Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = phage taxonomy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 84713 KB  
Article
Bulleidia extructa PP_925: Genome Reduction, Minimalist Metabolism, and Evolutionary Insights into Firmicutes Diversification
by Peter V. Evseev, Irina V. Podoprigora, Andrei V. Chaplin, Zurab S. Khabadze, Artem A. Malkov, Lyudmila I. Kafarskaia, Dmitriy A. Shagin, Yulia N. Urban, Olga Yu. Borisova and Boris A. Efimov
Int. J. Mol. Sci. 2026, 27(1), 448; https://doi.org/10.3390/ijms27010448 - 31 Dec 2025
Viewed by 374
Abstract
Bulleidia extructa strain PP_925, isolated from the periodontal pocket of a patient with periodontitis, is a Gram-positive Bacillota with an unusually compact genome of 1.38 Mb. Phylogenomic analyses place PP_925 within Erysipelotrichales and show close relatedness of Bulleidia to Solobacterium and Lactimicrobium, as [...] Read more.
Bulleidia extructa strain PP_925, isolated from the periodontal pocket of a patient with periodontitis, is a Gram-positive Bacillota with an unusually compact genome of 1.38 Mb. Phylogenomic analyses place PP_925 within Erysipelotrichales and show close relatedness of Bulleidia to Solobacterium and Lactimicrobium, as well as the existence of previously undescribed related clades. The metabolic repertoire of PP_925 is strongly reduced: it retains glycolysis, the phosphotransacetylase–acetate kinase pathway, and arginine catabolism but lacks the tricarboxylic acid cycle and most de novo biosynthetic pathways for amino acids, nucleotides, fatty acids, cofactors, and vitamins, implying reliance on salvage and cross-feeding. Phylogenetic inference indicates independent peptidoglycan losses in multiple mycoplasma Erysipelotrichia-related lineages, while PP_925 has retained an ancestral Gram-positive cell wall despite extensive genomic reduction. The genome preserves systems crucial for host interaction and adaptability, including a horizontally acquired tad locus encoding type IV pili, a comG competence system, and several adherence-associated virulence factors. Defense mechanisms are diverse and include a CRISPR-Cas II-A system, a type II restriction–modification module adjacent to Gao_Qat-like genes, and the Wadjet system in a genome without prophages; CRISPR spacers indicate repeated encounters with Bacillota phages. Comparative genomics of PP_925 and related strains reveals a small core genome with lineage-specific adhesion and defense modules, indicating recent shared ancestry combined with adaptive flexibility under substantial genome reduction. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

29 pages, 859 KB  
Review
Phage Therapy for Acinetobacter baumannii Infections: A Review on Advances in Classification, Applications, and Translational Roadblocks
by Yilin Wang, Liuyan Li, Yuqi Liang, Kehan Xu, Ying Ye and Maozhang He
Antibiotics 2025, 14(11), 1134; https://doi.org/10.3390/antibiotics14111134 - 8 Nov 2025
Cited by 2 | Viewed by 2139
Abstract
The global spread of carbapenem-resistant Acinetobacter baumannii (CRAB) poses a severe public health threat, driving growing interest in phage-based precision antibacterial strategies. This systematic review synthesizes recent advances in the field of A. baumannii phage. Modern taxonomy, based on whole-genome phylogeny, has reclassified [...] Read more.
The global spread of carbapenem-resistant Acinetobacter baumannii (CRAB) poses a severe public health threat, driving growing interest in phage-based precision antibacterial strategies. This systematic review synthesizes recent advances in the field of A. baumannii phage. Modern taxonomy, based on whole-genome phylogeny, has reclassified the majority of A. baumannii phages into the class Caudoviricetes, revealing distinct evolutionary clades that correlate with host tropism and biological properties, superseding the traditional morphological families (Myoviridae, Siphoviridae, Podoviridae). To overcome limitations of natural phage therapy, such as narrow host range, cocktail therapies (ex vivo resistance mutation rates < 5%) and phage-antibiotic synergism (enabling antibiotic efficacy at 1/4 minimum inhibitory concentration) have significantly enhanced antibacterial efficacy. Preclinical models demonstrate that phage therapy efficiently clears pathogens in pneumonia models and promotes the healing of burn wounds and diabetic ulcers via immunomodulatory mechanisms. Technical optimizations include nebulized inhalation delivery achieving 42% alveolar deposition, and thermosensitive hydrogels enabling sustained release over 72 h. Genetic engineering approaches, such as host range expansion through tail fiber recombination and CRISPR/Cas-mediated elimination of lysogeny, show promise. However, the genetic stability of engineered phages requires further validation. Current challenges remain, including limited host spectrum, the absence of clinical translation standards, and lagging regulatory frameworks. Future efforts must integrate metagenomic mining and synthetic biology strategies to establish a precision medicine framework encompassing resistance monitoring and personalized phage formulation, offering innovative solutions against CRAB infections. Full article
(This article belongs to the Special Issue Antibiotic Resistance in Hospital-Acquired Infections)
Show Figures

