Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (186)

Search Parameters:
Keywords = pharmaceutical scientists

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 528 KiB  
Review
Water Monitoring Practices 2.0—Water Fleas as Key Species in Ecotoxicology and Risk Assessment
by Anne Leung, Emma Rowan, Flavia Melati Chiappara and Konstantinos Grintzalis
Limnol. Rev. 2025, 25(3), 30; https://doi.org/10.3390/limnolrev25030030 - 2 Jul 2025
Viewed by 304
Abstract
Humanity faces the great challenges arising from pollution and climate change which evidently lead to the irreversible effects observed on the planet. It is now more important than ever to monitor and safeguard the ecosystem as it has been highlighted by governments and [...] Read more.
Humanity faces the great challenges arising from pollution and climate change which evidently lead to the irreversible effects observed on the planet. It is now more important than ever to monitor and safeguard the ecosystem as it has been highlighted by governments and scientists. Conventional approaches for water pollution rely on the detection of chemicals in the environment. However, these descriptive observations when compared against water quality standards used as metrics for pollution are unable to predict pollution early or capture the extent of its impact. This weakness is reflected in the legislation and the thresholds for emerging pollutants such as pharmaceuticals and nanomaterials. To bridge the gap and to understand the underlying mechanisms for toxicity, research in the field of molecular ecotoxicology shifts more and more towards the integration of model systems, in silico approaches and molecular information as endpoints. Focusing on the freshwater ecosystem, daphnids are key species employed in risk assessment which are characterised as highly responsive to pollutants and physical stressors. The translation of molecular information describing the physiology of these organisms provides novel and sensitive metrics for pollution assessment. Full article
Show Figures

Figure 1

23 pages, 2579 KiB  
Review
From Micro to Marvel: Unleashing the Full Potential of Click Chemistry with Micromachine Integration
by Zihan Chen, Zimo Ren, Carmine Coluccini and Paolo Coghi
Micromachines 2025, 16(6), 712; https://doi.org/10.3390/mi16060712 - 15 Jun 2025
Viewed by 2849
Abstract
Micromachines, small-scale engineered devices prepared to carry out exact tasks at the micro level, have garnered great interest across different fields such as drug delivery, chemical synthesis, and biomedical applications. In emerging applications, micromachines have indicated great potential in advancing click chemistry, a [...] Read more.
Micromachines, small-scale engineered devices prepared to carry out exact tasks at the micro level, have garnered great interest across different fields such as drug delivery, chemical synthesis, and biomedical applications. In emerging applications, micromachines have indicated great potential in advancing click chemistry, a highly selective and efficient chemical technique widely applied in materials science, bioconjugation, and pharmaceutical development. Click chemistry, distinguished by its rapid reaction rates, high efficiency, and bioorthogonality, serves as a robust method for molecular assembly and functionalization. Incorporating micromachines into click chemistry processes paves the way for precise, automated, and scalable chemical synthesis. These tiny devices can effectively transport reactants, boost reaction efficiency through localized mixing, and enable highly exact site-specific modifications. Moreover, micromachines driven by external forces such as magnetic fields, ultrasound, or chemical fuels provide exceptional control over reaction conditions, significantly enhancing the selectivity and efficiency of click reactions. In this review, we explore the interaction between micromachines and click chemistry, showcasing recent advancements, potential uses, and future prospects in this cross-disciplinary domain. By leveraging micromachine-supported click chemistry, scientists can surpass conventional reaction constraints, opening doors to groundbreaking innovations in materials science, drug discovery, and beyond. Full article
Show Figures

