Immunomodulatory Effects of Escherichia coli Phage GADS24 on Human Dendritic Cells
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Phage
2.2. Spot Assay
2.3. Bacteria and Bacterial Lysate Preparation
2.4. Quantification of LPS Levels
2.5. Host Range Test
2.6. Isolation and Differentiation of Monocytes from Peripheral Blood Mononuclear Cells (PBMCs)
2.6.1. Ethical Approval
2.6.2. DC Generation and Treatment
2.7. Flow Cytometry Analysis
2.8. Cytokines Assessment
2.9. Statistical Analysis
3. Results
3.1. Host Range
3.2. Phage Titration
3.3. Morphology of Human-Monocyte-Derived Dendritic Cells
3.4. Surface Marker Expression
3.5. Effect of E. coli Phage on Cytokine Secretion
3.5.1. IL-10 Cytokine Secretion
3.5.2. IL-12p70 Cytokine Secretion
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AMR | Antimicrobial Resistance |
ANOVA | Analysis of Variance |
CD | Cluster of Differentiation (e.g., CD80, CD83, CD86, and CD14) |
cGAS-STING | Cyclic GMP-AMP Synthase—Stimulator of Interferon Genes |
DCs | Dendritic Cells |
E. coli | Escherichia coli |
ELISA | Enzyme-Linked Immunosorbent Assay |
FSC/SSC | Forward Scatter/Side Scatter |
GM-CSF | Granulocyte-Macrophage Colony-Stimulating Factor |
HLA-DR | Human Leukocyte Antigen—DR Isotype |
HSD | Honestly Significant Difference (Tukey’s HSD test) |
IFN-γ | Interferon-Gamma |
imDCs | Immature Dendritic Cells |
LAL | Limulus Amebocyte Lysate |
LB broth/agar | Luria Bertani Broth/Agar |
LPSs | Lipopolysaccharides |
MDR | Multidrug-Resistant |
MHC | Major Histocompatibility Complex |
OD | Optical Density |
PBMCs | Peripheral Blood Mononuclear Cells |
PEG | Polyethylene Glycol |
PFU | Plaque-Forming Units |
PI | Propidium Iodide |
SD | Standard Deviation |
SM buffer | Suspension Medium buffer |
Th1 | T helper 1 (cells) |
TLR | Toll-Like Receptor (e.g., TLR4 and TLR9) |
References
- Hatfull, G.F.; Dedrick, R.M.; Schooley, R.T. Phage therapy for antibiotic-resistant bacterial infections. Annu. Rev. Med. 2022, 73, 197–211. [Google Scholar] [CrossRef] [PubMed]
- Carascal, M.B.; dela Cruz-Papa, D.M.; Remenyi, R.; Cruz, M.C.B.; Destura, R.V. Phage revolution against multidrug-resistant clinical pathogens in Southeast Asia. Front. Microbiol. 2022, 13, 820572. [Google Scholar] [CrossRef]
- Venturini, C.; Petrovic Fabijan, A.; Fajardo Lubian, A.; Barbirz, S.; Iredell, J. Biological foundations of successful bacteriophage therapy. EMBO Mol. Med. 2022, 14, e12435. [Google Scholar] [CrossRef] [PubMed]
- Perea, L.; Rivas, M.J.R.S.P.; García-Arjona, M.I.; Rivas, P.P.R.; Fernández-Bedmar, Z.; Benítez-Martínez, D.; Tirado-Vélez, J.M.; López-López, A.; Ortiz-Gamoneda, R.; Navas-Carrillo, D.; et al. Bacteriophages immunomodulate the response of monocytes. Exp. Biol. Med. 2021, 246, 1263–1268. [Google Scholar] [CrossRef]