Figure 1

23 pages, 8415 KB  
Article
Zeta CrAss-like Phages, a Separate Phage Family Using a Variety of Adaptive Mechanisms to Persist in Their Hosts
by Igor V. Babkin, Valeria A. Fedorets, Artem Y. Tikunov, Ivan K. Baykov, Elizaveta A. Panina and Nina V. Tikunova
Int. J. Mol. Sci. 2025, 26(16), 7694; https://doi.org/10.3390/ijms26167694 - 8 Aug 2025
Cited by 1 | Viewed by 1554
Abstract
Bacteriophages of the order Crassvirales are highly abundant and near-universal members of the human gut microbiome worldwide. Zeta crAss-like phages comprise a separate group in the order Crassvirales, and their genomes exhibit greater variability than genomes of crAss-like phages from other families within [...] Read more.
Bacteriophages of the order Crassvirales are highly abundant and near-universal members of the human gut microbiome worldwide. Zeta crAss-like phages comprise a separate group in the order Crassvirales, and their genomes exhibit greater variability than genomes of crAss-like phages from other families within the order. Zeta crAss-like phages employ multiple adaptation mechanisms, ensuring their survival despite host defenses and environmental pressure. Some Zeta crAss-like phages use alternative genetic coding and exploit diversity-generating retroelements (DGRs). These features suggest complex evolutionary relationships with their bacterial hosts, sustaining parasitic coexistence. Mutations in tail fiber proteins introduced by DGR can contribute to their adaptation to changes in the host cell surface and even expand the range of their hosts. In addition, the exchange of DNA polymerases via recombination makes it possible to overcome the bacterial anti-phage protection directed at these enzymes. Zeta crAss-like phages continuously adapt due to genetic diversification, host interaction tweaks, and counter-defense innovations, driving an evolutionary arms race with hosts. Based on the genome characteristics of the Zeta crAss-like phages, we propose to separate them into the Echekviridae family (“эчәк”—“intestines” in Tatar) following the tradition of using the word “intestines” in different languages, suggested previously. Full article
(This article belongs to the Special Issue Bacteriophage—Molecular Studies (6th Edition))
Show Figures

Figure 1

29 pages, 4798 KB  
Systematic Review
Lytic Spectra of Tailed Bacteriophages: A Systematic Review and Meta-Analysis
by Ivan M. Pchelin, Andrei V. Smolensky, Daniil V. Azarov and Artemiy E. Goncharov
Viruses 2024, 16(12), 1879; https://doi.org/10.3390/v16121879 - 4 Dec 2024
Cited by 3 | Viewed by 3756
Abstract
As natural predators of bacteria, tailed bacteriophages can be used in biocontrol applications, including antimicrobial therapy. Also, phage lysis is a detrimental factor in technological processes based on bacterial growth and metabolism. The spectrum of bacteria bacteriophages interact with is known as the [...] Read more.
As natural predators of bacteria, tailed bacteriophages can be used in biocontrol applications, including antimicrobial therapy. Also, phage lysis is a detrimental factor in technological processes based on bacterial growth and metabolism. The spectrum of bacteria bacteriophages interact with is known as the host range. Phage science produced a vast amount of host range data. However, there has been no attempt to analyse these data from the viewpoint of modern phage and bacterial taxonomy. Here, we performed a meta-analysis of spotting and plaquing host range data obtained on strains of production host species. The main metric of our study was the host range value calculated as a ratio of lysed strains to the number of tested bacterial strains. We found no boundary between narrow and broad host ranges in tailed phages taken as a whole. Family-level groups of strictly lytic bacteriophages had significantly different median plaquing host range values in the range from 0.18 (Drexlerviridae) to 0.70 (Herelleviridae). In Escherichia coli phages, broad host ranges were associated with decreased efficiency of plating. Bacteriophage morphology, genome size, and the number of tRNA-coding genes in phage genomes did not correlate with host range values. From the perspective of bacterial species, median plaquing host ranges varied from 0.04 in bacteriophages infecting Acinetobacter baumannii to 0.73 in Staphylococcus aureus phages. Taken together, our results imply that taxonomy of bacteriophages and their bacterial hosts can be predictive of intraspecies host ranges. Full article
(This article belongs to the Section Bacterial Viruses)
Show Figures

