Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (92)

Search Parameters:
Keywords = phage therapy treatment strategies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1161 KiB  
Article
In Vivo Emergence of Podovirus Resistance via tarS Mutation During Phage-Antibiotic Treatment of Experimental MSSA Endocarditis
by Jérémy Cherbuin, Jonathan Save, Emma Osswald and Grégory Resch
Viruses 2025, 17(8), 1039; https://doi.org/10.3390/v17081039 - 25 Jul 2025
Viewed by 438
Abstract
Phage therapy shows promise as an adjunct to antibiotics for treating Staphylococcus aureus infections. We previously reported a combined flucloxacillin/two-phage cocktail treatment selected for resistance to podovirus phage 66 in a rodent model of methicillin-susceptible S. aureus (MSSA) endocarditis. Here we show that [...] Read more.
Phage therapy shows promise as an adjunct to antibiotics for treating Staphylococcus aureus infections. We previously reported a combined flucloxacillin/two-phage cocktail treatment selected for resistance to podovirus phage 66 in a rodent model of methicillin-susceptible S. aureus (MSSA) endocarditis. Here we show that resistant clones harbor mutations in tarS, which encodes a glycosyltransferase essential for β-GlcNAcylation of wall teichoic acid (WTA). This WTA modification has been described in vitro as critical for podoviruses adsorption. Transcriptomics confirmed continued tarS expression in resistant clones, supporting a loss-of-function mechanism. Accordingly, phage 66 binding and killing were restored by WT tarS complementation. In addition, we investigated the counterintuitive innate susceptibility to phage 66 of the tarM + Laus102 strain used in the endocarditis model. We show that it likely results from a significant lower tarM expression, in contrast to the innate resistant strain RN4220. Our findings demonstrate that tarS-mediated WTA β-GlcNAcylation is critical for podovirus infection also in vivo and identify tarM transcriptional defect as a new mechanism of podoviruses susceptibility in S. aureus. Moreover, and since tarS disruption has been previously shown to enhance β-lactam susceptibility, our results support the development of combined podovirus/antibiotic strategies for the management of MRSA infections. Full article
(This article belongs to the Special Issue Phage–Antibiotic Combination Therapy)
Show Figures

Figure 1

26 pages, 1443 KiB  
Review
Bacteriophages as Agents for Plant Disease Control: Where Are We After a Century?
by Manoj Choudhary, Ibukunoluwa A. Bankole, Sophia T. McDuffee, Apekshya Parajuli, Mousami Poudel, Botond Balogh, Mathews L. Paret and Jeffrey B. Jones
Viruses 2025, 17(8), 1033; https://doi.org/10.3390/v17081033 - 23 Jul 2025
Viewed by 666
Abstract
The rise in antibiotic-resistant bacteria has made the management of bacterial diseases increasingly challenging. As a result, bacteriophages have gained attention as a promising alternative to antibiotics for combating bacterial pathogens. However, the usage of phages as biocontrol agents faces many challenges, including [...] Read more.
The rise in antibiotic-resistant bacteria has made the management of bacterial diseases increasingly challenging. As a result, bacteriophages have gained attention as a promising alternative to antibiotics for combating bacterial pathogens. However, the usage of phages as biocontrol agents faces many challenges, including environmental stability, delivery efficiency, host specificity, and potential bacterial resistance. Advancements in genetic engineering and nanotechnology have been explored to enhance the stability, efficacy, and adaptability of phage-based treatments. In this review, we discuss the key barriers to the effective implementation of phage therapy and highlight innovative strategies to overcome these challenges. By addressing these limitations, this review aims to provide insights into optimizing phage-based approaches for widespread therapeutic and biocontrol applications. Full article
(This article belongs to the Special Issue Bacteriophage-Based Biocontrol in Agriculture, 2nd Edition)
Show Figures