- Olszak, T.; Drulis-Kawa, Z.; Majkowska-Skrobek, G.; Maciejewska, B.; Kaca, W.; Danis-Włodarczyk, K.; Gula, G.; Siwińska, M.; Augustyniak, D.; Dastych, J.; et al. Phage treatment of Pseudomonas aeruginosa yields a phage-resistant population with different susceptibility to innate immune responses and mild effects on metabolic profiles. Microbiol. Res. 2024, 282, 127609. [Google Scholar] [CrossRef]
- Van Belleghem, J.; Dąbrowska, K.; Vaneechoutte, M.; Barr, J.; Bollyky, P. Interactions between bacteriophage, bacteria, and the mammalian immune system. Viruses 2018, 11, 10. [Google Scholar] [CrossRef] [PubMed]
- Sweere, J.M.; Van Belleghem, J.D.; Ishak, H.; Bach, M.S.; Popescu, M.; Sunkari, V.; Gevaert, K.; Vaneechoutte, M.; Higgins, D.E.; Bollyky, P.L. Bacteriophage trigger antiviral immunity and prevent clearance of bacterial infection. Science 2019, 363, eaat9691. [Google Scholar] [CrossRef]
- McGovern, N.; Chan, J.K.Y.; Ginhoux, F. Dendritic cells in humans—From fetus to adult. Int. Immunol. 2015, 27, 65–72. [Google Scholar] [CrossRef]
- Bocian, K.; Kłopot, A.; Kuffner, K.; Junka, A.; Biegalska, J.; Majkowska-Skrobek, G.; Mikołajczyk, D.; Kłak, M.; Dąbrowska, K.; Chybicka, A.; et al. The effects of T4 and A3/R bacteriophages on differentiation of human myeloid dendritic cells. Front. Microbiol. 2016, 7, 1267. [Google Scholar] [CrossRef]
- Kortright, K.E.; Chan, B.K.; Koff, J.L.; Turner, P.E. Phage Therapy: A Renewed Approach to Combat Antibiotic-Resistant Bacteria. Cell Host Microbe. 2019, 25, 219–232. [Google Scholar] [CrossRef]
- Zhang, Y.; Shao, Y.; You, H.; Shen, Y.; Miao, F.; Yuan, C.; Chen, X.; Zhai, M.; Shen, Y.; Zhang, J. Characterization and therapeutic potential of MRABP9, a novel lytic bacteriophage infecting multidrug-resistant Acinetobacter baumannii clinical strains. Virology 2024, 595, 110098. [Google Scholar] [CrossRef] [PubMed]
- Xuan, G.; Lin, H.; Kong, J.; Wang, J. Phage Resistance Evolution Induces the Sensitivity of Specific Antibiotics in Pseudomonas aeruginosa PAO1. Microbiol Spectr. 2022, 10, e0135622. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chang, R.Y.K.; Nang, S.C.; Chan, H.K.; Li, J. Novel antimicrobial agents for combating antibiotic-resistant bacteria. Adv Drug Deliv Rev. 2022, 187, 114378. [Google Scholar] [CrossRef] [PubMed]
- National Center for Biotechnology Information. Nucleotide. Escherichia Phage GADS24, Complete Genome. Accession Number OQ703618.1. 2023. Available online: https://www.ncbi.nlm.nih.gov/nuccore/OQ703618.1 (accessed on 12 May 2025).
- Antibody Design Labs. Small-Scale Preparation of Bacteriophage by PEG Precipitation. 2015. Available online: https://www.abdesignlabs.com/technical-resources/bacteriophage-preparation/ (accessed on 3 November 2022).
- National Center for Biotechnology Information. Escherichia coli Strain NRT114 16S Ribosomal RNA Gene, Partial Sequence. Accession KP244263.1. 2015. Available online: https://www.ncbi.nlm.nih.gov/nuccore/KP244263.1 (accessed on 12 May 2025).