Figure 1

14 pages, 5614 KB  
Article
Characterization and Genomic Analyses of dsDNA Vibriophage vB_VpaM_XM1, Representing a New Viral Family
by Zuyun Wei, Xuejing Li, Chunxiang Ai and Hongyue Dang
Mar. Drugs 2024, 22(9), 429; https://doi.org/10.3390/md22090429 - 21 Sep 2024
Cited by 2 | Viewed by 2121
Abstract
A novel vibriophage vB_VpaM_XM1 (XM1) was described in the present study. Morphological analysis revealed that phage XM1 had Myovirus morphology, with an oblate icosahedral head and a long contractile tail. The genome size of XM1 is 46,056 bp, with a G + C [...] Read more.
A novel vibriophage vB_VpaM_XM1 (XM1) was described in the present study. Morphological analysis revealed that phage XM1 had Myovirus morphology, with an oblate icosahedral head and a long contractile tail. The genome size of XM1 is 46,056 bp, with a G + C content of 42.51%, encoding 69 open reading frames (ORFs). Moreover, XM1 showed a narrow host range, only lysing Vibrio xuii LMG 21346 (T) JL2919, Vibrio parahaemolyticus 1.1997, and V. parahaemolyticus MCCC 1H00029 among the tested bacteria. One-step growth curves showed that XM1 has a 20-min latent period and a burst size of 398 plaque-forming units (PFU)/cell. In addition, XM1 exhibited broad pH, thermal, and salinity stability, as well as strong lytic activity, even at a multiplicity of infection (MOI) of 0.001. Multiple genome comparisons and phylogenetic analyses showed that phage XM1 is grouped in a clade with three other phages, including Vibrio phages Rostov 7, X29, and phi 2, and is distinct from all known viral families that have ratified by the standard genomic analysis of the International Committee on Taxonomy of Viruses (ICTV). Therefore, the above four phages might represent a new viral family, tentatively named Weiviridae. The broad physiological adaptability of phage XM1 and its high lytic activity and host specificity indicated that this novel phage is a good candidate for being used as a therapeutic bioagent against infections caused by certain V. parahaemolyticus strains. Full article
(This article belongs to the Special Issue Marine Bacteriophages and Their Applications)
Show Figures