Figure 1

42 pages, 6467 KiB  
Review
Marine Bacteriophages as Next-Generation Therapeutics: Insights into Antimicrobial Potential and Application
by Riza Jane S. Banicod, Aqib Javaid, Nazia Tabassum, Du-Min Jo, Md. Imtaiyaz Hassan, Young-Mog Kim and Fazlurrahman Khan
Viruses 2025, 17(7), 971; https://doi.org/10.3390/v17070971 - 10 Jul 2025
Viewed by 749
Abstract
Microbial infections are an escalating global health threat, driven by the alarming rise of antimicrobial resistance (AMR), which has made many conventional antibiotics increasingly ineffective and threatens to reverse decades of medical progress. The rapid emergence and spread of multidrug-resistant bacteria have severely [...] Read more.
Microbial infections are an escalating global health threat, driven by the alarming rise of antimicrobial resistance (AMR), which has made many conventional antibiotics increasingly ineffective and threatens to reverse decades of medical progress. The rapid emergence and spread of multidrug-resistant bacteria have severely limited treatment options, resulting in increased morbidity, mortality, and healthcare burden worldwide. In response to these challenges, phage therapy is regaining interest as a promising alternative. Bacteriophages, the most abundant biological entities, have remarkable specificity toward their bacterial hosts, enabling them to selectively eliminate pathogenic strains. Phage therapy presents several advantages over conventional antibiotics, which include minimal disruption to the microbiome and a slower rate of resistance development. Among the various sources of phages, the marine environment remains one of the least explored. Given their adaptation to saline conditions, high pressure, and variable nutrient levels, marine bacteriophages mostly exhibit enhanced environmental stability, broader host ranges, and distinct infection mechanisms, thus making them highly promising for therapeutic purposes. This review explores the growing therapeutic potential of marine bacteriophages by examining their ecological diversity, biological characteristics, infection dynamics, and practical applications in microbial disease control. It also deals with emerging strategies such as phage–antibiotic synergy, genetic engineering, and the use of phage-derived enzymes, alongside several challenges that must be addressed to enable clinical translation and regulatory approval. Advancing our understanding and application of marine phages presents a promising path in the global fight against AMR and the development of next-generation antimicrobial therapies. Full article
(This article belongs to the Section Bacterial Viruses)
Show Figures

Figure 1

18 pages, 682 KiB  
Article
Antimicrobial Potential of Bacteriophages JG005 and JG024 Against Pseudomonas aeruginosa Isolates from Canine Otitis
by Maura R. Lourenço, Eva Cunha, Luís Tavares and Manuela Oliveira
Vet. Sci. 2025, 12(7), 646; https://doi.org/10.3390/vetsci12070646 - 7 Jul 2025
Viewed by 899
Abstract
Canine otitis externa caused by Pseudomonas aeruginosa is a relevant disease in veterinary medicine. Given P. aeruginosa’s high priority status for the development of new antimicrobials, innovative strategies like bacteriophage therapy are essential. Lytic bacteriophages are viruses with high specificity for their bacterial [...] Read more.
Canine otitis externa caused by Pseudomonas aeruginosa is a relevant disease in veterinary medicine. Given P. aeruginosa’s high priority status for the development of new antimicrobials, innovative strategies like bacteriophage therapy are essential. Lytic bacteriophages are viruses with high specificity for their bacterial hosts, making them a promising therapeutic choice in both human and veterinary medicine. This study aimed to evaluate the antimicrobial potential of bacteriophages JG005 and JG024, first characterized in terms of their biofilm-forming ability and antimicrobial susceptibility profile, against P. aeruginosa isolates obtained from dogs with otitis externa,. Bacteriophages titer, host range, and activity were assessed against P. aeruginosa biofilms via microtiter assays using crystal violet and Alamar Blue. JG024 showed lytic activity against 61.2% (n = 30/49) of the isolates, while JG005 showed lytic activity against 38.8% (n = 19/49) of the isolates. Crystal violet quantification showed that JG005 can promote strong microbial suppression of 60% (n = 6/10) and 50% (n = 5/10) of the isolates at a multiplicity of infection (MOI) of 10 and 100, respectively. JG024 presented strong microbial suppression of 20% (n = 2/10) of the isolates regardless of the MOI level tested. These phages show promising potential as an innovative treatment for canine otitis externa caused by P. aeruginosa, but further studies are needed before future clinical use. Full article
Show Figures