- Bonilla, N.; Rojas, M.I.; Netto Flores Cruz, G.; Hung, S.-H.; Rohwer, F.; Barr, J.J. Phage on tap–a quick and efficient protocol for the preparation of bacteriophage laboratory stocks. PeerJ 2016, 4, e2261. [Google Scholar] [CrossRef]
- Jacobs-Sera, D.; Marinelli, L.J.; Bowman, C.; Broussard, G.W.; Guerrero Bustamante, C.; Boyle, M.M.; Petrova, Z.O.; Dedrick, R.M.; Pope, W.H.; Science Education Alliance Phage Hunters Advancing Genomics And Evolutionary Science Sea-Phages Program; et al. On the nature of mycobacteriophage diversity and host preference. Virology 2012, 434, 187–201. [Google Scholar] [CrossRef]
- Inaba, K.; Swiggard, W.J.; Steinman, R.M.; Romani, N.; Schuler, G.; Brinster, C. Isolation of Dendritic Cells. Curr. Protoc. Immunol. 2009, 86, 3.7.1–3.7.19. [Google Scholar] [CrossRef]
- Van Belleghem, J.D.; Clement, F.; Merabishvili, M.; Lavigne, R.; Vaneechoutte, M. Pro- and anti-inflammatory responses of peripheral blood mononuclear cells induced by Staphylococcus aureus and Pseudomonas aeruginosa phages. Sci. Rep. 2017, 7, 8004. [Google Scholar] [CrossRef]
- García-Cruz, J.C.; Ramírez-López, E.; Marin-Castaño, C.A.; González-Gómez, J.P.; Castro-Escobar, A.C.; Álvarez-Díaz, P.D.; Gómez-García, A.; Gómez-Mesa, J.E.; Sánchez-Duque, J.A.; Vinaccia, S.; et al. Myriad applications of bacteriophages beyond phage therapy. PeerJ 2023, 11, e15272. [Google Scholar] [CrossRef]
- Hasan, M.; Ahn, J. Evolutionary Dynamics between Phages and Bacteria as a Possible Approach for Designing Effective Phage Therapies against Antibiotic-Resistant Bacteria. Antibiotics 2022, 11, 915. [Google Scholar] [CrossRef]
- Pajares-Chamorro, N.; Hammer, N.D.; Chatzistavrou, X. Materials for restoring lost Activity: Old drugs for new bugs. Adv. Drug Deliv. Rev. 2022, 186, 114302. [Google Scholar] [CrossRef]
- Stacey, H.J.; De Soir, S.; Jones, J.D. The Safety and Efficacy of Phage Therapy: A Systematic Review of Clinical and Safety Trials. Antibiotics 2022, 11, 1340. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, X.; Cheng, Y.; Cao, X. Dendritic cell migration in inflammation and immunity. Cell. Mol. Immunol. 2021, 18, 2461–2471. [Google Scholar] [CrossRef] [PubMed]
- Sallusto, F.; Lanzavecchia, A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J. Exp. Med. 1994, 179, 1109–1118. [Google Scholar] [CrossRef] [PubMed]
- van de Laar, L.; Coffer, P.J.; Woltman, A.M. Regulation of dendritic cell development by GM-CSF: Molecular control and implications for immune homeostasis and therapy. Blood 2012, 119, 3383–3393. [Google Scholar] [CrossRef]
- Tu, L.; Chen, J.; Zhang, H.; Duan, L. Interleukin-4 Inhibits Regulatory T Cell Differentiation through Regulating CD103+ Dendritic Cells. Front. Immunol. 2017, 8, 214. [Google Scholar] [CrossRef]
- Biscari, L.; Stempin, C.; Cerban, F.; Gauffin-Cano, P.; Wiemer, E.A.C.; Aoki, M.P.; Motrán, C.C. Immunization With Lipopolysaccharide-Activated Dendritic Cells Generates a Specific CD8+ T Cell Response That Confers Partial Protection Against Infection With Trypanosoma cruzi. Front. Cell. Infect. Microbiol. 2022, 12, 897133. [Google Scholar] [CrossRef]
- Podlacha, M.; Dzieciol, M.; Wystyrk, K.; Gach, P.; Zuziak, E.; Kowalczyk, M.; Nejman-Faleńczyk, B.; Grabski, M.; Węgrzyn, G.; Węgrzyn, A.; et al. Bacteriophage DNA induces an interrupted immune response during phage therapy in a chicken model. Nat. Commun. 2024, 15, 2274. [Google Scholar] [CrossRef]