Figure 1

17 pages, 5780 KB  
Article
Genomic and Phenotypic Analysis of Salmonella enterica Bacteriophages Identifies Two Novel Phage Species
by Sudhakar Bhandare, Opeyemi U. Lawal, Anna Colavecchio, Brigitte Cadieux, Yella Zahirovich-Jovich, Zeyan Zhong, Elizabeth Tompkins, Margot Amitrano, Irena Kukavica-Ibrulj, Brian Boyle, Siyun Wang, Roger C. Levesque, Pascal Delaquis, Michelle Danyluk and Lawrence Goodridge
Microorganisms 2024, 12(4), 695; https://doi.org/10.3390/microorganisms12040695 - 29 Mar 2024
Cited by 6 | Viewed by 5363
Abstract
Bacteriophages (phages) are potential alternatives to chemical antimicrobials against pathogens of public health significance. Understanding the diversity and host specificity of phages is important for developing effective phage biocontrol approaches. Here, we assessed the host range, morphology, and genetic diversity of eight Salmonella [...] Read more.
Bacteriophages (phages) are potential alternatives to chemical antimicrobials against pathogens of public health significance. Understanding the diversity and host specificity of phages is important for developing effective phage biocontrol approaches. Here, we assessed the host range, morphology, and genetic diversity of eight Salmonella enterica phages isolated from a wastewater treatment plant. The host range analysis revealed that six out of eight phages lysed more than 81% of the 43 Salmonella enterica isolates tested. The genomic sequences of all phages were determined. Whole-genome sequencing (WGS) data revealed that phage genome sizes ranged from 41 to 114 kb, with GC contents between 39.9 and 50.0%. Two of the phages SB13 and SB28 represent new species, Epseptimavirus SB13 and genera Macdonaldcampvirus, respectively, as designated by the International Committee for the Taxonomy of Viruses (ICTV) using genome-based taxonomic classification. One phage (SB18) belonged to the Myoviridae morphotype while the remaining phages belonged to the Siphoviridae morphotype. The gene content analyses showed that none of the phages possessed virulence, toxin, antibiotic resistance, type I–VI toxin–antitoxin modules, or lysogeny genes. Three (SB3, SB15, and SB18) out of the eight phages possessed tailspike proteins. Whole-genome-based phylogeny of the eight phages with their 113 homologs revealed three clusters A, B, and C and seven subclusters (A1, A2, A3, B1, B2, C1, and C2). While cluster C1 phages were predominantly isolated from animal sources, cluster B contained phages from both wastewater and animal sources. The broad host range of these phages highlights their potential use for controlling the presence of S. enterica in foods. Full article
(This article belongs to the Special Issue Bacteria Control by Phages)
Show Figures

Figure 1

19 pages, 23754 KB  
Article
Genome Analysis of Epsilon CrAss-like Phages
by Igor V. Babkin, Artem Y. Tikunov, Ivan K. Baykov, Vera V. Morozova and Nina V. Tikunova
Viruses 2024, 16(4), 513; https://doi.org/10.3390/v16040513 - 27 Mar 2024
Cited by 4 | Viewed by 2763
Abstract
CrAss-like phages play an important role in maintaining ecological balance in the human intestinal microbiome. However, their genetic diversity and lifestyle are still insufficiently studied. In this study, a novel CrAssE-Sib phage genome belonging to the epsilon crAss-like phage genomes was found. Comparative [...] Read more.
CrAss-like phages play an important role in maintaining ecological balance in the human intestinal microbiome. However, their genetic diversity and lifestyle are still insufficiently studied. In this study, a novel CrAssE-Sib phage genome belonging to the epsilon crAss-like phage genomes was found. Comparative analysis indicated that epsilon crAss-like phages are divided into two putative genera, which were proposed to be named Epsilonunovirus and Epsilonduovirus; CrAssE-Sib belongs to the former. The crAssE-Sib genome contains a diversity-generating retroelement (DGR) cassette with all essential elements, including the reverse transcriptase (RT) and receptor binding protein (RBP) genes. However, this RT contains the GxxxSP motif in its fourth domain instead of the usual GxxxSQ motif found in all known phage and bacterial DGRs. RBP encoded by CrAssE-Sib and other Epsilonunoviruses has an unusual structure, and no similar phage proteins were found. In addition, crAssE-Sib and other Epsilonunoviruses encode conserved prophage repressor and anti-repressors that could be involved in lysogenic-to-lytic cycle switches. Notably, DNA primase sequences of epsilon crAss-like phages are not included in the monophyletic group formed by the DNA primases of all other crAss-like phages. Therefore, epsilon crAss-like phage substantially differ from other crAss-like phages, indicating the need to classify these phages into a separate family. Full article
(This article belongs to the Special Issue Bacteriophage Diversity)
Show Figures