Figure 1

30 pages, 3281 KiB  
Review
The Bioengineering of Insect Cell Lines for Biotherapeutics and Vaccine Production: An Updated Review
by Michał Sułek and Agnieszka Szuster-Ciesielska
Vaccines 2025, 13(6), 556; https://doi.org/10.3390/vaccines13060556 - 23 May 2025
Viewed by 2218
Abstract
Insect cell lines are a cornerstone of recombinant protein production, providing a versatile platform for biopharmaceutical and research applications. In the early 20th century, scientists first attempted to culture insect cells in vitro, developing continuous cell lines to produce the first insect cell-derived [...] Read more.
Insect cell lines are a cornerstone of recombinant protein production, providing a versatile platform for biopharmaceutical and research applications. In the early 20th century, scientists first attempted to culture insect cells in vitro, developing continuous cell lines to produce the first insect cell-derived recombinant protein, IFN-β. Initial successes, along with advancements in the use of insect cells for recombinant protein manufacturing, primarily relied on baculovirus expression vector systems (BEVSs), which enable heterologous gene expression in infected cells. Today, growing attention is focused on baculovirus-free systems based on the transfection of insect cells with plasmid DNA. This approach simplifies the final product purification process and facilitates the development of stable monoclonal cell lines that produce recombinant proteins or protein complexes, particularly virus-like particles (VLPs). Thanks to advancements in genetic engineering and the application of adaptive laboratory evolution (ALE) methods, significant strides have been made in overcoming many limitations associated with insect cell BEVSs, ultimately enhancing the reliability, yield, and quality of the biomanufacturing process. Our manuscript discusses the history of developing insect cell lines, presents various recombinant protein production systems utilizing these cells, and summarizes modifications aimed at improving insect cell lines for recombinant protein biomanufacturing. Finally, we explore their implications in pharmaceutical production, particularly on Nuvaxovid®/Covovax, which is the latest approved vaccine developed using insect cell BEVSs for protection against SARS-CoV-2. Full article
Show Figures

Figure 1

59 pages, 12414 KiB  
Review
Nanoparticles and Nanomaterials: A Review from the Standpoint of Pharmacy and Medicine
by Gleb V. Petrov, Alena M. Koldina, Oleg V. Ledenev, Vladimir N. Tumasov, Aleksandr A. Nazarov and Anton V. Syroeshkin
Pharmaceutics 2025, 17(5), 655; https://doi.org/10.3390/pharmaceutics17050655 - 16 May 2025
Cited by 1 | Viewed by 1046
Abstract
Nanoparticles (NPs) represent a unique class of structures in the modern world. In comparison to macro- and microparticles, NPs exhibit advantages due to their physicochemical properties. This has resulted in their extensive application not only in technical and engineering sciences, but also in [...] Read more.
Nanoparticles (NPs) represent a unique class of structures in the modern world. In comparison to macro- and microparticles, NPs exhibit advantages due to their physicochemical properties. This has resulted in their extensive application not only in technical and engineering sciences, but also in pharmacy and medicine. A recent analysis of the scientific literature revealed that the number of articles related to the search term “nanoparticle drugs” has exceeded 65,000 in the last decade alone, according to PubMed. The growth of scientific publications on NPs and nanomaterials (NMs) in pharmacy demonstrates the rapidly developing interest of scientists in exploring alternative ways to deliver drugs, thereby improving their pharmacokinetic and pharmacodynamic properties, and the increased biocompatibility of many nanopharmaceuticals is a unique key to two mandatory pharmaceutical requirements—drug efficacy and safety. A comprehensive review of the literature indicates that the modern pharmaceutical industry is increasingly employing nanostructures. The exploration of their physicochemical properties with a subsequent modern approach to quality control remains the main task of modern pharmaceutical chemistry. The primary objective of this review is to provide a comprehensive overview of data on NPs, their physicochemical properties, and modern approaches to their synthesis, modification of their surface, and application in pharmacy. Full article
(This article belongs to the Special Issue Hybrid Nanoparticles for Cancer Therapy)
Show Figures

