Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = phenacetin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4518 KB  
Article
In Vitro Inhibitory Effects and Molecular Mechanism of Four Theaflavins on Isozymes of CYP450 and UGTs
by Lin Hu, Zhuohan Hu, Junying Peng, Aixiang Hou, Zhubing Hao, Zhongqin Wu, Yan Li, Ke Li, Zongjun Li, Zhonghua Liu, Yu Xiao and Yuanliang Wang
Foods 2025, 14(16), 2822; https://doi.org/10.3390/foods14162822 - 14 Aug 2025
Cited by 1 | Viewed by 938
Abstract
Theaflavins, benzotropolone compounds formed during black tea processing via catechin condensation, have drawn attention for their potential health benefits and diverse biological effects. This study evaluated the inhibitory effects of four theaflavin monomers—theaflavin-3′-gallate, theaflavin-3,3′-digallate, theaflavin-3-gallate, and theaflavin—on eight CYP450 enzymes using pooled human [...] Read more.
Theaflavins, benzotropolone compounds formed during black tea processing via catechin condensation, have drawn attention for their potential health benefits and diverse biological effects. This study evaluated the inhibitory effects of four theaflavin monomers—theaflavin-3′-gallate, theaflavin-3,3′-digallate, theaflavin-3-gallate, and theaflavin—on eight CYP450 enzymes using pooled human liver microsomes and specific probe substrates, and seven UGT enzymes using human recombinant UGT enzymes and specific probe substrates. Theaflavin-3′-gallate moderately inhibited CYP1A2-catalyzed phenacetin metabolism and CYP2C8-mediated amodiaquine metabolism, with IC50 values of 8.67 μM and 10–20 μM, respectively. Theaflavin-3,3′-digallate exhibited similar effects. Both compounds showed negligible inhibition with other CYP enzymes. In UGT assays, theaflavin-3′-gallate and theaflavin-3,3′-digallate moderately inhibited UGT1A1- and UGT1A3-mediated beta-estradiol glucuronidation (IC50: 1.40–5.22 μM), with weak or no effects on other UGT enzymes. Molecular docking revealed that CYP1A2-theaflavin-3′-gallate and CYP2C8-theaflavin-3,3′-digallate interactions were non-competitive, primarily mediated by hydrogen bonding and π-interactions. UGT1A1-theaflavin interactions suggested non-competitive inhibition, while UGT1A3-theaflavin interactions indicated competitive inhibition. Other enzyme-theaflavin interactions exhibited minimal binding energy differences, implying mixed-type inhibition. These findings highlight the selective inhibitory effects of theaflavins on specific hepatic enzymes, with potential implications for nutrient interactions, particularly for nutrients metabolized by CYP1A2, CYP2C8, UGT1A1, and UGT1A3. Further research is needed to explore the in vivo relevance and assess the dietary implications of theaflavin-rich black tea in nutrition and metabolism. Full article
(This article belongs to the Special Issue Potential Health Benefits of Plant Food-Derived Bioactive Compounds)
Show Figures

Figure 1

11 pages, 1862 KB  
Article
Removal of Acetaminophen from Aqueous Solutions in an Adsorption Process
by Agata Skwarczynska-Wojsa and Alicja Puszkarewicz
Materials 2024, 17(2), 431; https://doi.org/10.3390/ma17020431 - 16 Jan 2024
Cited by 12 | Viewed by 2808
Abstract
Acetaminophen (C8H9NO2, also called paracetamol) is an active metabolite of phenacetin with antipyretic and analgesic effects and has been extensively used as a painkiller. Currently, the problem of pharmaceuticals in water and sewage is common, especially in [...] Read more.
Acetaminophen (C8H9NO2, also called paracetamol) is an active metabolite of phenacetin with antipyretic and analgesic effects and has been extensively used as a painkiller. Currently, the problem of pharmaceuticals in water and sewage is common, especially in highly urbanized countries. Laboratory-scale experiments were carried out using an adsorbent—granulated activated carbon (WD-extra)—to remove acetaminophen (ACT) from water. The initial concentration of acetaminophen was 20 mg ACT/dm3. The adsorption kinetics, influence of the pH on adsorption and dose of the used adsorbent were determined under batch conditions. The adsorption of ACT on activated carbon was more efficient when the water solution was acidic (at pH 2, it was the most effective). The highest percentage of removal (99%) was obtained for the WD-extra dose of 10.0 g/dm3. The time taken to establish the dynamic equilibrium of the system was 60 min. The effectiveness of adsorption was determined based on the Freundlich and Langmuir adsorption isotherms. It was found that WD-extra activated carbon effectively removed ACT from water solutions. Full article
(This article belongs to the Special Issue Environmentally Friendly Adsorption Materials)
Show Figures