Figure 1

27 pages, 21308 KB  
Article
Xanthomonas Phage PBR31: Classifying the Unclassifiable
by Rashit I. Tarakanov, Peter V. Evseev, Ha T. N. Vo, Konstantin S. Troshin, Daria I. Gutnik, Aleksandr N. Ignatov, Stepan V. Toshchakov, Konstantin A. Miroshnikov, Ibrahim H. Jafarov and Fevzi S.-U. Dzhalilov
Viruses 2024, 16(3), 406; https://doi.org/10.3390/v16030406 - 6 Mar 2024
Cited by 3 | Viewed by 3021
Abstract
The ability of bacteriophages to destroy bacteria has made them the subject of extensive research. Interest in bacteriophages has recently increased due to the spread of drug-resistant bacteria, although genomic research has not kept pace with the growth of genomic data. Genomic analysis [...] Read more.
The ability of bacteriophages to destroy bacteria has made them the subject of extensive research. Interest in bacteriophages has recently increased due to the spread of drug-resistant bacteria, although genomic research has not kept pace with the growth of genomic data. Genomic analysis and, especially, the taxonomic description of bacteriophages are often difficult due to the peculiarities of the evolution of bacteriophages, which often includes the horizontal transfer of genes and genomic modules. The latter is particularly pronounced for temperate bacteriophages, which are capable of integration into the bacterial chromosome. Xanthomonas phage PBR31 is a temperate bacteriophage, which has been neither described nor classified previously, that infects the plant pathogen Xanthomonas campestris pv. campestris. Genomic analysis, including phylogenetic studies, indicated the separation of phage PBR31 from known classified bacteriophages, as well as its distant relationship with other temperate bacteriophages, including the Lederbervirus group. Bioinformatic analysis of proteins revealed distinctive features of PBR31, including the presence of a protein similar to the small subunit of D-family DNA polymerase and advanced lysis machinery. Taxonomic analysis showed the possibility of assigning phage PBR31 to a new taxon, although the complete taxonomic description of Xanthomonas phage PBR31 and other related bacteriophages is complicated by the complex evolutionary history of the formation of its genome. The general biological features of the PBR31 phage were analysed for the first time. Due to its presumably temperate lifestyle, there is doubt as to whether the PBR31 phage is appropriate for phage control purposes. Bioinformatics analysis, however, revealed the presence of cell wall-degrading enzymes that can be utilised for the treatment of bacterial infections. Full article
(This article belongs to the Special Issue Virus Discovery, Classification and Characterization)
Show Figures

Figure 1

35 pages, 12340 KB  
Article
Molecular Characterization and Genome Mechanical Features of Two Newly Isolated Polyvalent Bacteriophages Infecting Pseudomonas syringae pv. garcae
by Erica C. Silva, Carlos A. Quinde, Basilio Cieza, Aakash Basu, Marta M. D. C. Vila and Victor M. Balcão
Genes 2024, 15(1), 113; https://doi.org/10.3390/genes15010113 - 18 Jan 2024
Cited by 4 | Viewed by 3194
Abstract
Coffee plants have been targeted by a devastating bacterial disease, a condition known as bacterial blight, caused by the phytopathogen Pseudomonas syringae pv. garcae (Psg). Conventional treatments of coffee plantations affected by the disease involve frequent spraying with copper- and kasugamycin-derived compounds, but [...] Read more.
Coffee plants have been targeted by a devastating bacterial disease, a condition known as bacterial blight, caused by the phytopathogen Pseudomonas syringae pv. garcae (Psg). Conventional treatments of coffee plantations affected by the disease involve frequent spraying with copper- and kasugamycin-derived compounds, but they are both highly toxic to the environment and stimulate the appearance of bacterial resistance. Herein, we report the molecular characterization and mechanical features of the genome of two newly isolated (putative polyvalent) lytic phages for Psg. The isolated phages belong to class Caudoviricetes and present a myovirus-like morphotype belonging to the genuses Tequatrovirus (PsgM02F) and Phapecoctavirus (PsgM04F) of the subfamilies Straboviridae (PsgM02F) and Stephanstirmvirinae (PsgM04F), according to recent bacterial viruses’ taxonomy, based on their complete genome sequences. The 165,282 bp (PsgM02F) and 151,205 bp (PsgM04F) genomes do not feature any lysogenic-related (integrase) genes and, hence, can safely be assumed to follow a lytic lifestyle. While phage PsgM02F produced a morphogenesis yield of 124 virions per host cell, phage PsgM04F produced only 12 virions per host cell, indicating that they replicate well in Psg with a 50 min latency period. Genome mechanical analyses established a relationship between genome bendability and virion morphogenesis yield within infected host cells. Full article
(This article belongs to the Special Issue Genetics and Genomics in Bacteriophage-Host Interactions)
Show Figures