Figure 1

22 pages, 6421 KiB  
Article
Therapeutic Optimization of Pseudomonas aeruginosa Phages: From Isolation to Directed Evolution
by Sara Bolognini, Caterina Ferretti, Claudia Campobasso, Elisabetta Trovato, Magda Marchetti, Laura Rindi, Arianna Tavanti and Mariagrazia Di Luca
Viruses 2025, 17(7), 938; https://doi.org/10.3390/v17070938 - 30 Jun 2025
Viewed by 504
Abstract
Pseudomonas aeruginosa is a major opportunistic pathogen with high levels of antibiotic resistance. Phage therapy represents a promising alternative for the treatment of difficult infections both alone and in combination with antibiotics. Here, we isolated and characterized three novel lytic myoviruses, Cisa, Nello, [...] Read more.
Pseudomonas aeruginosa is a major opportunistic pathogen with high levels of antibiotic resistance. Phage therapy represents a promising alternative for the treatment of difficult infections both alone and in combination with antibiotics. Here, we isolated and characterized three novel lytic myoviruses, Cisa, Nello, and Moonstruck. Genomic analysis revealed that Cisa and Nello belong to the Pbunavirus genus, while Moonstruck is a novel Pakpunavirus species. All lacked lysogeny, virulence, or resistance-associated genes, supporting their therapeutic suitability. Phage Nello and Moonstruck were active against P. aeruginosa Pa3GrPv, isolated from a patient with lung infection candidate for phage therapy. Moonstruck exhibited superior lytic activity with ciprofloxacin sub-MIC value (0.125 µg/mL), achieving bacterial suppression for 48 h. However, to improve the lytic efficacy of the phages on the clinical isolate, phage adaptation via serial passage was investigated. The killing efficacy of Nello was enhanced, whereas Moonstruck showed a less consistent improvement, suggesting phage-specific differences in evolutionary dynamics. Sequencing of the evolved phages revealed point mutations in tail-associated genes, potentially linked to a better phage–host interaction. These results support the use of phage–antibiotic combinations and directed evolution as strategies to enhance phage efficacy against drug-resistant infections. Overall, these findings support the therapeutic potential of the newly isolated phages in treating P. aeruginosa lung infections. Full article
(This article belongs to the Section Bacterial Viruses)
Show Figures

Figure 1

27 pages, 1648 KiB  
Review
Carbapenem Resistance in Acinetobacter baumannii: Mechanisms, Therapeutics, and Innovations
by Joyce de Souza, Helena Regina Salomé D’Espindula, Isabel de Farias Ribeiro, Geiziane Aparecida Gonçalves, Marcelo Pillonetto and Helisson Faoro
Microorganisms 2025, 13(7), 1501; https://doi.org/10.3390/microorganisms13071501 - 27 Jun 2025
Viewed by 1513
Abstract
The global rise of carbapenem-resistant Acinetobacter baumannii (CRAB) strains poses a critical challenge to healthcare systems due to limited therapeutic options and high mortality rates, especially in intensive care settings. This review explores the epidemiological landscape and molecular mechanisms driving carbapenem resistance, including [...] Read more.
The global rise of carbapenem-resistant Acinetobacter baumannii (CRAB) strains poses a critical challenge to healthcare systems due to limited therapeutic options and high mortality rates, especially in intensive care settings. This review explores the epidemiological landscape and molecular mechanisms driving carbapenem resistance, including the production of diverse beta-lactamases (particularly OXA-type enzymes), porin loss, efflux pump overexpression, and mutations in antibiotic targets. Emerging treatment strategies are discussed, such as the use of new beta-lactam–beta-lactamase inhibitor combinations (e.g., sulbactam–durlobactam), siderophore cephalosporins, next-generation polymyxins, as well as novel agents like zosurabalpin and rifabutin (BV100). Alternative approaches—including phage therapy, antimicrobial peptides, CRISPR-based gene editing, and nanoparticle-based delivery systems—are also evaluated for their potential to bypass traditional resistance mechanisms. Furthermore, advances in artificial intelligence and multi-omics integration are highlighted as tools for identifying novel drug targets and predicting resistance profiles. Together, these innovations represent a multifaceted strategy to overcome CRAB infections, yet their successful implementation requires further clinical validation and coordinated surveillance efforts. This analysis highlights the urgent need for continued investment in innovative treatments and effective resistance monitoring to limit the spread of CRAB and protect the effectiveness of last-line antibiotics. Full article
(This article belongs to the Special Issue Combating Antimicrobial Resistance: Innovations and Strategies)
Show Figures