Graphical abstract

18 pages, 3960 KB  
Article
Inhibitory Mechanisms of Lekethromycin in Dog Liver Cytochrome P450 Enzymes Based on UPLC-MS/MS Cocktail Method
by Pan Sun, Yuying Cao, Jicheng Qiu, Jingyuan Kong, Suxia Zhang and Xingyuan Cao
Molecules 2023, 28(20), 7193; https://doi.org/10.3390/molecules28207193 - 20 Oct 2023
Cited by 1 | Viewed by 2416
Abstract
Lekethromycin (LKMS) is a synthetic macrolide compound derivative intended for use as a veterinary medicine. Since there have been no in vitro studies evaluating its potential for drug–drug interactions related to cytochrome P450 (CYP450) enzymes, the effect of the inhibitory mechanisms of LKMS [...] Read more.
Lekethromycin (LKMS) is a synthetic macrolide compound derivative intended for use as a veterinary medicine. Since there have been no in vitro studies evaluating its potential for drug–drug interactions related to cytochrome P450 (CYP450) enzymes, the effect of the inhibitory mechanisms of LKMS on CYP450 enzymes is still unclear. Thus, this study aimed to evaluate the inhibitory effects of LKMS on dog CYP450 enzymes. A cocktail approach using ultra-performance liquid chromatography–tandem mass spectrometry was conducted to investigate the inhibitory effect of LKMS on canine CYP450 enzymes. Typical probe substrates of phenacetin, coumarin, bupropion, tolbutamide, dextromethorphan, chlorzoxazone, and testosterone were used for CYP1A2, CYP2A6, CYP2B6, CYP2C9, CYP2D6, CYP2E1, and CYP3A4, respectively. This study showed that LKMS might not be a time-dependent inhibitor. LKMS inhibited CYP2A6, CYP2B6, and CYP2D6 via mixed inhibition. LKMS exhibited mixed-type inhibition against the activity of CYP2A6 with an inhibition constant (Ki) value of 135.6 μΜ. LKMS inhibited CYP2B6 in a mixed way, with Ki values of 59.44 μM. A phenotyping study based on an inhibition assay indicated that CYP2D6 contributes to the biotransformation of LKMS. A mixed inhibition of CYP2D6 with Ki values of 64.87 μM was also observed. Given that this study was performed in vitro, further in vivo studies should be conducted to identify the interaction between LKMS and canine CYP450 enzymes to provide data support for the clinical application of LKMS and the avoidance of adverse interactions between other drugs. Full article
Show Figures

Graphical abstract

16 pages, 768 KB  
Article
Thermodynamic Properties of 3- and 4-Ethoxyacetanilides between 80 and 480 K
by Andrey A. Sokolov, Mikhail I. Yagofarov, Ilya S. Balakhontsev, Ilyas I. Nizamov, Timur A. Mukhametzyanov, Boris N. Solomonov, Yana N. Yurkshtovich and Elena N. Stepurko
Molecules 2023, 28(20), 7027; https://doi.org/10.3390/molecules28207027 - 11 Oct 2023
Cited by 4 | Viewed by 2320
Abstract
In this work, we present a comprehensive study of the thermodynamic properties of 3-and 4-ethoxyacetanilides. The heat capacities in crystalline, liquid, and supercooled liquid states from 80 to 475 K were obtained using adiabatic, differential scanning (DSC), and fast scanning (FSC) calorimetries. The [...] Read more.
In this work, we present a comprehensive study of the thermodynamic properties of 3-and 4-ethoxyacetanilides. The heat capacities in crystalline, liquid, and supercooled liquid states from 80 to 475 K were obtained using adiabatic, differential scanning (DSC), and fast scanning (FSC) calorimetries. The fusion enthalpies at Tm were combined from DSC measurement results and the literature data. The fusion enthalpies at 298.15 K were evaluated in two independent ways: adjusted according to Kirchhoff’s law of thermochemistry, and using Hess’ law. For the latter approach, the enthalpies of the solution in DMF in crystalline and supercooled liquid states were derived. The values obtained by the two methods are consistent with each other. The standard thermodynamic functions (entropy, enthalpy, and Gibbs energy) between 80 and 470 K were calculated. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Graphical abstract

