable Phosphorene-Based Nanocomposite for Radio-Frequency Antenna Application
by Kibum Song, Seungho Ha and Keun-Young Shin
Nanomaterials 2024, 14(12), 1013; https://doi.org/10.3390/nano14121013 - 12 Jun 2024
Cited by 1 | Viewed by 1008
Abstract
In this study, an omnidirectional and high-performance free-standing monopole patch radio-frequency antenna was fabricated using a urea-functionalized phosphorene/TiO2/polypyrrole (UTP) nanocomposite. The UTP nanocomposite antenna was fabricated via ball milling of urea-functionalized phosphorene, chemical oxidative polymerization of the UTP nanocomposite, and mechanical [...] Read more.
In this study, an omnidirectional and high-performance free-standing monopole patch radio-frequency antenna was fabricated using a urea-functionalized phosphorene/TiO2/polypyrrole (UTP) nanocomposite. The UTP nanocomposite antenna was fabricated via ball milling of urea-functionalized phosphorene, chemical oxidative polymerization of the UTP nanocomposite, and mechanical pelletizing of the composite. Based on experiments, the proposed UTP nanocomposite-based antenna exhibited long-term stability in terms of electrical conductivity. After 12 weeks, a slight change in surface resistance was observed. The proposed antenna exhibited high radiation efficiency (78.2%) and low return loss (−36.6 dB). The results of this study suggest the potential of UTP nanocomposite antennas for applications in 5G technology. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

15 pages, 4435 KB  
Article
The Effects of Halogen (Cl, Br) Decorating on the Gas Adsorption Behaviors of the Pristine Black Phosphorene: A First-Principles Study
by Xinjun Tan, Lan Lin, Touwen Fan and Kaiwang Zhang
Coatings 2024, 14(6), 694; https://doi.org/10.3390/coatings14060694 - 1 Jun 2024
Cited by 2 | Viewed by 1022
Abstract
As a novel two-dimensional (2D) material, black phosphorene (BP) finds wide applications in gas adsorption and detection devices due to its distinctive optical, thermoelectric, and surface properties. However, numerous studies have demonstrated that BP exhibits strong selectivity towards gas adsorption and displays significant [...] Read more.
As a novel two-dimensional (2D) material, black phosphorene (BP) finds wide applications in gas adsorption and detection devices due to its distinctive optical, thermoelectric, and surface properties. However, numerous studies have demonstrated that BP exhibits strong selectivity towards gas adsorption and displays significant affinity towards gas molecules containing the element N, thereby greatly impeding its utilization in gas detection. To partially compensate for this deficiency, this study investigates the impact of halogen atom decoration on the adsorption behavior of BP towards CO2, H2O, and O2 molecules. Furthermore, a comparison is made between the variations in gas adsorption energy with and without decorated halogen atoms. The results showed that the adsorbates of CO2, H2O, and O2 molecules and halogen atoms (Cl, Br) adsorbed at the top (T) site of BP was much stronger than those at the bridge (B) and the hollow (H) sites of the P-P bond of BP, owing to their low adsorption energies. After the t position of BP is modified by the halogen (Cl, Br) atom, the optimal adsorption of CO2 changes from −0.85 eV to −1.70 eV (Cl) and −1.64 eV (Br), and the optimal adsorption of H2O changes from −0.72 eV to −1.48 eV (Cl) and −1.23 eV (Br), respectively. The adsorption properties were significantly enhanced. That is to say, the gas adsorption properties of BP have been largely improved by halogen Cl (Br) atoms decorating. Full article
(This article belongs to the Special Issue Recent Progress in Surface and Interface Properties of Nanostructures)
Show Figures