Figure 1

21 pages, 568 KiB  
Review
Armed Phages: A New Weapon in the Battle Against Antimicrobial Resistance
by Cleo Anastassopoulou, Deny Tsakri, Antonios-Periklis Panagiotopoulos, Chrysa Saldari, Antonia P. Sagona and Athanasios Tsakris
Viruses 2025, 17(7), 911; https://doi.org/10.3390/v17070911 - 27 Jun 2025
Viewed by 989
Abstract
The increasing prevalence of multidrug-resistant (MDR) bacterial infections necessitates the exploration of alternative antimicrobial strategies, with phage therapy emerging as a viable option. However, the effectiveness of naturally occurring phages can be significantly limited by bacterial defense systems that include adsorption blocking, restriction–modification, [...] Read more.
The increasing prevalence of multidrug-resistant (MDR) bacterial infections necessitates the exploration of alternative antimicrobial strategies, with phage therapy emerging as a viable option. However, the effectiveness of naturally occurring phages can be significantly limited by bacterial defense systems that include adsorption blocking, restriction–modification, CRISPR-Cas immunity, abortive infection, and NAD+ depletion defense systems. This review examines these bacterial defenses and their implications for phage therapy, while highlighting the potential of phages’ bioengineering to overcome these barriers. By leveraging synthetic biology, genetically engineered phages can be tailored to evade bacterial immunity through such modifications as receptor-binding protein engineering, anti-CRISPR gene incorporation, methylation pattern alterations, and enzymatic degradation of bacterial protective barriers. “Armed phages”, enhanced with antimicrobial peptides, CRISPR-based genome-editing tools, or immune-modulating factors, offer a novel therapeutic avenue. Clinical trials of bioengineered phages, currently SNIPR001 and LBP-EC01, showcase their potential to safely and effectively combat MDR infections. SNIPR001 has completed a Phase I clinical trial evaluating safety in healthy volunteers, while LBP-EC01 is in Phase II trials assessing its performance in the treatment of Escherichia coli-induced urinary tract infections in patients with a history of drug-resistant infections. As “armed phages” progress toward clinical application, they hold great promise for precision-targeted antimicrobial therapies and represent a critical innovation in addressing the global antibiotic resistance crisis. Full article
(This article belongs to the Collection Phage Therapy)
Show Figures