14 pages, 3825 KB  
Article
Insights into the Adsorption Performance of Emerging Contaminants on Granular Activated Carbon
by Sang-Hoon Lee, Namgyu Kim and Donghee Park
Separations 2023, 10(9), 501; https://doi.org/10.3390/separations10090501 - 13 Sep 2023
Cited by 4 | Viewed by 3129
Abstract
Emerging contaminants are being detected at a high frequency, posing significant environmental and human health challenges. This study aimed to investigate the potential of using commercial granular activated carbon for adsorbing nine aqueous emerging contaminants (carbamazepine, phenacetin, pentoxifylline, norfloxacin, iprobenfos, isoprothiolane, metolachlor, tebuconazole, [...] Read more.
Emerging contaminants are being detected at a high frequency, posing significant environmental and human health challenges. This study aimed to investigate the potential of using commercial granular activated carbon for adsorbing nine aqueous emerging contaminants (carbamazepine, phenacetin, pentoxifylline, norfloxacin, iprobenfos, isoprothiolane, metolachlor, tebuconazole, and hexaconazole). The adsorption study involved employing kinetic and isotherm models, using various concentrations of emerging contaminants and sorbents in a batch system. Additionally, the study explored the correlation between the characteristics of emerging contaminants and their adsorption values, which displayed a relatively linear relationship. While some previous papers have evaluated the performance of one or two substances, there is a lack of research on the adsorption mechanisms of all nine aqueous emerging contaminants. Therefore, the findings from this study on the adsorption potential of granular activated carbon can serve as a valuable foundation for further investigations into its effectiveness in adsorbing emerging contaminants. Full article
(This article belongs to the Special Issue Removal of Emerging Pollutants and Environmental Analysis)
Show Figures

Figure 1

12 pages, 1744 KB  
Article
Isolation and Characterization of the Wastewater Micropollutant Phenacetin-Degrading Bacterium Rhodococcus sp. Strain PNT-23
by Yaxuan Yuan, Kexin Wang, Yihe Liu, Maoting Jiang, Yinhu Jiang and Jiguo Qiu
Microorganisms 2023, 11(8), 1962; https://doi.org/10.3390/microorganisms11081962 - 31 Jul 2023
Cited by 2 | Viewed by 2613
Abstract
Phenacetin, an antipyretic and analgesic drug, poses a serious health risk to both humans and aquatic organisms, which is of concern since this micropollutant is frequently detected in various aquatic environments. However, rare pure bacterial cultures have been reported to degrade phenacetin. Therefore, [...] Read more.
Phenacetin, an antipyretic and analgesic drug, poses a serious health risk to both humans and aquatic organisms, which is of concern since this micropollutant is frequently detected in various aquatic environments. However, rare pure bacterial cultures have been reported to degrade phenacetin. Therefore, in this study, the novel phenacetin-degrading strain PNT-23 was isolated from municipal wastewater and identified as a Rhodococcus sp. based on its morphology and 16S rRNA gene sequencing. The isolated strain could completely degrade 100 mg/L phenacetin at an inoculum concentration of OD600 1.5 within 80 h, utilizing the micropollutant as its sole carbon source for growth. Strain PNT-23 exhibited optimal growth in LB medium at 37 °C and a pH of 7.0 with 1% NaCl, while the optimal degradation conditions in minimal medium were 30 °C and a pH of 7.0 with 1% NaCl. Two key intermediates were identified during phenacetin biodegradation by the strain PNT-23: N-acetyl-4-aminophenol and 4-aminophenol. This study provides novel insights into the biodegradation of phenacetin using a pure bacterium culture, expands the known substrate spectra of Rhodococcus strains and presents a potential new candidate for the microbial removal of phenacetin in a diverse range of environments. Full article
(This article belongs to the Special Issue Microbial Biodegradation and Biotransformation 2.0)
Show Figures