Figure 1

19 pages, 1070 KiB  
Review
The Application of Glycolipid-Type Microbial Biosurfactants as Active Pharmaceutical Ingredients for the Treatment and Prevention of Cancer
by Aileen M. B. McMahon, Matthew S. Twigg, Roger Marchant and Ibrahim M. Banat
Pharmaceuticals 2025, 18(5), 676; https://doi.org/10.3390/ph18050676 - 2 May 2025
Viewed by 911
Abstract
Pharmaceutical scientists have researched the potential of secondary metabolites biosynthesized by microorganisms as active pharmaceutical ingredients (APIs) for the treatment of cancer. Ideally, these APIs should possess anticancer bioactivity that specifically targets tumor cells while having little cytotoxic effect on healthy tissue. Biosurfactants [...] Read more.
Pharmaceutical scientists have researched the potential of secondary metabolites biosynthesized by microorganisms as active pharmaceutical ingredients (APIs) for the treatment of cancer. Ideally, these APIs should possess anticancer bioactivity that specifically targets tumor cells while having little cytotoxic effect on healthy tissue. Biosurfactants are microbial secondary metabolites with surface-active properties and individual bioactivities that have the potential to either destroy cancer cells in a targeted fashion or prevent tumor cell formation. Currently, the best-studied class of microbial biosurfactants for the purpose of anticancer bioactivity is glycolipids, which contain a hydrophilic sugar moiety bonded to a hydrophobic fatty acid. Anticancer investigations are mainly carried out using in vitro models that show that compounds belonging to each of the four sub-classes of microbial glycolipid have significant anticancer bioactivity. The targeted action of this activity appears to be highly dependent on a specific congener molecular structure with nuanced alterations in structure leading to the killing of both tumor and healthy cells. This review compiles the current literature relating to glycolipid anticancer activity and provides a critical appraisal of exploiting the bioactivity of these compounds as novel anticancer agents. Finally, we propose several suggestions on how this research could be improved moving forward via method standardization. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Figure 1

13 pages, 642 KiB  
Review
Influence of Pre-Harvest Factors on the Storage of Fresh Basil (Ocimum basilicum L.): A Review
by Michele Ciriello, Petronia Carillo, Matteo Lentini and Youssef Rouphael
Horticulturae 2025, 11(3), 326; https://doi.org/10.3390/horticulturae11030326 - 16 Mar 2025
Cited by 1 | Viewed by 979
Abstract
Thanks to its numerous uses in gastronomy, pharmaceuticals, and cosmetics, basil (Ocimum spp.) is one of the most studied and consumed aromatic plants worldwide. However, its commercialization and availability are limited by its short post-harvest shelf-life, primarily due to its strong sensitivity [...] Read more.
Thanks to its numerous uses in gastronomy, pharmaceuticals, and cosmetics, basil (Ocimum spp.) is one of the most studied and consumed aromatic plants worldwide. However, its commercialization and availability are limited by its short post-harvest shelf-life, primarily due to its strong sensitivity to cold, poor handling, and consequent microbial contamination. This review provides a comprehensive overview of the latest research on pre-harvest techniques that can extend the shelf-life of basil, aiming to offer a practical tool for growers, distributors, retailers, and scientists. In addition to influencing the plant’s primary metabolism, pre-harvest factors, such as genotype selection, plant nutrition, irrigation, and light management, can have a direct impact on basil quality and shelf-life. Unlike previous reviews, which primarily focus on post-harvest strategies, this work provides a structured analysis of pre-harvest factors that directly influence basil’s shelf-life. By integrating recent findings on genotype selection, nutrient management, and environmental conditions, we offer a comprehensive framework to guide future agronomic practices aimed at minimizing post-harvest losses and enhancing product quality. Full article
(This article belongs to the Special Issue 10th Anniversary of Horticulturae—Recent Outcomes and Perspectives)
Show Figures

