Strain-Modulated Electronic Transport Properties in Two-Dimensional Green Phosphorene with Different Edge Morphologies
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, Y.; Zhang, D.; Zhang, J.; Ye, C.; Miao, X. Negative differential resistance behavior in phosphorus-doped armchair graphene nanoribbon junctions. J. Appl. Phys. 2014, 115, 073703. [Google Scholar] [CrossRef]
- Hong, X.K.; Kuang, Y.W.; Qian, C.; Tao, Y.M.; Yu, H.L.; Zhang, D.B.; Liu, Y.S.; Feng, J.F.; Yang, X.F.; Wang, X.F. Axisymmetric All-Carbon Devices with High-Spin Filter Efficiency, Large-Spin Rectifying, and Strong-Spin Negative Differential Resistance Properties. J. Phys. Chem. C 2015, 120, 668–676. [Google Scholar] [CrossRef]
- Wu, Q.; Liu, R.; Qiu, Z.; Li, D.; Li, J.; Wang, X.; Ding, G. Cr3X4 (X = Se, Te) monolayers as a new platform to realize robust spin filters, spin diodes and spin valves. Phys. Chem. Chem. Phys. 2022, 24, 24873–24880. [Google Scholar] [CrossRef]
- Dong, X.; Peng, Z.; Chen, T.; Xu, L.; Ma, Z.; Liu, G.; Cen, K.; Xu, Z.; Zhou, G. Electronic structures and transport properties of low-dimensional GaN nanoderivatives: A first-principles study. Appl. Surf. Sci. 2021, 561, 150038. [Google Scholar] [CrossRef]
- Huang, L.; Chen, S.Z.; Zeng, Y.J.; Wu, D.; Li, B.L.; Feng, Y.X.; Fan, Z.Q.; Tang, L.M.; Chen, K.Q. Switchable Spin Filters in Magnetic Molecular Junctions Based on Quantum Interference. Adv. Electron. Mater. 2020, 6, 2000689. [Google Scholar] [CrossRef]
- Luisier, M. Atomistic simulation of transport phenomena in nanoelectronic devices. Chem. Soc. Rev. 2014, 43, 4357–4367. [Google Scholar] [CrossRef]
- Zhou, Y.; Zheng, X.; Cheng, Z.-Q.; Chen, K.-Q. Current Superposition Law Realized in Molecular Devices Connected in Parallel. J. Phys. Chem. C 2019, 123, 10462–10468. [Google Scholar] [CrossRef]
- Chen, Q.; Zheng, X.; Jiang, P.; Zhou, Y.-H.; Zhang, L.; Zeng, Z. Electric field induced tunable half-metallicity in an A-type antiferromagnetic bilayer LaBr2. Phys. Rev. B 2022, 106, 245423. [Google Scholar] [CrossRef]
- He, X.; Chen, J.; Li, S.; Lin, M.; Wang, Y.; Zheng, Y.; Lu, H. The tunability of electronic and transport properties of InSe/MoSe2 van der Waals heterostructure: A first-principles study. Surf. Interfaces 2023, 36, 102634. [Google Scholar] [CrossRef]
- Wang, X.; Feng, Z.; Rong, J.; Zhang, Y.; Zhong, Y.; Feng, J.; Yu, X.; Zhan, Z. Planar net-τ: A new high-performance metallic carbon anode material for lithium-ion batteries. Carbon 2019, 142, 438–444. [Google Scholar] [CrossRef]
- Wang, Z.F.; Jin, K.-H.; Liu, F. Quantum spin Hall phase in 2D trigonal lattice. Nat. Commun. 2016, 7, 12746. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, X.; Zhang, L.; Lee, S.; Dai, H. Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors. Science 2008, 319, 1229–1232. [Google Scholar] [CrossRef]
- Su, H.-P.; Shao, Z.-G. Lithium enhancing electronic transport properties of monolayer 6,6,12-graphyne from first principles. Surf. Interfaces 2021, 22, 100903. [Google Scholar] [CrossRef]
- Wu, Q.-H.; Zhao, P.; Liu, H.-Y.; Liu, D.-S.; Chen, G. Odd–even dependence of rectifying behavior in carbon chains modified diphenyl–dimethyl molecule. Chem. Phys. Lett. 2014, 62, 605–606. [Google Scholar] [CrossRef]