Figure 1

23 pages, 2060 KiB  
Review
Phage Therapy in Managing Multidrug-Resistant (MDR) Infections in Cancer Therapy: Innovations, Complications, and Future Directions
by Alice N. Mafe and Dietrich Büsselberg
Pharmaceutics 2025, 17(7), 820; https://doi.org/10.3390/pharmaceutics17070820 - 24 Jun 2025
Viewed by 764
Abstract
Multidrug-resistant (MDR) bacterial infections present a major challenge in cancer therapy, particularly for immunocompromised patients undergoing chemotherapy, radiation, or surgery. These infections often arise from prolonged antibiotic use, hospital-acquired pathogens, and weakened immune defenses, leading to increased morbidity and mortality. As conventional antibiotics [...] Read more.
Multidrug-resistant (MDR) bacterial infections present a major challenge in cancer therapy, particularly for immunocompromised patients undergoing chemotherapy, radiation, or surgery. These infections often arise from prolonged antibiotic use, hospital-acquired pathogens, and weakened immune defenses, leading to increased morbidity and mortality. As conventional antibiotics become less effective against MDR strains, there is an urgent need for alternative treatment options. This review highlights phage therapy as a promising approach to managing MDR bacterial infections in cancer patients. Once widely used, phage therapy has recently regained attention as a targeted antimicrobial strategy that can specifically eliminate harmful bacteria while preserving the beneficial microbiota. Phages work by directly lysing bacteria, disrupting biofilms, and synergizing with antibiotics to restore bacterial susceptibility. These mechanisms make phage therapy especially appealing for treating infections that complicate cancer treatments. However, the clinical application of phage therapy faces challenges such as variability in phage–host interactions, regulatory hurdles, and immune responses in patients. This review identifies gaps in current research regarding the use of phage therapy for MDR infections in cancer patients. By examining recent innovations, therapeutic mechanisms, and associated limitations, we provide valuable insights into the potential of phage therapy for improving infection management in oncology. Future research should focus on refining phage delivery methods, assessing long-term safety, and exploring combination therapies to maximize clinical efficacy. Overcoming these challenges could position phage therapy as a valuable complement to existing antimicrobial strategies in cancer care. Full article
Show Figures

Graphical abstract

23 pages, 3549 KiB  
Article
Immunomodulatory Effects of Escherichia coli Phage GADS24 on Human Dendritic Cells
by Alia M. Aldahlawi, Ghadah A. Alsubhi, Jehan S. Alrahimi, Fatemah S. Basingab and Kawther A. Zaher
Biomedicines 2025, 13(7), 1519; https://doi.org/10.3390/biomedicines13071519 - 21 Jun 2025
Viewed by 383
Abstract
Background: Multidrug-resistant (MDR) Escherichia coli (E. coli) strains pose a significant public health challenge, which has led to the exploration of alternative therapeutic strategies. Due to their antibacterial and immunomodulatory properties, bacteriophages have emerged as promising therapeutic agents. Methods: This study [...] Read more.
Background: Multidrug-resistant (MDR) Escherichia coli (E. coli) strains pose a significant public health challenge, which has led to the exploration of alternative therapeutic strategies. Due to their antibacterial and immunomodulatory properties, bacteriophages have emerged as promising therapeutic agents. Methods: This study investigates the effects of GADS24, a novel lytic bacteriophage of E. coli, on human-monocyte-derived dendritic cells (DCs). DCs are exposed to purified GADS24 phage, bacterial lysate, or a combination of both. Flow cytometry was used to assess the expression of surface markers (HLA-DR, CD80, CD83, and CD86), and ELISA was used to measure cytokine production (IL-10 and IL-12p70). Results: Following treatment with bacterial lysate, a significant increase in DC maturation markers was observed. The GADS24 phage alone induced a moderate upregulation of these markers, decreased IL-10 secretion, and increased IL-12p70. Combining bacterial lysate and phage tempered the maturation response compared to the lysate treatment alone. Conclusion: These findings suggest that GADS24 exerts antibacterial activity and modulates host immunity by influencing DC maturation and cytokine production. Due to its dual antimicrobial and immunomodulatory functions, GADS24 is likely to be a valuable adjunctive therapy for multidrug-resistant (MDR) bacterial infections. Furthermore, in vivo studies are necessary to confirm these promising in vitro results. Full article
Show Figures