Figure 1

50 pages, 1777 KiB  
Review
Carotenoids for Antiaging: Nutraceutical, Pharmaceutical, and Cosmeceutical Applications
by Mariia Shanaida, Olha Mykhailenko, Roman Lysiuk, Nataliia Hudz, Radosław Balwierz, Arkadii Shulhai, Nataliya Shapovalova, Volodymyr Shanaida and Geir Bjørklund
Pharmaceuticals 2025, 18(3), 403; https://doi.org/10.3390/ph18030403 - 13 Mar 2025
Cited by 3 | Viewed by 3939
Abstract
Background: Carotenoids are bioactive tetraterpenoid C40 pigments that are actively synthesized by plants, bacteria, and fungi. Compounds such as α-carotene, β-carotene, lycopene, lutein, astaxanthin, β-cryptoxanthin, fucoxanthin, and zeaxanthin have attracted increasing attention for their antiaging properties. They exhibit antioxidant, [...] Read more.
Background: Carotenoids are bioactive tetraterpenoid C40 pigments that are actively synthesized by plants, bacteria, and fungi. Compounds such as α-carotene, β-carotene, lycopene, lutein, astaxanthin, β-cryptoxanthin, fucoxanthin, and zeaxanthin have attracted increasing attention for their antiaging properties. They exhibit antioxidant, neuroprotective, and anti-inflammatory properties, contributing to the prevention and treatment of age-related diseases. Objectives: The aim of this study was to comprehensively analyze the pharmacological potential and biological mechanisms of carotenoids associated with age-related disorders and to evaluate their application in nutraceuticals, pharmaceuticals, and cosmeceuticals. Methods: A systematic review of studies published over the past two decades was conducted using the databases PubMed, Scopus, and Web of Science. The selection criteria included clinical, in silico, in vivo, and in vitro studies investigating the pharmacological and therapeutic effects of carotenoids. Results: Carotenoids demonstrate a variety of health benefits, including the prevention of age-related macular degeneration, cancer, cognitive decline, metabolic disorders, and skin aging. Their role in nutraceuticals is well supported by their ability to modulate oxidative stress and inflammatory pathways. In pharmaceuticals, carotenoids show promising results in formulations targeting neurodegenerative diseases and metabolic disorders. In cosmeceuticals, they improve skin health by protecting it against UV radiation and oxidative damage. However, bioavailability, optimal dosages, toxicity, and interactions with other bioactive compounds remain critical factors to maximize therapeutic efficacy and still require careful evaluation by scientists. Conclusions: Carotenoids are promising bioactive compounds for antiaging interventions with potential applications in a variety of fields. Further research is needed to optimize their formulas, improve bioavailability, and confirm their long-term safety and effectiveness, especially in the aging population. Full article
Show Figures

Figure 1

39 pages, 3395 KiB  
Review
Combating Antibiotic Resistance: Mechanisms, Multidrug-Resistant Pathogens, and Novel Therapeutic Approaches: An Updated Review
by Mostafa E. Elshobary, Nadia K. Badawy, Yara Ashraf, Asmaa A. Zatioun, Hagar H. Masriya, Mohamed M. Ammar, Nourhan A. Mohamed, Sohaila Mourad and Abdelrahman M. Assy
Pharmaceuticals 2025, 18(3), 402; https://doi.org/10.3390/ph18030402 - 12 Mar 2025
Cited by 15 | Viewed by 8961
Abstract
The escalating global health crisis of antibiotic resistance, driven by the rapid emergence of multidrug-resistant (MDR) bacterial pathogens, necessitates urgent and innovative countermeasures. This review comprehensively examines the diverse mechanisms employed by bacteria to evade antibiotic action, including alterations in cell membrane permeability, [...] Read more.
The escalating global health crisis of antibiotic resistance, driven by the rapid emergence of multidrug-resistant (MDR) bacterial pathogens, necessitates urgent and innovative countermeasures. This review comprehensively examines the diverse mechanisms employed by bacteria to evade antibiotic action, including alterations in cell membrane permeability, efflux pump overexpression, biofilm formation, target site modifications, and the enzymatic degradation of antibiotics. Specific focus is given to membrane transport systems such as ATP-binding cassette (ABC) transporters, resistance–nodulation–division (RND) efflux pumps, major facilitator superfamily (MFS) transporters, multidrug and toxic compound extrusion (MATE) systems, small multidrug resistance (SMR) families, and proteobacterial antimicrobial compound efflux (PACE) families. Additionally, the review explores the global burden of MDR pathogens and evaluates emerging therapeutic strategies, including quorum quenching (QQ), probiotics, postbiotics, synbiotics, antimicrobial peptides (AMPs), stem cell applications, immunotherapy, antibacterial photodynamic therapy (aPDT), and bacteriophage. Furthermore, this review discusses novel antimicrobial agents, such as animal-venom-derived compounds and nanobiotics, as promising alternatives to conventional antibiotics. The interplay between clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (Cas) in bacterial adaptive immunity is analyzed, revealing opportunities for targeted genetic interventions. By synthesizing current advancements and emerging strategies, this review underscores the necessity of interdisciplinary collaboration among biomedical scientists, researchers, and the pharmaceutical industry to drive the development of novel antibacterial agents. Ultimately, this comprehensive analysis provides a roadmap for future research, emphasizing the urgent need for sustainable and cooperative approaches to combat antibiotic resistance and safeguard global health. Full article
Show Figures