Figure 1

16 pages, 3767 KB  
Article
Analytical Method Development of Benzisothiazolinone, a Biocide, Using LC–MS/MS and a Pharmacokinetic Application in Rat Biological Matrices
by Seong Jun Jo, Zhouchi Huang, Chae Bin Lee, Soon Uk Chae, Soo Hyeon Bae and Soo Kyung Bae
Molecules 2023, 28(2), 845; https://doi.org/10.3390/molecules28020845 - 14 Jan 2023
Cited by 1 | Viewed by 4537
Abstract
Benzisothiazolinone (BIT), a biocide widely used as a preservative in household cleaning and personal care products, is cytotoxic to lung cells and a known skin allergen in humans, which highlights the importance of assessing its toxicity and pharmacokinetics. In this study, a simple, [...] Read more.
Benzisothiazolinone (BIT), a biocide widely used as a preservative in household cleaning and personal care products, is cytotoxic to lung cells and a known skin allergen in humans, which highlights the importance of assessing its toxicity and pharmacokinetics. In this study, a simple, sensitive, and accurate LC–MS/MS method for the quantification of BIT in rat plasma, urine, or tissue homogenates (50 μL) using phenacetin as an internal standard was developed and validated. Samples were extracted with ethyl acetate and separated using a Kinetex phenyl–hexyl column (100 × 2.1 mm, 2.6 μm) with isocratic 0.1% formic acid in methanol and distilled water over a run time of 6 min. Positive electrospray ionization with multiple reaction monitoring transitions of m/z 152.2 > 134.1 for BIT and 180.2 > 110.1 for phenacetin was used for quantification. This assay achieved good linearity in the calibration ranges of 2–2000 ng/mL (plasma and urine) and 10–1000 ng/mL (tissue homogenates), with r ≥ 0.9929. All validation parameters met the acceptance criteria. BIT pharmacokinetics was evaluated via an intravenous and dermal application. This is the first study that evaluated BIT pharmacokinetics in rats, providing insights into the relationship between BIT exposure and toxicity and a basis for future risk assessment studies in humans. Full article
Show Figures

Graphical abstract

19 pages, 4247 KB  
Article
Solubility Characteristics of Acetaminophen and Phenacetin in Binary Mixtures of Aqueous Organic Solvents: Experimental and Deep Machine Learning Screening of Green Dissolution Media
by Piotr Cysewski, Tomasz Jeliński, Maciej Przybyłek, Wiktor Nowak and Michał Olczak
Pharmaceutics 2022, 14(12), 2828; https://doi.org/10.3390/pharmaceutics14122828 - 16 Dec 2022
Cited by 17 | Viewed by 6961
Abstract
The solubility of active pharmaceutical ingredients is a mandatory physicochemical characteristic in pharmaceutical practice. However, the number of potential solvents and their mixtures prevents direct measurements of all possible combinations for finding environmentally friendly, operational and cost-effective solubilizers. That is why support from [...] Read more.
The solubility of active pharmaceutical ingredients is a mandatory physicochemical characteristic in pharmaceutical practice. However, the number of potential solvents and their mixtures prevents direct measurements of all possible combinations for finding environmentally friendly, operational and cost-effective solubilizers. That is why support from theoretical screening seems to be valuable. Here, a collection of acetaminophen and phenacetin solubility data in neat and binary solvent mixtures was used for the development of a nonlinear deep machine learning model using new intuitive molecular descriptors derived from COSMO-RS computations. The literature dataset was augmented with results of new measurements in aqueous binary mixtures of 4-formylmorpholine, DMSO and DMF. The solubility values back-computed with the developed ensemble of neural networks are in perfect agreement with the experimental data, which enables the extensive screening of many combinations of solvents not studied experimentally within the applicability domain of the trained model. The final predictions were presented not only in the form of the set of optimal hyperparameters but also in a more intuitive way by the set of parameters of the Jouyban–Acree equation often used in the co-solvency domain. This new and effective approach is easily extendible to other systems, enabling the fast and reliable selection of candidates for new solvents and directing the experimental solubility screening of active pharmaceutical ingredients. Full article
(This article belongs to the Special Issue Strategies for Enhancing the Bioavailability of Poorly Soluble Drugs)
Show Figures