- Wu, X.; Xiao, S.; Quan, J.; Tian, C.; Gao, G. Perylene-based molecular device: Multifunctional spintronic and spin caloritronic applications. Phys. Chem. Chem. Phys. 2023, 25, 7354–7365. [Google Scholar] [CrossRef]
- Kinikar, A.; Phanindra Sai, T.; Bhattacharyya, S.; Agarwala, A.; Biswas, T.; Sarker, S.K.; Krishnamurthy, H.R.; Jain, M.; Shenoy, V.B.; Ghosh, A. Quantized edge modes in atomic-scale point contacts in graphene. Nat. Nanotechnol. 2017, 12, 564–568. [Google Scholar] [CrossRef]
- Wu, Q.; Shen, L.; Yang, M.; Cai, Y.; Huang, Z.; Feng, Y.P. Electronic and transport properties of phosphorene nanoribbons. Phys. Rev. B 2015, 92, 035436. [Google Scholar] [CrossRef]
- Stegner, A.R.; Pereira, R.N.; Klein, K.; Lechner, R.; Dietmueller, R.; Brandt, M.S.; Stutzmann, M.; Wiggers, H. Electronic Transport in Phosphorus-Doped Silicon Nanocrystal Networks. Phys. Rev. Lett. 2008, 100, 026803. [Google Scholar] [CrossRef]
- Jia, C.; Cao, L.; Zhou, X.; Zhou, B.; Zhou, G. Low-bias negative differential resistance in junction of a benzene between zigzag-edged phosphorene nanoribbons. J. Phys. Condens. Matter 2018, 30, 265301. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Wu, K.; Jiang, K.; Yao, K.; Zhu, S.; Lu, Y. Perfect spin filtering effect, tunnel magnetoresistance and thermoelectric effect in metals-adsorbed blue phosphorene nanoribbons. Physica B 2022, 626, 413580. [Google Scholar] [CrossRef]
- Han, W.H.; Kim, S.; Lee, I.-H.; Chang, K.J. Prediction of Green Phosphorus with Tunable Direct Band Gap and High Mobility. J. Phys. Chem. Lett. 2017, 8, 4627–4632. [Google Scholar] [CrossRef]
- Qu, H.; Guo, S.; Zhou, W.; Wu, Z.; Cao, J.; Li, Z.; Zeng, H.; Zhang, S. Enhanced interband tunneling in two-dimensional tunneling transistors through anisotropic energy dispersion. Phys. Rev. B 2022, 105, 075413. [Google Scholar] [CrossRef]
- Liu, C.; Fu, B.; Yin, H.; Zhang, G.; Dong, C. Strain-tunable magnetism and nodal loops in monolayer MnB. Appl. Phys. Lett. 2020, 117, 103101. [Google Scholar] [CrossRef]
- Rezania, H.; Nourian, E.; Abdi, M.; Astinchap, B. Strain and magnetic field effects on the electronic and transport properties of γ-graphyne. RSC Adv. 2023, 13, 7988–7999. [Google Scholar] [CrossRef]
- Roldán, R.; Castellanos-Gomez, A.; Cappelluti, E.; Guinea, F. Strain engineering in semiconducting two-dimensional crystals. J. Phys. Condens. Matter 2015, 27, 313201. [Google Scholar] [CrossRef]
- Chen, Q.-Y. First-principles study on superconductive properties of compressive strain-engineered cryogenic superconducting heavy metal lead (Pb). Commun. Theor. Phys. 2021, 73, 035703. [Google Scholar] [CrossRef]
- Yang, N.; Chen, Q.; Xu, Y.; Luo, J.; Yang, H.; Jin, G. Strain-modulated electronic transport in two-dimensional carbon allotropes. AIP Adv. 2022, 12, 045102. [Google Scholar] [CrossRef]
- Ren, Y.; Cheng, F.; Zhou, X.-Y.; Chang, K.; Zhou, G.-H. Tunable mechanical, electronic and magnetic properties of monolayer C3N nanoribbons by external fields. Carbon 2019, 143, 14–20. [Google Scholar] [CrossRef]