Graphical abstract

19 pages, 6713 KiB  
Article
In Vitro Enzymatic and Computational Assessments of Pyrazole–Isatin and Pyrazole–Indole Conjugates as Anti-Diabetic, Anti-Arthritic, and Anti-Inflammatory Agents
by Ahmed M. Naglah, Abdulrahman A. Almehizia, Mohammed Ghazwani, Asma S. Al-Wasidi, Abdelrahman A. Naglah, Wael M. Aboulthana and Ashraf S. Hassan
Pharmaceutics 2025, 17(3), 293; https://doi.org/10.3390/pharmaceutics17030293 - 23 Feb 2025
Cited by 2 | Viewed by 1186
Abstract
Background/Objectives: Recently, the prevalence of diseases such as diabetes, arthritis, and inflammatory diseases, along with their complications, has become a significant health problem. This is in addition to the various biomedical applications of pyrazole, isatin, and indole derivatives. Accordingly, cooperation will continue [...] Read more.
Background/Objectives: Recently, the prevalence of diseases such as diabetes, arthritis, and inflammatory diseases, along with their complications, has become a significant health problem. This is in addition to the various biomedical applications of pyrazole, isatin, and indole derivatives. Accordingly, cooperation will continue between chemistry scientists, pharmaceutical scientists, and human doctors to produce hybrid compounds from pyrazole with isatin or indole possessing biological activities as anti-diabetic, anti-arthritic, and anti-inflammatory agents. Methods: The two series of pyrazole–isatin conjugates 12ah and pyrazole–indole conjugates 14ad were prepared from our previous works via the direct reaction of 5-amino-pyrazoles 10ad with N-alkyl isatin 11a,b, and 1H-indole-3-carbaldehyde (13), respectively, using the previously reported procedure. The potential biological activities of 12ah and 14ad as anti-diabetic, anti-arthritic, and anti-inflammatory agents were assessed through estimated inhibition percentage (%) and the median inhibitory concentrations (IC50) using methods described in the literature. Further, the computational assessments of 12ah and 14ad such as toxic doses (the median lethal dose, LD50), toxicity classes, drug-likeness model scores (DLMS), molecular lipophilicity potential (MLP) maps, polar surface area (PSA) maps, and topological polar surface area (TPSA) values were predicted using available free websites. Results: The in vitro enzymatic assessment results showed that pyrazole–indole conjugate 14b possesses powerful activities against (i) α-amylase (% = 65.74 ± 0.23, IC50 = 4.21 ± 0.03 µg/mL) and α-glucosidase (% = 55.49 ± 0.23, IC50 = 2.76 ± 0.01 µg/mL); (ii) the protein denaturation enzyme (% = 49.30 ± 0.17) and against the proteinase enzyme (% = 46.55 ± 0.17) with an IC50 value of 6.77 ± 0.01 µg/mL; (iii) the COX-1, COX-2, and 5-LOX enzymes with an IC50 of 5.44 ± 0.03, 5.37 ± 0.04, and 7.52 ± 0.04, respectively, which is almost close to the IC50 of the indomethacin and zileuton drugs. Also, the computational assessment results showed (i) the conjugate 14b possesses lipophilic surface properties thus can cross cell membranes, and is effective for treatment; (ii) all the conjugates possess a TPSA value of more than 140 Å2 thus possess good intestinal absorption. Conclusions: The two series of pyrazole–isatin conjugates 12ah and pyrazole–indole conjugates 14ad were synthesized from our previous works. The results of these in vitro enzymatic and computational assessments concluded that the pyrazole–indole conjugate 14b possesses powerful activities against various studied enzymes and possesses good computational results. In the future, our research team will present in vitro, in vivo biological, and computational assessments to hopefully obtain effectual agents such as anti-diabetic, anti-arthritic, and anti-inflammatory. Full article
Show Figures