Figure 1

18 pages, 2973 KiB  
Article
A TAT Peptide-Functionalized Liposome Delivery Phage System (TAT-Lip@PHM) for an Enhanced Eradication of Intracellular MRSA
by Kaixin Liu, Xin Lu, Xudong Guo, Yi Yang, Wanying Liu, Hongbin Song and Rongtao Zhao
Pharmaceutics 2025, 17(6), 743; https://doi.org/10.3390/pharmaceutics17060743 - 5 Jun 2025
Viewed by 549
Abstract
Background: Intracellular bacteria frequently result in chronic and recurrent infections. MRSA is one of the most prevalent facultative intracellular bacteria in clinical infections. The drug resistance of MRSA and the difficulty of most antibiotics in entering cells result in a suboptimal clinical efficacy [...] Read more.
Background: Intracellular bacteria frequently result in chronic and recurrent infections. MRSA is one of the most prevalent facultative intracellular bacteria in clinical infections. The drug resistance of MRSA and the difficulty of most antibiotics in entering cells result in a suboptimal clinical efficacy of antibiotics in the treatment of intracellular MRSA. Bacteriophages represent a promising alternative therapy in the context of the current antimicrobial resistance crisis. Nevertheless, the low efficiency of phage entry into cells and their rapid inactivation remain challenges in the treatment of intracellular MRSA using phages. The utilization of functionalized carriers for the delivery of phages into cells and their protection represents a feasible strategy. Methods: In this study, a new MRSA bacteriophage (vB_SauS_PHM) was isolated from hospital sewage, exhibiting the characteristics of short incubation period, large lytic amount, and good environmental tolerance. Subsequently, vB_SauS_PHM was encapsulated by TAT peptide-functionalized liposomes through microfluidic technology and size-exclusion chromatography (SEC), forming a phage delivery system, designated TAT-Lip@PHM. Results: The encapsulation rate of the phage by TAT-Lip@PHM was 20.3%, and the cell entry efficiency was ≥90% after 8 h. The 24 h eradication rate of 300 μg/mL TAT-Lip@PHM against intracellular MRSA was 94.05% (superior to the 21.24% and 44.90% of vB_SauS_PHM and Lip@PHM, respectively), while the mammalian cell activity was >85% after 24 h incubation. Conclusions: The TAT-Lip@PHM effectively delivered the phage into the cell and showed an excellent killing effect on intracellular MRSA with low cytotoxicity. This work provides a technical reference for the application of phages in the treatment of intracellular bacterial infection. Full article
Show Figures

Figure 1

22 pages, 3762 KiB  
Article
An Anti-BCMA Affibody Affinity Protein for Therapeutic and Diagnostic Use in Multiple Myeloma
by Kim Anh Giang, Johan Nilvebrant, Hao Liu, Harpa Káradóttir, Yumei Diao, Stefan Svensson Gelius and Per-Åke Nygren
Int. J. Mol. Sci. 2025, 26(11), 5186; https://doi.org/10.3390/ijms26115186 - 28 May 2025
Viewed by 2741
Abstract
B Cell Maturation Antigen (BCMA) has gained considerable attention as a target in directed therapies for multiple myeloma (MM) treatment, via immunoglobulin-based bispecific T cell engagers or CAR T cell strategies. We describe the development of alternative, non-immunoglobulin BCMA-recognising affinity proteins, based on [...] Read more.
B Cell Maturation Antigen (BCMA) has gained considerable attention as a target in directed therapies for multiple myeloma (MM) treatment, via immunoglobulin-based bispecific T cell engagers or CAR T cell strategies. We describe the development of alternative, non-immunoglobulin BCMA-recognising affinity proteins, based on the small (58 aa) three-helix bundle affibody scaffold. A first selection campaign using a naïve affibody phage library resulted in the isolation of several BCMA-binding clones with different kinetic profiles. One clone showing the slowest dissociation kinetics was chosen as the template for the construction of two second-generation libraries. Characterization of output clones from selections using these libraries led to the identification of clone 1-E6, which demonstrated low nM affinity to BCMA and high thermal stability. Biosensor experiments showed that 1-E6 interfered with the binding of BCMA to both its natural ligand APRIL and to the clinically evaluated anti-BCMA monoclonal antibody belantamab, suggesting overlapping epitopes. A fluorescently labelled head-to-tail homodimer construct of 1-E6 showed specific binding to the BCMA+ MM.1s cell line in both flow cytometry and fluorescence microscopy. Taken together, the results suggest that the small anti-BCMA affibody 1-E6 could be an interesting alternative to antibody-based affinity units in the development of BCMA-targeted therapies and diagnostics. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