- Ren, Y.; Liu, P.; Zhou, B.; Zhou, X.; Zhou, G. Crystallographic Characterization of Black Phosphorene and its Application in Nanostructures. Phys. Rev. Appl. 2019, 12, 064025. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, Z.; Lu, H. Structure design and properties investigation of Bi2O2Se/graphene van der Waals heterojunction from first-principles study. Surf. Interfaces 2022, 33, 102289. [Google Scholar] [CrossRef]
- Brandbyge, M.; Mozos, J.L.; Ordejón, P.; Taylor, J.; Stokbro, K. Density-functional method for nonequilibrium electron transport. Phys. Rev. B 2022, 65, 165401. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, H.; Chen, T.; Liu, D.; Zhou, Q. Investigation of the electronic and magnetic properties of low-dimensional FeCl2 derivatives by first-principles calculations. Vacuum 2020, 182, 109694. [Google Scholar] [CrossRef]
- Li, Y.-F.; Zhao, P.; Xu, Z.; Chen, G. Effect of linkage mode on the spin-polarized transport of a TPV radical-based molecular device. Chem. Phys. Lett. 2022, 794, 139515. [Google Scholar] [CrossRef]
- Poljak, M.; Suligoj, T. Immunity of electronic and transport properties of phosphorene nanoribbons to edge defects. Nano Res. 2016, 9, 1723–1734. [Google Scholar] [CrossRef]
- Zhang, W.; Basaran, C.; Ragab, T. Impact of geometry on transport properties of armchair graphene nanoribbon heterojunction. Carbon 2017, 124, 422–428. [Google Scholar] [CrossRef]
- Wu, Q.; Ang, L.K. Giant tunneling magnetoresistance in atomically thin VSi2N4/MoSi2N4/VSi2N4 magnetic tunnel junction. Appl. Phys. Lett. 2022, 120, 022401. [Google Scholar] [CrossRef]
- Chen, Q.-Y.; Liu, M.-Y.; Cao, C.; He, Y. Strain-tunable electronic and optical properties of novel anisotropic green phosphorene: A first-principles study. Nanotechnology 2019, 30, 335710. [Google Scholar] [CrossRef]
- Han, X.; Stewart, H.M.; Shevlin, S.A.; Catlow, C.R.A.; Guo, Z.X. Strain and Orientation Modulated Bandgaps and Effective Masses of Phosphorene Nanoribbons. Nano Lett. 2014, 14, 4607–4614. [Google Scholar] [CrossRef]
- Singsen, S.; Watwiangkham, A.; Ngamwongwan, L.; Fongkaew, I.; Jungthawan, S.; Suthirakun, S. Defect Engineering of Green Phosphorene Nanosheets for Detecting Volatile Organic Compounds: A Computational Approach. ACS Appl. Nano Mater. 2023, 6, 1496–1506. [Google Scholar] [CrossRef]
- QuantumATK Version T-2022.03, Synopsys QuantumATK. Available online: http://www.quantumwise.com (accessed on 1 December 2023).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Yang, H. Strain-Modulated Electronic Transport Properties in Two-Dimensional Green Phosphorene with Different Edge Morphologies. Crystals 2024, 14, 239. https://doi.org/10.3390/cryst14030239
Li S, Yang H. Strain-Modulated Electronic Transport Properties in Two-Dimensional Green Phosphorene with Different Edge Morphologies. Crystals. 2024; 14(3):239. https://doi.org/10.3390/cryst14030239
Chicago/Turabian StyleLi, Shuo, and Hai Yang. 2024. "Strain-Modulated Electronic Transport Properties in Two-Dimensional Green Phosphorene with Different Edge Morphologies" Crystals 14, no. 3: 239. https://doi.org/10.3390/cryst14030239
APA StyleLi, S., & Yang, H. (2024). Strain-Modulated Electronic Transport Properties in Two-Dimensional Green Phosphorene with Different Edge Morphologies. Crystals, 14(3), 239. https://doi.org/10.3390/cryst14030239