Figure 1

16 pages, 2445 KiB  
Review
Aggregation-Caused Quenching Dyes as Potent Tools to Track the Integrity of Antitumor Nanocarriers: A Mini-Review
by Xiye Wang, Jiayue Huang, Mengqin Guo, Yiling Zhong and Zhengwei Huang
Pharmaceuticals 2025, 18(2), 176; https://doi.org/10.3390/ph18020176 - 27 Jan 2025
Cited by 2 | Viewed by 1063
Abstract
Cancer has become one of the major causes of death worldwide. Chemotherapy remains a cornerstone of cancer treatment. To enhance the tumor-targeting efficiency of chemotherapy agents, pharmaceutical scientists have developed nanocarriers. However, the in vivo structural integrity and dynamic changes in nanocarriers after [...] Read more.
Cancer has become one of the major causes of death worldwide. Chemotherapy remains a cornerstone of cancer treatment. To enhance the tumor-targeting efficiency of chemotherapy agents, pharmaceutical scientists have developed nanocarriers. However, the in vivo structural integrity and dynamic changes in nanocarriers after administration are not well understood, which may significantly impact their tumor-targeting abilities. In this paper, we propose the use of environmentally responsive fluorescent probes to track the integrity of antitumor nanocarriers. We compare three main types of dyes: fluorescence resonance energy transfer (FRET) dyes, aggregation-induced emission (AIE) dyes, and aggregation-caused quenching (ACQ) dyes. Among them, ACQ dyes, possessing sensitive water-quenching properties and easily detected “on–off” switching behavior, are regarded as the most promising choice. We believe that ACQ dyes are suitable for investigating the in vivo fate of antitumor nanocarriers and can aid in designing improved nanoformulations for chemotherapy agents. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Figure 1

21 pages, 6784 KiB  
Article
The Consequences of a Lack of Basic Sanitation in the Municipality of Maricá (Rio de Janeiro, Brazil) Resulting in Low Concentrations of Metals but Dissemination of Endocrine Disruptors Through Local Environments: Subsidies for Local Environmental Management
by Moisés L. Gil, Estefan M. da Fonseca, Bruno S. Pierri, Jéssica de F. Delgado, Leonardo da S. Lima, Danieli L. da Cunha, Thulio R. Corrêa, Charles V. Neves and Daniele M. Bila
Eng 2024, 5(4), 3467-3487; https://doi.org/10.3390/eng5040181 - 19 Dec 2024
Viewed by 891
Abstract
Endocrine-disrupting compounds (EDCs) are emerging pollutants that can potentially accumulate in aquatic ecosystems at significant levels, with the potential to impact the health of both animals and humans. Many scientists have correlated human exposure to high concentrations of EDCs with critical physiological impacts, [...] Read more.
Endocrine-disrupting compounds (EDCs) are emerging pollutants that can potentially accumulate in aquatic ecosystems at significant levels, with the potential to impact the health of both animals and humans. Many scientists have correlated human exposure to high concentrations of EDCs with critical physiological impacts, including infertility, thyroid imbalance, early sexual development, endometriosis, diabetes, and obesity. Several substances, such as heavy metals, belong to this family, ranging from natural to synthetic compounds, including pesticides, pharmaceuticals, and plastic-derived compounds. Domestic sewage represents a significant source of EDCs in the surrounding aquatic ecosystems. To this day, most rural and urban domestic wastewater in the municipality of Maricá is directly discharged into local aquatic environments without any treatment. The present study aimed to assess the potential contamination of the riverine and lagoonal environment in the municipality of Maricá. Water and sediment samples were collected seasonally at 18 sites along the Maricá watershed and the main lagoon, into which most of the watershed’s contributors flow. Water physico-chemical parameters (pH, reduction–oxidation potential—Eh, dissolved oxygen levels, salinity, turbidity, temperature, and fecal coliforms) were analyzed to characterize the urban influence on the aquatic environment. Sediment samples were also analyzed for grain size, total organic carbon percentage, potential bioavailable fraction of trace metals (Cd, Pb, Cu, Cr, Hg, Ni, Zn), and metalloid As. Finally, the sediment toxicity was assessed using yeast estrogen screen (YES) assays. The results obtained already demonstrate the presence of estrogenic effects and raise concerns about water quality. The current study indicates that, despite the absence of agricultural and industrial activities in the city of Maricá, EDCs are already present and have the potential to impact the local ecosystem, posing potential risks to human health. Full article
(This article belongs to the Special Issue Green Engineering for Sustainable Development 2024)
Show Figures