Figure 1

12 pages, 2682 KB  
Article
Fabrication of Ternary Titanium Dioxide/Polypyrrole/Phosphorene Nanocomposite for Supercapacitor Electrode Applications
by Seungho Ha and Keun-Young Shin
Molecules 2024, 29(10), 2172; https://doi.org/10.3390/molecules29102172 - 7 May 2024
Cited by 2 | Viewed by 1771
Abstract
In this paper, we report a titanium dioxide/polypyrrole/phosphorene (TiO2/PPy/phosphorene) nanocomposite as an active material for supercapacitor electrodes. Black phosphorus (BP) was fabricated by ball milling to induce a phase transition from red phosphorus, and urea-functionalized phosphorene (urea-FP) was obtained by urea-assisted [...] Read more.
In this paper, we report a titanium dioxide/polypyrrole/phosphorene (TiO2/PPy/phosphorene) nanocomposite as an active material for supercapacitor electrodes. Black phosphorus (BP) was fabricated by ball milling to induce a phase transition from red phosphorus, and urea-functionalized phosphorene (urea-FP) was obtained by urea-assisted ball milling of BP, followed by sonication. TiO2/PPy/phosphorene nanocomposites can be prepared via chemical oxidative polymerization, which has the advantage of mass production for a one-pot synthesis. The specific capacitance of the ternary nanocomposite was 502.6 F g−1, which was higher than those of the phosphorene/PPy (286.25 F g−1) and TiO2/PPy (150 F g−1) nanocomposites. The PPy fully wrapped around the urea-FP substrate provides an electron transport pathway, resulting in the enhanced electrical conductivity of phosphorene. Furthermore, the assistance of anatase TiO2 nanoparticles enhanced the structural stability and also improved the specific capacitance of the phosphorene. To the best of our knowledge, this is the first report on the potential of phosphorene hybridized with conducting polymers and metal oxides for practical supercapacitor applications. Full article
Show Figures

Graphical abstract

25 pages, 6618 KB  
Article
Exploring Antiviral Drugs on Monolayer Black Phosphorene: Atomistic Theory and Explainable Machine Learning-Assisted Platform
by Slimane Laref, Fouzi Harrou, Ying Sun, Xin Gao and Takashi Gojobori
Int. J. Mol. Sci. 2024, 25(9), 4897; https://doi.org/10.3390/ijms25094897 - 30 Apr 2024
Cited by 1 | Viewed by 1505
Abstract
Favipiravir (FP) and ebselen (EB) belong to a diverse class of antiviral drugs known for their significant efficacy in treating various viral infections. Utilizing molecular dynamics (MD) simulations, machine learning, and van der Waals density functional theory, we accurately elucidate the binding properties [...] Read more.
Favipiravir (FP) and ebselen (EB) belong to a diverse class of antiviral drugs known for their significant efficacy in treating various viral infections. Utilizing molecular dynamics (MD) simulations, machine learning, and van der Waals density functional theory, we accurately elucidate the binding properties of these antiviral drugs on a phosphorene single-layer. To further investigate these characteristics, this study employs four distinct machine learning models—Random Forest, Gradient Boosting, XGBoost, and CatBoost. The Hamiltonian of antiviral molecules within a monolayer of phosphorene is appropriately trained. The key aspect of utilizing machine learning (ML) in drug design revolves around training models that are efficient and precise in approximating density functional theory (DFT). Furthermore, the study employs SHAP (SHapley Additive exPlanations) to elucidate model predictions, providing insights into the contribution of each feature. To explore the interaction characteristics and thermodynamic properties of the hybrid drug, we employ molecular dynamics and DFT calculations in a vacuum interface. Our findings suggest that this functionalized 2D complex exhibits robust thermostability, indicating its potential as an effective and enabled entity. The observed variations in free energy at different surface charges and temperatures suggest the adsorption potential of FP and EB molecules from the surrounding environment. Full article
Show Figures

Figure 1

9 pages, 3233 KB  
Article
Strain-Modulated Electronic Transport Properties in Two-Dimensional Green Phosphorene with Different Edge Morphologies
by Shuo Li and Hai Yang
Crystals 2024, 14(3), 239; https://doi.org/10.3390/cryst14030239 - 29 Feb 2024
Viewed by 1407
Abstract
Based on two-dimensional green phosphorene, we designed two molecular electronic devices with zigzag (Type 1) and whisker-like (Type 2) configurations. By combining density functional theory (DFT) and non-equilibrium Green’s function (NEGF), we investigated the electronic properties of Types 1 and 2. Type 1 [...] Read more.
Based on two-dimensional green phosphorene, we designed two molecular electronic devices with zigzag (Type 1) and whisker-like (Type 2) configurations. By combining density functional theory (DFT) and non-equilibrium Green’s function (NEGF), we investigated the electronic properties of Types 1 and 2. Type 1 exhibits an interesting negative differential resistance (NDR), while the current characteristics of Type 2 show linear growth in the current–voltage curve. We studied the electronic transport properties of Type 1 under uniaxial strain modulation and find that strained devices also exhibit a NDR effect, and the peak-to-valley ratio of device could be controlled by varying the strain intensity. These results show that the transport properties of green phosphorene with different edge configuration are different, and the zigzag edge have adjustable negative differential resistance properties. Full article
(This article belongs to the Special Issue 1D and 2D Nanomaterials for Sensor Applications)
Show Figures

Figure 1

Back to TopTop