Figure 1

15 pages, 1589 KB  
Article
Structural and Functional Disparities within the Human Gut Virome in Terms of Genome Topology and Representative Genome Selection
by Werner P. Veldsman, Chao Yang, Zhenmiao Zhang, Yufen Huang, Debajyoti Chowdhury and Lu Zhang
Viruses 2024, 16(1), 134; https://doi.org/10.3390/v16010134 - 17 Jan 2024
Cited by 1 | Viewed by 2236
Abstract
Circularity confers protection to viral genomes where linearity falls short, thereby fulfilling the form follows function aphorism. However, a shift away from morphology-based classification toward the molecular and ecological classification of viruses is currently underway within the field of virology. Recent years have [...] Read more.
Circularity confers protection to viral genomes where linearity falls short, thereby fulfilling the form follows function aphorism. However, a shift away from morphology-based classification toward the molecular and ecological classification of viruses is currently underway within the field of virology. Recent years have seen drastic changes in the International Committee on Taxonomy of Viruses’ operational definitions of viruses, particularly for the tailed phages that inhabit the human gut. After the abolition of the order Caudovirales, these tailed phages are best defined as members of the class Caudoviricetes. To determine the epistemological value of genome topology in the context of the human gut virome, we designed a set of seven experiments to assay the impact of genome topology and representative viral selection on biological interpretation. Using Oxford Nanopore long reads for viral genome assembly coupled with Illumina short-read polishing, we showed that circular and linear virus genomes differ remarkably in terms of genome quality, GC skew, transfer RNA gene frequency, structural variant frequency, cross-reference functional annotation (COG, KEGG, Pfam, and TIGRfam), state-of-the-art marker-based classification, and phage–host interaction. Furthermore, the disparity profile changes during dereplication. In particular, our phage–host interaction results demonstrated that proportional abundances cannot be meaningfully compared without due regard for genome topology and dereplication threshold, which necessitates the need for standardized reporting. As a best practice guideline, we recommend that comparative studies of the human gut virome always report the ratio of circular to linear viral genomes along with the dereplication threshold so that structural and functional metrics can be placed into context when assessing biologically relevant metagenomic properties such as proportional abundance. Full article
(This article belongs to the Section Bacterial Viruses)
Show Figures

Figure 1

17 pages, 10930 KB  
Article
Analysis of Pseudomonas aeruginosa Isolates from Patients with Cystic Fibrosis Revealed Novel Groups of Filamentous Bacteriophages
by Peter Evseev, Julia Bocharova, Dmitriy Shagin and Igor Chebotar
Viruses 2023, 15(11), 2215; https://doi.org/10.3390/v15112215 - 5 Nov 2023
Cited by 4 | Viewed by 3047
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that can cause infections in humans, especially in hospital patients with compromised host defence mechanisms, including patients with cystic fibrosis. Filamentous bacteriophages represent a group of single-stranded DNA viruses infecting different bacteria, including P. aeruginosa and other [...] Read more.
Pseudomonas aeruginosa is an opportunistic pathogen that can cause infections in humans, especially in hospital patients with compromised host defence mechanisms, including patients with cystic fibrosis. Filamentous bacteriophages represent a group of single-stranded DNA viruses infecting different bacteria, including P. aeruginosa and other human and animal pathogens; many of them can replicate when integrated into the bacterial chromosome. Filamentous bacteriophages can contribute to the virulence of P. aeruginosa and influence the course of the disease. There are just a few isolated and officially classified filamentous bacteriophages infecting P. aeruginosa, but genomic studies indicated the frequent occurrence of integrated prophages in many P. aeruginosa genomes. An analysis of sequenced genomes of P. aeruginosa isolated from upper respiratory tract (throat and nasal swabs) and sputum specimens collected from Russian patients with cystic fibrosis indicated a higher diversity of filamentous bacteriophages than first thought. A detailed analysis of predicted bacterial proteins revealed prophage regions representing the filamentous phages known to be quite distantly related to known phages. Genomic comparisons and phylogenetic studies enabled the proposal of several new taxonomic groups of filamentous bacteriophages. Full article
(This article belongs to the Special Issue Virus Discovery, Classification and Characterization)
Show Figures