35 pages, 3292 KiB  
Review
Photocatalysis and Photodynamic Therapy in Diabetic Foot Ulcers (DFUs) Care: A Novel Approach to Infection Control and Tissue Regeneration
by Paweł Mikziński, Karolina Kraus, Rafał Seredyński, Jarosław Widelski and Emil Paluch
Molecules 2025, 30(11), 2323; https://doi.org/10.3390/molecules30112323 - 26 May 2025
Viewed by 835
Abstract
Photocatalysis and photodynamic therapy have been increasingly used in the management of diabetic foot ulcers (DFUs), and their integration into increasingly innovative treatment protocols enables effective infection control. Advanced techniques such as antibacterial photodynamic therapy (aPDT), liposomal photocatalytic carriers, nanoparticles, and nanomotors—used alone, [...] Read more.
Photocatalysis and photodynamic therapy have been increasingly used in the management of diabetic foot ulcers (DFUs), and their integration into increasingly innovative treatment protocols enables effective infection control. Advanced techniques such as antibacterial photodynamic therapy (aPDT), liposomal photocatalytic carriers, nanoparticles, and nanomotors—used alone, in combination, or with the addition of antibiotics, lysozyme, or phage enzymes—offer promising solutions for wound treatment. These approaches are particularly effective even in the presence of comorbidities such as angiopathies, neuropathies, and immune system disorders, which are common among diabetic patients. Notably, the use of combination therapies holds great potential for addressing challenges within diabetic foot ulcers, including hypoxia, poor circulation, high glucose levels, increased oxidative stress, and rapid biofilm formation—factors that significantly hinder wound healing in diabetic patients. The integration of modern therapeutic strategies is essential for effective clinical practice, starting with halting infection progression, ensuring its effective eradication, and promoting proper tissue regeneration, especially considering that, according to the WHO, 830 million people worldwide suffer from diabetes. Full article
(This article belongs to the Special Issue Photocatalytic Materials and Photocatalytic Reactions, 2nd Edition)
Show Figures

Figure 1

10 pages, 556 KiB  
Perspective
Virological and Pharmaceutical Properties of Clinically Relevant Phages
by Antonios-Periklis Panagiotopoulos, Antonia P. Sagona, Deny Tsakri, Stefanos Ferous, Cleo Anastassopoulou and Athanasios Tsakris
Antibiotics 2025, 14(5), 487; https://doi.org/10.3390/antibiotics14050487 - 10 May 2025
Cited by 1 | Viewed by 1428
Abstract
As antimicrobial resistance continues to undermine the efficacy of antibiotics, the global medical community is increasingly turning to alternative treatment modalities. Among these, phage therapy has re-emerged as a promising strategy for managing multidrug-resistant bacterial infections. Herein, we present and briefly discuss eight [...] Read more.
As antimicrobial resistance continues to undermine the efficacy of antibiotics, the global medical community is increasingly turning to alternative treatment modalities. Among these, phage therapy has re-emerged as a promising strategy for managing multidrug-resistant bacterial infections. Herein, we present and briefly discuss eight essential attributes of clinically relevant phages for therapy, which may be categorized broadly into virological and pharmacological characteristics. Virological attributes include a broad host range, a strictly lytic life cycle and the ability to manage the emergence of bacterial resistance to phages. Comprehensive genomic and proteomic characterization forms the foundation for selecting and engineering such candidates, ensuring both safety and predictability. From a pharmacological standpoint, phages should ideally show safety across relevant formulations and routes of administration, favorable pharmacokinetics, stability during storage and scalability in manufacturing. Advances in genomic analysis, artificial intelligence-driven phage selection and formulation technologies have further accelerated the translational potential of phage therapy. By systematically addressing each of these critical attributes, this work aims to inform the rational selection and development of therapeutic phages suitable for integration into the clinical practice. Full article
Show Figures