Figure 1

34 pages, 7027 KiB  
Review
Polysaccharide-Based Drug Carriers—A Patent Analysis
by Snežana Ilić-Stojanović, Fouad Damiri, Adina Magdalena Musuc and Mohammed Berrada
Gels 2024, 10(12), 801; https://doi.org/10.3390/gels10120801 - 6 Dec 2024
Cited by 2 | Viewed by 1914
Abstract
Polysaccharide-based carriers as biomaterials for drug delivery have been inspiring scientists for years due to their exceptional characteristics, such as nontoxicity, biocompatibility, and degradability, as they are able to protect pharmaceutically active molecules and provide their controlled/modified release. This review focuses on selected [...] Read more.
Polysaccharide-based carriers as biomaterials for drug delivery have been inspiring scientists for years due to their exceptional characteristics, such as nontoxicity, biocompatibility, and degradability, as they are able to protect pharmaceutically active molecules and provide their controlled/modified release. This review focuses on selected drug delivery systems based on natural polymers, namely fucoidan, pullulan, dextran, and pectin, with the aim of highlighting published patent documents. The information contained in patents is very important because it is usually not published in any other document and is much less discussed as the state of the art in the scientific literature. The Espacenet—European Patent Office database and the International Patent Classification were used for the research to highlight the specific search procedure. The presented analysis of the innovative state of the art includes an overview from the first patent applications to the latest granted patents in this field. Full article
(This article belongs to the Special Issue Polysaccharide Gels: Application in Drug Delivery)
Show Figures

Graphical abstract

32 pages, 2628 KiB  
Review
Flavonoids and Other Polyphenols: Bioactive Molecules from Traditional Medicine Recipes/Medicinal Plants and Their Potential for Phytopharmaceutical and Medical Application
by Aekkhaluck Intharuksa, Sompop Kuljarusnont, Yohei Sasaki and Duangjai Tungmunnithum
Molecules 2024, 29(23), 5760; https://doi.org/10.3390/molecules29235760 - 5 Dec 2024
Cited by 12 | Viewed by 5598
Abstract
Currently, natural bioactive ingredients and/or raw materials are of significant interest to scientists around the world. Flavonoids and other polyphenols are a major group of phytochemicals that have been researched and noted as bioactive molecules. They offer several pharmacological and medical benefits. This [...] Read more.
Currently, natural bioactive ingredients and/or raw materials are of significant interest to scientists around the world. Flavonoids and other polyphenols are a major group of phytochemicals that have been researched and noted as bioactive molecules. They offer several pharmacological and medical benefits. This current review aims to (1) illustrate their benefits for human health, such as antioxidant, anti-aging, anti-cancer, anti-inflammatory, anti-microbial, cardioprotective, neuroprotective, and UV-protective effects, and also (2) to perform a quality evaluation of traditional medicines for future application. Consequently, keywords were searched on Scopus, Google Scholar, and PubMed so as to search for related publications. Then, those publications were carefully checked in order to find current and non-redundant studies that matched the objective of this review. According to this review, researchers worldwide are very interested in discovering the potential of flavonoids and other polyphenols, used in traditional medicines and taken from medicinal plants, in relation to medical and pharmaceutical applications. Many studies focus on the health benefits of flavonoids and other polyphenols have been tested using in silico, in vitro, and in vivo models. However, few studies have been carried out using clinical trials that have trustworthy subject sizes and are in accordance with clinical practice guidelines. Additionally, interesting research directions and perspectives for future studies are highlighted in this work. Full article
Show Figures