Graphical abstract

14 pages, 3079 KB  
Article
Potent and Selective Inhibition of CYP1A2 Enzyme by Obtusifolin and Its Chemopreventive Effects
by Eun-Ji Park, Keunwan Park, Prasannavenkatesh Durai, Ki-Young Kim, So-Young Park, Jaeyoung Kwon, Hee Ju Lee, Cheol-Ho Pan and Kwang-Hyeon Liu
Pharmaceutics 2022, 14(12), 2683; https://doi.org/10.3390/pharmaceutics14122683 - 1 Dec 2022
Cited by 7 | Viewed by 3073
Abstract
Obtusifolin, a major anthraquinone component present in the seeds of Cassia tora, exhibits several biological activities, including the amelioration of memory impairment, prevention of breast cancer metastasis, and reduction of cartilage damage in osteoarthritis. We aimed to evaluate the inhibitory effects of [...] Read more.
Obtusifolin, a major anthraquinone component present in the seeds of Cassia tora, exhibits several biological activities, including the amelioration of memory impairment, prevention of breast cancer metastasis, and reduction of cartilage damage in osteoarthritis. We aimed to evaluate the inhibitory effects of obtusifolin and its analogs on CYP1A enzymes, which are responsible for activating procarcinogens, and investigate its inhibitory mechanism and chemopreventive effects. P450-selective substrates were incubated with human liver microsomes (HLMs) or recombinant CYP1A1 and CYP1A2 in the presence of obtusifolin and its four analogs. After incubation, the samples were analyzed using liquid chromatography-tandem mass spectrometry. Molecular docking simulations were performed using the crystal structure of CYP1A2 to identify the critical interactions between anthraquinones and human CYP1A2. Obtusifolin potently and selectively inhibited CYP1A2-mediated phenacetin O-deethylation (POD) with a Ki value of 0.031 µM in a competitive inhibitory manner in HLMs, whereas it exhibited negligible inhibitory effect against other P450s (IC50 > 28.6 µM). Obtusifolin also inhibited CYP1A1- and CYP1A2-mediated POD and ethoxyresorufin O-deethylation with IC50 values of <0.57 µM when using recombinant enzymes. Our molecular docking models suggested that the high CYP1A2 inhibitory activity of obtusifolin may be attributed to the combination of hydrophobic interactions and hydrogen bonding. This is the first report of selective and potent inhibitory effects of obtusifolin against CYP1A, indicating their potential chemopreventive effects. Full article
(This article belongs to the Special Issue Pharmacokinetics and Drug Interactions)
Show Figures

Graphical abstract

19 pages, 1289 KB  
Article
CYP1A2 mRNA Expression Rather than Genetic Variants Indicate Hepatic CYP1A2 Activity
by Ferenc Fekete, Katalin Mangó, Annamária Minus, Katalin Tóth and Katalin Monostory
Pharmaceutics 2022, 14(3), 532; https://doi.org/10.3390/pharmaceutics14030532 - 27 Feb 2022
Cited by 13 | Viewed by 8966
Abstract
CYP1A2, one of the most abundant hepatic cytochrome P450 enzymes, is involved in metabolism of several drugs and carcinogenic compounds. Data on the significance of CYP1A2 genetic polymorphisms in enzyme activity are highly inconsistent; therefore, the impact of CYP1A2 genetic variants (−3860G>A, −2467delT, [...] Read more.
CYP1A2, one of the most abundant hepatic cytochrome P450 enzymes, is involved in metabolism of several drugs and carcinogenic compounds. Data on the significance of CYP1A2 genetic polymorphisms in enzyme activity are highly inconsistent; therefore, the impact of CYP1A2 genetic variants (−3860G>A, −2467delT, −739T>G, −163C>A, 2159G>A) on mRNA expression and phenacetin O-dealkylation selective for CYP1A2 was investigated in human liver tissues and in psychiatric patients belonging to Caucasian populations. CYP1A2*1F, considered to be associated with high CYP1A2 inducibility, is generally identified by the presence of −163C>A polymorphism; however, we demonstrated that −163C>A existed in several haplotypes (CYP1A2*1F, CYP1A2*1L, CYP1A2*1M, CYP1A2*1V, CYP1A2*1W), and consequently, CYP1A2*1F was a much rarer allelic variant (0.4%) than reported in Caucasian populations. Of note, −163C>A polymorphism was found to result in an increase of neither mRNA nor the activity of CYP1A2. Moreover, hepatic CYP1A2 activity was associated with hepatic or leukocyte mRNA expression rather than genetic polymorphisms of CYP1A2. Consideration of non-genetic phenoconverting factors (co-medication with CYP1A2-specific inhibitors/inducers, tobacco smoking and non-specific factors, including amoxicillin+clavulanic acid therapy or chronic alcohol consumption) did not much improve genotype–phenotype estimation. In conclusion, CYP1A2-genotyping is inappropriate for the prediction of CYP1A2 function; however, CYP1A2 mRNA expression in leukocytes can inform about patients’ CYP1A2-metabolizing capacity. Full article
(This article belongs to the Special Issue Association Studies in Clinical Pharmacogenetics)
Show Figures