Figure 1

28 pages, 723 KiB  
Review
Novel Antibacterial Approaches and Therapeutic Strategies
by Gustavo A. Niño-Vega, Jorge A. Ortiz-Ramírez and Everardo López-Romero
Antibiotics 2025, 14(4), 404; https://doi.org/10.3390/antibiotics14040404 - 15 Apr 2025
Viewed by 1916
Abstract
The increase in multidrug-resistant organisms worldwide is a major public health threat driven by antibiotic overuse, horizontal gene transfer (HGT), environmental drivers, and deficient infection control in hospitals. In this article, we discuss these factors and summarize the new drugs and treatment strategies [...] Read more.
The increase in multidrug-resistant organisms worldwide is a major public health threat driven by antibiotic overuse, horizontal gene transfer (HGT), environmental drivers, and deficient infection control in hospitals. In this article, we discuss these factors and summarize the new drugs and treatment strategies suggested to combat the increasing challenges of multidrug-resistant (MDR) bacteria. New treatments recently developed involve targeting key processes involved in bacterial growth, such as riboswitches and proteolysis, and combination therapies to improve efficacy and minimize adverse effects. It also tackles the challenges of the Gram-negative bacterial outer membrane, stressing that novel strategies are needed to evade permeability barriers, efflux pumps, and resistance mechanisms. Other approaches, including phage therapy, AMPs, and AI in drug discovery, are also discussed as potential alternatives. Finally, this review points out the urgency for continued research and development (R&D), industry–academic partnerships, and financial engines to ensure that MDR microbes do not exceed the value of antibacterial therapies. Full article
(This article belongs to the Special Issue Evaluation of Emerging Antimicrobials)
Show Figures

Figure 1

21 pages, 2818 KiB  
Review
Unconventional Therapies in Periprosthetic Joint Infections: Prevention and Treatment: A Narrative Review
by Daniyil Semeshchenko, Pablo A. Slullitel, Alicia Farinati, Agustin F. Albani-Forneris, Nicolas S. Piuzzi and Martin A. Buttaro
J. Clin. Med. 2025, 14(8), 2610; https://doi.org/10.3390/jcm14082610 - 10 Apr 2025
Cited by 1 | Viewed by 1085
Abstract
Background: as the demand for total joint arthroplasty continues to grow each year, the healthcare burden is expected to increase due to periprosthetic joint infection (PJI). This review article aims to highlight the significance of biofilms in the pathogenesis of PJI and introduce [...] Read more.
Background: as the demand for total joint arthroplasty continues to grow each year, the healthcare burden is expected to increase due to periprosthetic joint infection (PJI). This review article aims to highlight the significance of biofilms in the pathogenesis of PJI and introduce alternative therapies that prevent bacterial adhesion to implants or enhance their eradication when infection occurs. Search strategy: we conducted a bibliographic search in PubMed using the following MeSH terms as follows: “no antibiotic treatment of PJI”, “bacterial biofilm eradication agents”, and “unconventional prevention of PJI”, among others. Most important results: after an initial analysis of the literature, we selected the most significant topics on novel PJI treatment methods and prevention strategies. A second PubMed search highlighted the following therapeutic modalities: the application of hydrogels on implant surfaces, the use of phage therapy, lysostaphin and antimicrobial peptides, the implementation of two-stage debridement, irrigation, implant retention and antibiotic therapy (DAIR), the intra-articular antibiotic infusion, and the use of methylene blue for biofilm eradication. Conclusions: the use of new cement spacers with xylitol, ammonium compounds, or silver nanoparticles is another promising technique to increase the eradication rate in two-stage revision. It is important for professionals to deeply understand the pathogenesis of PJI and the role of biofilms in its development in order to become familiar with these novel techniques that could reduce the burdens on healthcare systems. Full article
(This article belongs to the Special Issue Clinical Management of Prosthetic Joint Infection (PJI))
Show Figures

Figure 1

Back to TopTop