Figure 1

26 pages, 12554 KiB  
Review
Chemical Synthesis of Monolignols: Traditional Methods, Recent Advances, and Future Challenges in Sustainable Processes
by Davide Benedetto Tiz, Giorgio Tofani, Filipa A. Vicente and Blaž Likozar
Antioxidants 2024, 13(11), 1387; https://doi.org/10.3390/antiox13111387 - 14 Nov 2024
Cited by 1 | Viewed by 2289
Abstract
Monolignols represent pivotal alcohol-based constituents in lignin synthesis, playing indispensable roles in plant growth and development with profound implications for industries reliant on wood and paper. Monolignols and their derivates have multiple applications in several industries. Monolignols exhibit antioxidant activity due to their [...] Read more.
Monolignols represent pivotal alcohol-based constituents in lignin synthesis, playing indispensable roles in plant growth and development with profound implications for industries reliant on wood and paper. Monolignols and their derivates have multiple applications in several industries. Monolignols exhibit antioxidant activity due to their ability to donate hydrogen atoms or electrons to neutralize free radicals, thus preventing oxidative stress and damage to cells. Characterized by their alcohol functionalities, monolignols present three main forms: p-coumaryl alcohol, coniferyl alcohol, and sinapyl alcohol. In nature, particularly in plants, monolignols with geometry (E) predominate over their Z counterparts. The methods for obtaining the three canonical monolignols, two less-common monolignols, and a monolignol analogue are addressed to present an overview of these phenol-based compounds, particularly from a synthetic standpoint. A SWOT (Strengths, Weaknesses, Opportunities, and Threats) analysis is used to explain the advantages and disadvantages of synthesizing monolignols, key alcohol-containing raw materials with enormous significance in both plant biology and industrial applications, using bench chemical methods. The uniqueness of this work is that it provides an overview of the synthetic pathways of monolignols to assist researchers in pharmaceutical and biological fields in selecting an appropriate procedure for the preparation of their lignin models. Moreover, we aim to inspire scientists, particularly chemists, to develop more sustainable synthetic protocols for monolignols. Full article
Show Figures

Figure 1

14 pages, 2226 KiB  
Article
Chemical Upcycling of Expired Pharmaceuticals as a Source of Value-Added Chemicals for Organic Synthesis and Medicinal Chemistry
by Teresa Abad-Grillo and Grant McNaughton-Smith
Molecules 2024, 29(20), 4811; https://doi.org/10.3390/molecules29204811 - 11 Oct 2024
Cited by 3 | Viewed by 1861
Abstract
Pharmaceutical and veterinary products are a class of contaminants of emerging concern, and their presence in the environment is due to continuous and incorrect disposal. Environmental scientists have been accumulating data on their adverse effects on animal populations since toxicological effects on wildlife [...] Read more.
Pharmaceutical and veterinary products are a class of contaminants of emerging concern, and their presence in the environment is due to continuous and incorrect disposal. Environmental scientists have been accumulating data on their adverse effects on animal populations since toxicological effects on wildlife were first published. Therefore, recycling strategies are needed. Valuable active ingredients can be extracted from expired pharmaceuticals and recycled according to various strategies. In an effort to reveal the potential of the chemical upcycling of expired pharmaceuticals, the active ingredients gabapentin and pregabalin were extracted and used as starting materials to prepare a small collection of promising substrates endowed with functionalities and structural three-dimensionality. Gabapentin 1 was transformed into aminoalcohol 3, spiroamine 4, and the bioactive azaspirolactam 5. The lactam analog 6 was synthesized from pregabalin 2. Due to the biological profile of 5 and the structural similarity of the N-alkylated derivatives 5l and 6b with the drug piracetam, a collection of potentially bioactive structural analogs 5a-l and 6a-b were also prepared. Simple extraction, synthesis, and purification procedures were used as a means of chemical and economic revaluation, resulting in moderate to good yields at a low cost. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

Back to TopTop