Graphical abstract

6 pages, 786 KB  
Proceeding Paper
Synthesis and Biological Evaluation of Some Substituted Benzimidazole Derivatives
by Sunila Patil, Parloop Bhatt, Hemant Suryawanshi, Javesh Patil and Rajesh Chaudhari
Chem. Proc. 2022, 8(1), 55; https://doi.org/10.3390/ecsoc-25-11764 - 14 Nov 2021
Viewed by 2021
Abstract
In the current research work, the title compounds 5-ethoxy-benzimidazole, were synthesized by nitration of phenacetin with concentrated nitric acid it gives N-(2-nitro-5-ethoxyphenyl) acetamide (I), which on reduction with alcohol gives 5-ethoxy-2-nitroaniline (II). Reaction of hydrazine hydrate with 5-ethoxy-2-nitroaniline produced 5-ethoxy ortho phenylene diamine [...] Read more.
In the current research work, the title compounds 5-ethoxy-benzimidazole, were synthesized by nitration of phenacetin with concentrated nitric acid it gives N-(2-nitro-5-ethoxyphenyl) acetamide (I), which on reduction with alcohol gives 5-ethoxy-2-nitroaniline (II). Reaction of hydrazine hydrate with 5-ethoxy-2-nitroaniline produced 5-ethoxy ortho phenylene diamine (III). The substituted acids reacted with 5-ethoxy ortho phenylene diamine then yielded the corresponding 5-ethoxy-benzimidazole (IV). The identification and characterization of the synthesized compounds were carried out by Elemental analysis, melting point, Thin Layer Chromatography, FT-IR, NMR and Mass data. The synthesized compounds were evaluated for anti-tubercular activity. The test compounds were subjected to in vitro screening by the tube dilution technique employing the human virulent H37RV strain of M. tuberculosis. The test compounds IVa, IVc and IVd showed significant anti-tubercular activity against H37RV strain of Mycobacterium tuberculosis. The minimum inhibitory concentration (MIC) values were found in the range of 0.8 to 12.5 μg/mL compared with the standard drugs Isoniazid. Full article
Show Figures