- Merad, M.; Sathe, P.; Helft, J.; Miller, J.; Mortha, A. The Dendritic Cell Lineage: Ontogeny and Function of Dendritic Cells and Their Subsets in the Steady State and the Inflamed Setting. Annu. Rev. Immunol. 2013, 31, 563–604. [Google Scholar] [CrossRef]
- Guilliams, M.; Ginhoux, F.; Jakubzick, C.; Naik, S.H.; Onai, N.; Schraml, B.U.; Segura, E.; Tussiwand, R.; Yona, S. Dendritic cells, monocytes and macrophages: A unified nomenclature based on ontogeny. Nat. Rev. Immunol. 2014, 14, 571–578. [Google Scholar] [CrossRef]
- Collin, M.; Bigley, V. Human dendritic cell subsets: An update. Immunology 2018, 154, 3–20. [Google Scholar] [CrossRef]
- Jin, P.; Wang, E.; Provenzano, M.; De Remigis, A.; Stroncek, D.F.; Ferrone, S.; Marincola, F.M. Molecular signatures of maturing dendritic cells: Implications for testing the quality of dendritic cell therapies. J. Transl. Med. 2010, 8, 4. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.K.; Kim, J. Properties of immature and mature dendritic cells: Phenotype, morphology, phagocytosis, and migration. RSC Adv. 2019, 9, 11230–11238. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, J.W.; Tong, O.; Harman, A.N.; Turville, S.G. Human Dendritic Cell Subsets, Ontogeny, and Impact on HIV Infection. Front. Immunol. 2019, 10, 1088. [Google Scholar] [CrossRef]
- Freyberger, H.R.; He, Y.; Roth, A.J.; Nikolich, M.P.; Filippov, A.A. Effects of Staphylococcus aureus bacteriophage K on expression of cytokines and activation markers by human dendritic cells in vitro. Viruses 2018, 10, 617. [Google Scholar] [CrossRef]
- Podlacha, M.; Dzieciol, M.; Gach, P.; Zuziak, E.; Wystyrk, K.; Kowalczyk, M.; Węgrzyn, G.; Węgrzyn, A.; Nejman-Faleńczyk, B. Interactions of Bacteriophages with Animal and Human Organisms—Safety Issues in the Light of Phage Therapy. Int. J. Mol. Sci. 2021, 22, 8937. [Google Scholar] [CrossRef] [PubMed]
- Scheithauer, T.P.M.; Danneskiold-Samsøe, N.B.; Gylfe, A.; Petersen, C.; Frøkiær, H.; Buschard, K.; Hansen, L.H.; Nielsen, D.S.; Hansen, A.K. Bacteriophages from treatment-naïve type 2 diabetes individuals drive an inflammatory response in human co-cultures of dendritic cells and T cells. Gut Microbes 2024, 16, 2380747. [Google Scholar] [CrossRef]
- Taddio, M.F.; Lopa, S.; Zana, A.; Gualtierotti, R.; D’Alessio, S.; D’Onofrio, M.; Gianolli, L.; Invernizzi, P.; Varrassi, E.; Danelli, P.; et al. In Vivo Imaging of Local Inflammation: Monitoring LPS-Induced CD80/CD86 Upregulation by PET. Mol. Imaging Biol. 2021, 23, 196–207. [Google Scholar] [CrossRef]
- Zhang, L.; Li, L.; Liu, Y.; Wang, L.; Han, W.; Feng, X.; Geng, J.; Sun, C. Staphylococcus aureus Bacteriophage Suppresses LPS-Induced Inflammation in MAC-T Bovine Mammary Epithelial Cells. Front. Microbiol. 2018, 9, 1614. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Aoki-Ota, M.; Yamashita, M.; Nagai, S.; Arai, H.; Ohta, A. Regulation of IL-10 and IL-12 production and function in macrophages and dendritic cells. F1000Research 2015, 4, 1465. [Google Scholar] [CrossRef]
- Schülke, S. Induction of Interleukin-10 Producing Dendritic Cells As a Tool to Suppress Allergen-Specific T Helper 2 Responses. Front. Immunol. 2018, 9, 455. [Google Scholar] [CrossRef]