Figure 1

13 pages, 7252 KB  
Article
Characterization and Comparative Genomic Analysis of a Deep-Sea Bacillus Phage Reveal a Novel Genus
by Yuan Chen, Tianyou Zhang, Qiliang Lai, Menghui Zhang, Meishun Yu, Runying Zeng and Min Jin
Viruses 2023, 15(9), 1919; https://doi.org/10.3390/v15091919 - 13 Sep 2023
Viewed by 2451
Abstract
As the most abundant biological entities, viruses are the major players in marine ecosystems. However, our knowledge on virus diversity and virus–host interactions in the deep sea remains very limited. In this study, vB_BteM-A9Y, a novel bacteriophage infecting Bacillus tequilensis, was isolated from [...] Read more.
As the most abundant biological entities, viruses are the major players in marine ecosystems. However, our knowledge on virus diversity and virus–host interactions in the deep sea remains very limited. In this study, vB_BteM-A9Y, a novel bacteriophage infecting Bacillus tequilensis, was isolated from deep-sea sediments in the South China Sea. vB_BteM-A9Y has a hexametric head and a long, complex contractile tail, which are typical features of myophages. vB_BteM-A9Y initiated host lysis at 60 min post infection with a burst size of 75 PFU/cell. The phage genome comprises 38,634 base pairs and encodes 54 predicted open reading frames (ORFs), of which 27 ORFs can be functionally annotated by homology analysis. Interestingly, abundant ORFs involved in DNA damage repair were identified in the phage genome, suggesting that vB_BteM-A9Y encodes multiple pathways for DNA damage repair, which may help to maintain the stability of the host/phage genome. A BLASTn search of the whole genome sequence of vB_BteM-A9Y against the GenBank revealed no existing homolog. Consistently, a phylogenomic tree and proteome-based phylogenetic tree analysis showed that vB_BteM-A9Y formed a unique branch. Further comparative analysis of genomic nucleotide similarity and ORF homology of vB_BteM-A9Y with its mostly related phages showed that the intergenomic similarity between vB_BteM-A9Y and these phages was 0–33.2%. Collectively, based on the comprehensive morphological, phylogenetic, and comparative genomic analysis, we propose that vB_BteM-A9Y belongs to a novel genus under Caudoviricetes. Therefore, our study will increase our knowledge on deep-sea virus diversity and virus–host interactions, as well as expanding our knowledge on phage taxonomy. Full article
(This article belongs to the Topic Marine Viruses)
Show Figures