Scheme 1

17 pages, 2642 KB  
Article
Functional Characterization of 21 Rare Allelic CYP1A2 Variants Identified in a Population of 4773 Japanese Individuals by Assessing Phenacetin O-Deethylation
by Masaki Kumondai, Evelyn Marie Gutiérrez Rico, Eiji Hishinuma, Yuya Nakanishi, Shuki Yamazaki, Akiko Ueda, Sakae Saito, Shu Tadaka, Kengo Kinoshita, Daisuke Saigusa, Tomoki Nakayoshi, Akifumi Oda, Noriyasu Hirasawa and Masahiro Hiratsuka
J. Pers. Med. 2021, 11(8), 690; https://doi.org/10.3390/jpm11080690 - 22 Jul 2021
Cited by 7 | Viewed by 5111
Abstract
Cytochrome P450 1A2 (CYP1A2), which accounts for approximately 13% of the total hepatic cytochrome content, catalyzes the metabolic reactions of approximately 9% of frequently used drugs, including theophylline and olanzapine. Substantial inter-individual differences in enzymatic activity have been observed among patients, which could [...] Read more.
Cytochrome P450 1A2 (CYP1A2), which accounts for approximately 13% of the total hepatic cytochrome content, catalyzes the metabolic reactions of approximately 9% of frequently used drugs, including theophylline and olanzapine. Substantial inter-individual differences in enzymatic activity have been observed among patients, which could be caused by genetic polymorphisms. Therefore, we functionally characterized 21 novel CYP1A2 variants identified in 4773 Japanese individuals by determining the kinetic parameters of phenacetin O-deethylation. Our results showed that most of the evaluated variants exhibited decreased or no enzymatic activity, which may be attributed to potential structural alterations. Notably, the Leu98Gln, Gly233Arg, Ser380del Gly454Asp, and Arg457Trp variants did not exhibit quantifiable enzymatic activity. Additionally, three-dimensional (3D) docking analyses were performed to further understand the underlying mechanisms behind variant pharmacokinetics. Our data further suggest that despite mutations occurring on the protein surface, accumulating interactions could result in the impairment of protein function through the destabilization of binding regions and changes in protein folding. Therefore, our findings provide additional information regarding rare CYP1A2 genetic variants and how their underlying effects could clarify discrepancies noted in previous phenotypical studies. This would allow the improvement of personalized therapeutics and highlight the importance of identifying and characterizing rare variants. Full article
(This article belongs to the Special Issue Functional Genomics, Pharmacogenomics in Human Disease)
Show Figures

Figure 1

19 pages, 3286 KB  
Article
Thermodynamic Characteristics of Phenacetin in Solid State and Saturated Solutions in Several Neat and Binary Solvents
by Maciej Przybyłek, Anna Kowalska, Natalia Tymorek, Tomasz Dziaman and Piotr Cysewski
Molecules 2021, 26(13), 4078; https://doi.org/10.3390/molecules26134078 - 3 Jul 2021
Cited by 16 | Viewed by 5108
Abstract
The thermodynamic properties of phenacetin in solid state and in saturated conditions in neat and binary solvents were characterized based on differential scanning calorimetry and spectroscopic solubility measurements. The temperature-related heat capacity values measured for both the solid and melt states were provided [...] Read more.
The thermodynamic properties of phenacetin in solid state and in saturated conditions in neat and binary solvents were characterized based on differential scanning calorimetry and spectroscopic solubility measurements. The temperature-related heat capacity values measured for both the solid and melt states were provided and used for precise determination of the values for ideal solubility, fusion thermodynamic functions, and activity coefficients in the studied solutions. Factors affecting the accuracy of these values were discussed in terms of various models of specific heat capacity difference for phenacetin in crystal and super-cooled liquid states. It was concluded that different properties have varying sensitivity in relation to the accuracy of heat capacity values. The values of temperature-related excess solubility in aqueous binary mixtures were interpreted using the Jouyban–Acree solubility equation for aqueous binary mixtures of methanol, DMSO, DMF, 1,4-dioxane, and acetonitrile. All binary solvent systems studied exhibited strong positive non-ideal deviations from an algebraic rule of mixing. Additionally, an interesting co-solvency phenomenon was observed with phenacetin solubility in aqueous mixtures with acetonitrile or 1,4-dioxane. The remaining three solvents acted as strong co-solvents. Full article
Show Figures