- Hamza, T.; Barnett, J.B.; Li, B. Interleukin 12 a Key Immunoregulatory Cytokine in Infection Applications. Int. J. Mol. Sci. 2010, 11, 789–806. [Google Scholar] [CrossRef]
- An, T.-W.; Kim, S.-J.; Lee, Y.-D.; Park, J.-H.; Chang, H.-I. The immune-enhancing effect of the Cronobacter sakazakii ES2 phage results in the activation of nuclear factor-κB and dendritic cell maturation via the activation of IL-12p40 in the mouse bone marrow. Immunol. Lett. 2014, 157, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Miller, E.S.; Kutter, E.; Mosig, G.; Arisaka, F.; Kunisawa, T.; Ruger, W. Bacteriophage T4 genome. Microbiol. Mol. Biol. Rev. 2003, 67, 86–156. [Google Scholar] [CrossRef] [PubMed]
- Savalia, D.; Westblade, L.F.; Goel, M.; Florens, L.; Kemp, P.; Akulenko, N.; Pavlova, O.; Padovan, J.C.; Chait, B.T.; Washburn, M.P.; et al. Genomic and proteomic analysis of phiEco32, a novel Escherichia coli bacteriophage. J. Mol. Biol. 2008, 377, 774–789. [Google Scholar] [CrossRef]
- Pan, F.; Wu, H.; Liu, J.; Ai, Y.; Meng, X.; Meng, R.; Meng, Q. Complete genome sequence of Escherichia coli O157:H7 lytic phage JL1. Arch. Virol. 2013, 158, 2429–2432. [Google Scholar] [CrossRef] [PubMed]
- Gogokhia, L.; Buhrke, K.; Bell, R.; Hoffman, B.; ∙Brown, D.G.; Hanke-Gogokhia, C.; Ajami, N.J.; Wong, M.C.; Ghazaryan, A.; Valentine, J.F.; et al. Expansion of bacteriophages is linked to aggravated intestinal inflammation and colitis. Cell Host Microbe 2019, 25, 285–299. [Google Scholar] [CrossRef]
- Rousset, F.; Depardieu, F.; Miele, S.; Dowding, J.; Laval, A.L.; Lieberman, E.; Garry, D.; Rocha, E.P.C.; Bernheim, A.; Bikard, D. Phages and their satellites encode hotspots of antiviral systems. Cell Host Microbe. 2022, 30, 740–753.e5. [Google Scholar] [CrossRef]
- Oromí-Bosch, A.; Antani, J.D.; Turner, P.E. Developing Phage Therapy That Overcomes the Evolution of Bacterial Resistance. Annu. Rev. Virol. 2023, 10, 503–524. [Google Scholar] [CrossRef]
Bacterial Strain * | Susceptibility to Isolated Phage |
---|---|
E. coli strain 53 | + |
E. coli strain 33 | + |
E. coli strain 16 | + |
E. coli strain 30 | − |
E. coli strain 21 | + |
E. coli strain 9 | − |
E. coli strain 401 | − |
E. coli strain 882999 | − |
E. coli strain 20 | − |
E. coli strain 40 | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldahlawi, A.M.; Alsubhi, G.A.; Alrahimi, J.S.; Basingab, F.S.; Zaher, K.A. Immunomodulatory Effects of Escherichia coli Phage GADS24 on Human Dendritic Cells. Biomedicines 2025, 13, 1519. https://doi.org/10.3390/biomedicines13071519
Aldahlawi AM, Alsubhi GA, Alrahimi JS, Basingab FS, Zaher KA. Immunomodulatory Effects of Escherichia coli Phage GADS24 on Human Dendritic Cells. Biomedicines. 2025; 13(7):1519. https://doi.org/10.3390/biomedicines13071519
Chicago/Turabian StyleAldahlawi, Alia M., Ghadah A. Alsubhi, Jehan S. Alrahimi, Fatemah S. Basingab, and Kawther A. Zaher. 2025. "Immunomodulatory Effects of Escherichia coli Phage GADS24 on Human Dendritic Cells" Biomedicines 13, no. 7: 1519. https://doi.org/10.3390/biomedicines13071519
APA StyleAldahlawi, A. M., Alsubhi, G. A., Alrahimi, J. S., Basingab, F. S., & Zaher, K. A. (2025). Immunomodulatory Effects of Escherichia coli Phage GADS24 on Human Dendritic Cells. Biomedicines, 13(7), 1519. https://doi.org/10.3390/biomedicines13071519