Figure 1

23 pages, 3480 KB  
Article
Identification of Structural and Morphogenesis Genes of Sulfitobacter Phage ΦGT1 and Placement within the Evolutionary History of the Podoviruses
by Stephen C. Hardies, Byung Cheol Cho, Gwang Il Jang, Zhiqing Wang and Chung Yeon Hwang
Viruses 2023, 15(7), 1475; https://doi.org/10.3390/v15071475 - 29 Jun 2023
Cited by 1 | Viewed by 2062
Abstract
ΦGT1 is a lytic podovirus of an alphaproteobacterial Sulfitobacter species, with few closely matching sequences among characterized phages, thus defying a useful description by simple sequence clustering methods. The history of the ΦGT1 core structure module was reconstructed using timetrees, including numerous related [...] Read more.
ΦGT1 is a lytic podovirus of an alphaproteobacterial Sulfitobacter species, with few closely matching sequences among characterized phages, thus defying a useful description by simple sequence clustering methods. The history of the ΦGT1 core structure module was reconstructed using timetrees, including numerous related prospective prophages, to flesh out the evolutionary lineages spanning from the origin of the ejectosomal podovirus >3.2 Gya to the present genes of ΦGT1 and its closest relatives. A peculiarity of the ΦGT1 structural proteome is that it contains two paralogous tubular tail A (tubeA) proteins. The origin of the dual tubeA arrangement was traced to a recombination between two more ancient podoviral lineages occurring ~0.7 Gya in the alphaproteobacterial order Rhizobiales. Descendants of the ancestral dual A recombinant were tracked forward forming both temperate and lytic phage clusters and exhibiting both vertical transmission with patchy persistence and horizontal transfer with respect to host taxonomy. The two ancestral lineages were traced backward, making junctions with a major metagenomic podoviral family, the LUZ24-like gammaproteobacterial phages, and Myxococcal phage Mx8, and finally joining near the origin of podoviruses with P22. With these most conservative among phage genes, deviations from uncomplicated vertical and nonrecombinant descent are numerous but countable. The use of timetrees allowed conceptualization of the phage’s evolution in the context of a sequence of ancestors spanning the time of life on Earth. Full article
(This article belongs to the Topic Marine Viruses)
Show Figures

Figure 1

21 pages, 3830 KB  
Article
VirClust—A Tool for Hierarchical Clustering, Core Protein Detection and Annotation of (Prokaryotic) Viruses
by Cristina Moraru
Viruses 2023, 15(4), 1007; https://doi.org/10.3390/v15041007 - 19 Apr 2023
Cited by 35 | Viewed by 4980
Abstract
Recent years have seen major changes in the classification criteria and taxonomy of viruses. The current classification scheme, also called “megataxonomy of viruses”, recognizes six different viral realms, defined based on the presence of viral hallmark genes (VHGs). Within the realms, viruses are [...] Read more.
Recent years have seen major changes in the classification criteria and taxonomy of viruses. The current classification scheme, also called “megataxonomy of viruses”, recognizes six different viral realms, defined based on the presence of viral hallmark genes (VHGs). Within the realms, viruses are classified into hierarchical taxons, ideally defined by the phylogeny of their shared genes. To enable the detection of shared genes, viruses have first to be clustered, and there is currently a need for tools to assist with virus clustering and classification. Here, VirClust is presented. It is a novel, reference-free tool capable of performing: (i) protein clustering, based on BLASTp and Hidden Markov Models (HMMs) similarities; (ii) hierarchical clustering of viruses based on intergenomic distances calculated from their shared protein content; (iii) identification of core proteins and (iv) annotation of viral proteins. VirClust has flexible parameters both for protein clustering and for splitting the viral genome tree into smaller genome clusters, corresponding to different taxonomic levels. Benchmarking on a phage dataset showed that the genome trees produced by VirClust match the current ICTV classification at family, sub-family and genus levels. VirClust is freely available, as a web-service and stand-alone tool. Full article
(This article belongs to the Section Bacterial Viruses)
Show Figures

Figure 1

20 pages, 2777 KB  
Review
Bacteriophages of the Order Crassvirales: What Do We Currently Know about This Keystone Component of the Human Gut Virome?
by Linda Smith, Ekaterina Goldobina, Bianca Govi and Andrey N. Shkoporov
Biomolecules 2023, 13(4), 584; https://doi.org/10.3390/biom13040584 - 24 Mar 2023
Cited by 30 | Viewed by 6051
Abstract
The order Crassvirales comprises dsDNA bacteriophages infecting bacteria in the phylum Bacteroidetes that are found in a variety of environments but are especially prevalent in the mammalian gut. This review summarises available information on the genomics, diversity, taxonomy, and ecology of this largely [...] Read more.
The order Crassvirales comprises dsDNA bacteriophages infecting bacteria in the phylum Bacteroidetes that are found in a variety of environments but are especially prevalent in the mammalian gut. This review summarises available information on the genomics, diversity, taxonomy, and ecology of this largely uncultured viral taxon. With experimental data available from a handful of cultured representatives, the review highlights key properties of virion morphology, infection, gene expression and replication processes, and phage-host dynamics. Full article
Show Figures

Figure 1

Back to TopTop