Figure 1

15 pages, 2918 KB  
Article
Mertansine Inhibits mRNA Expression and Enzyme Activities of Cytochrome P450s and Uridine 5′-Diphospho-Glucuronosyltransferases in Human Hepatocytes and Liver Microsomes
by Won-Gu Choi, Ria Park, Dong Kyun Kim, Yongho Shin, Yong-Yeon Cho and Hye Suk Lee
Pharmaceutics 2020, 12(3), 220; https://doi.org/10.3390/pharmaceutics12030220 - 2 Mar 2020
Cited by 6 | Viewed by 4244
Abstract
Mertansine, a tubulin inhibitor, is used as the cytotoxic component of antibody–drug conjugates (ADCs) for cancer therapy. The effects of mertansine on uridine 5′-diphospho-glucuronosyltransferase (UGT) activities in human liver microsomes and its effects on the mRNA expression of cytochrome P450s (CYPs) and UGTs [...] Read more.
Mertansine, a tubulin inhibitor, is used as the cytotoxic component of antibody–drug conjugates (ADCs) for cancer therapy. The effects of mertansine on uridine 5′-diphospho-glucuronosyltransferase (UGT) activities in human liver microsomes and its effects on the mRNA expression of cytochrome P450s (CYPs) and UGTs in human hepatocytes were evaluated to assess the potential for drug–drug interactions (DDIs). Mertansine potently inhibited UGT1A1-catalyzed SN-38 glucuronidation, UGT1A3-catalyzed chenodeoxycholic acid 24-acyl-β-glucuronidation, and UGT1A4-catalyzed trifluoperazine N-β-d-glucuronidation, with Ki values of 13.5 µM, 4.3 µM, and 21.2 µM, respectively, but no inhibition of UGT1A6, UGT1A9, and UGT2B7 enzyme activities was observed in human liver microsomes. A 48 h treatment of mertansine (1.25–2500 nM) in human hepatocytes resulted in the dose-dependent suppression of mRNA levels of CYP1A2, CYP2B6, CYP3A4, CYP2C8, CYP2C9, CYP2C19, UGT1A1, and UGT1A9, with IC50 values of 93.7 ± 109.1, 36.8 ± 18.3, 160.6 ± 167.4, 32.1 ± 14.9, 578.4 ± 452.0, 539.5 ± 233.4, 856.7 ± 781.9, and 54.1 ± 29.1 nM, respectively, and decreased the activities of CYP1A2-mediated phenacetin O-deethylase, CYP2B6-mediated bupropion hydroxylase, and CYP3A4-mediated midazolam 1′-hydroxylase. These in vitro DDI potentials of mertansine with CYP1A2, CYP2B6, CYP2C8/9/19, CYP3A4, UGT1A1, and UGT1A9 substrates suggest that it is necessary to carefully characterize the DDI potentials of ADC candidates with mertansine as a payload in the clinic. Full article
(This article belongs to the Special Issue Drug Metabolism/Transport and Pharmacokinetics)
Show Figures

Graphical abstract

13 pages, 1460 KB  
Article
Validation of an HPLC Method for the Simultaneous Quantification of Metabolic Reaction Products Catalysed by CYP2C11 Enzymes in Rat Liver Microsomes: In Vitro Inhibitory Effect of Salicylic Acid on CYP2C11 Enzyme
by Hassan Salhab, Declan P. Naughton and James Barker
Molecules 2019, 24(23), 4294; https://doi.org/10.3390/molecules24234294 - 25 Nov 2019
Cited by 3 | Viewed by 6017
Abstract
The inhibitory effect of new chemical entities on rat liver P450 marker activities was investigated in a functional approach towards drug development. Treatment of colorectal cancer (CRC) and chemoprevention using salicylic acid has gained a lot of attention, mainly in the prevention of [...] Read more.
The inhibitory effect of new chemical entities on rat liver P450 marker activities was investigated in a functional approach towards drug development. Treatment of colorectal cancer (CRC) and chemoprevention using salicylic acid has gained a lot of attention, mainly in the prevention of the onset of colon cancer. Thus, an in vitro inhibitory effect of salicylic acid on rat CYP2C11 activity was examined by using high performance liquid chromatography (HPLC). High performance liquid chromatography analysis of a CYP2C11 assay was developed on a reversed phase C18 column (SUPELCO 25 cm × 4.6 mm × 5 µm) at 243 nm using 32% phosphate buffer (pH 3.36) and 68% methanol as a mobile phase. The CYP2C11 assay showed good linearity for all components (R2 > 0.999). Substrates and metabolites were found to be stable for up to 72 h. Additionally, the method demonstrated good reproducibility, intra- and inter-day precision (<15%), acceptable recovery and accuracy (80%–120%), and low detection (1.3501 µM and 3.2757 µM) and quantitation limit values (4.914 µM and 9.927 µM) for 16α-hydroxytestosterone and testosterone, respectively. Salicylic acid acts reversibly as a noncompetitive (weak) inhibitor with Ki = 84.582 ± 2.67 µM (concentration of inhibitor to cause 50% inhibition of original enzyme activity (IC50) = 82.70 ± 2.67 µM) for CYP2C11 enzyme activity. This indicates a low potential to cause toxicity and drug–drug interactions. Full article
(This article belongs to the Special Issue Biological Sample Analysis by Liquid Chromatography II)
Show Figures

Figure 1

Back to TopTop