
Citation: Moraru, C. VirClust—A

Tool for Hierarchical Clustering, Core

Protein Detection and Annotation of

(Prokaryotic) Viruses. Viruses 2023, 15,

1007. https://doi.org/10.3390/

v15041007

Academic Editor: Hany Anany

Received: 26 March 2023

Revised: 16 April 2023

Accepted: 18 April 2023

Published: 19 April 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

viruses

Article

VirClust—A Tool for Hierarchical Clustering, Core Protein
Detection and Annotation of (Prokaryotic) Viruses
Cristina Moraru

Institute for Chemistry and Biology of the Marine Environment, Carl-von-Ossietzky–Str. 9-11,
26111 Oldenburg, Germany; liliana.cristina.moraru@uni-oldenburg.de

Abstract: Recent years have seen major changes in the classification criteria and taxonomy of viruses.
The current classification scheme, also called “megataxonomy of viruses”, recognizes six different
viral realms, defined based on the presence of viral hallmark genes (VHGs). Within the realms,
viruses are classified into hierarchical taxons, ideally defined by the phylogeny of their shared
genes. To enable the detection of shared genes, viruses have first to be clustered, and there is
currently a need for tools to assist with virus clustering and classification. Here, VirClust is presented.
It is a novel, reference-free tool capable of performing: (i) protein clustering, based on BLASTp
and Hidden Markov Models (HMMs) similarities; (ii) hierarchical clustering of viruses based on
intergenomic distances calculated from their shared protein content; (iii) identification of core proteins
and (iv) annotation of viral proteins. VirClust has flexible parameters both for protein clustering and
for splitting the viral genome tree into smaller genome clusters, corresponding to different taxonomic
levels. Benchmarking on a phage dataset showed that the genome trees produced by VirClust match
the current ICTV classification at family, sub-family and genus levels. VirClust is freely available, as a
web-service and stand-alone tool.

Keywords: VirClust; virus genome clustering; virus protein clustering; virus protein annotation;
virus classification; phage classification; core proteins; shared viral proteins; virus protein clustering

1. Introduction

Viral classification and taxonomy have recently undergone major changes. The Balti-
more classification scheme, based solely on the viral nucleic acid type has been replaced by a
viral megataxonomy, based on viral genome features, including shared genes (proteins) [1].
The traditional five-rank structure of viral taxonomy was replaced by a fifteen-rank classifi-
cation hierarchy, similar to the Linnaean taxonomy [2]. As a catalyst for these changes, the
unparalleled insights into virus genome organization and evolution were facilitated by the
advent of genome sequencing.

The first of the four principles for viral taxonomy recently established states that
“virus taxonomy should reflect the evolutionary history of viruses” [3]. Traditionally,
reconstruction of the evolutionary history is achieved through phylogenetic analysis of
conserved genes. The best-known example is that of the rRNA or ribosomal genes, which
are both universally present and conserved in cellular organisms. In contrast, viruses share
no universal gene and likely have multiple points of origin [4–7]. Therefore, traditional
phylogenetic methods, in which phylogenetic trees are constructed based on multiple
alignments of homologous genes (proteins) universally present in all viruses, cannot be
applied to viruses as a whole.

Gene (protein) sharing networks have been used to explore how viruses are related
to each other [8] and resulted in the definition of viral hallmark genes (VHGs), which
represent genes broadly found in diverse virus groups, but are not universally present.
Based on the presence of such VHGs, six viral realms have been defined to date: Adnaviria,
Riboviria, Monodnaviria, Duplodnaviria, Varidnaviria [1,9], and Ribozyviria [10]. Prokaryotic

Viruses 2023, 15, 1007. https://doi.org/10.3390/v15041007 https://www.mdpi.com/journal/viruses

https://doi.org/10.3390/v15041007
https://doi.org/10.3390/v15041007
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/viruses
https://www.mdpi.com
https://orcid.org/0000-0002-5375-5437
https://doi.org/10.3390/v15041007
https://www.mdpi.com/journal/viruses
https://www.mdpi.com/article/10.3390/v15041007?type=check_update&version=2


Viruses 2023, 15, 1007 2 of 21

viruses, infecting bacteria and archaea are spread through these realms, with the known
majority belonging to class Caudoviricetes (former Caudovirales order) within Duplodnaviria.
Many other viruses, cultivated and uncultivated, are yet unassigned to any realm, awaiting
further evidence to classify them into an already existing realm or to a brand new one [1].

Inside the realms, viruses are further organized into hierarchical taxons, from kingdom
to species, similar to the cellular world [2]. The methodologies for virus classification vary
with the taxonomic rank and they have been recently proposed as a community-wide
consensus [3]. At lower-level ranks — species and genus — the classification should be
based on genetic relationships as calculated from multiple alignments of complete genomes
or genes, supported by clustering methods based on intergenomic nucleic acid identities,
reported for example by VIRIDIC [11]. At intermediary-level ranks—family, order and
class — phylogenetic analysis of VHGs specific for that particular virus group should be
used, combined with the analysis of the gene content and genome organization. Further on,
at the highest-level ranks—phylum, kingdom, and realm — viruses should be classified
based on specific and highly conserved VHGs and protein structure analysis.

Currently, there are several whole proteome-based virus classification tools, which
have been used for the delineation of intermediary ranks. They can be classified into
tools based on (i) whole proteome similarity, for example ViPTree [12] and VICTOR [13],
(ii) on protein profile hidden Markov models (PPHMMs) and genomic organization models
(GOMs), as implemented in GRAViTy [14,15], and (iii) on shared protein clusters, as
implemented in vConTACT [16,17]. VICTOR and VipTree calculate pairwise intergenomic
distances based on protein-protein BLAST comparisons of the whole viral proteomes in a
given dataset and use them for hierarchical clustering of the respective viruses. GRAViTy
uses concatenated proteins of the query viruses to search against pre-calculated databases
of viral PPHMMs and GOMs and then computes for each query virus a PPHMM and GOM
signature. These signatures contain information about the degree of similarity between
the query and the databases and are used to calculate intergenomic pairwise distances,
followed by hierarchical clustering of the viruses. Finally, vConTACT computes for the
given dataset of viral genomes (including or not including a reference database) all protein
clusters, based on BLASTP comparisons. Then, it uses the absence/presence of protein
clusters to calculate intergenomic similarities between viruses, which are further used to
construct a viral genome monopartite network. This method produces single-level viral
clusters, potentially of the genus or family rank. The main disadvantages of these tools
are that they either do not identify the genomic features (proteins) contributing to the
clustering of the viruses (ViPTree, VICTOR, GRAViTy), or they do not produce hierarchical
clusters (vConTACT).

The new taxonomic principles place core proteins and VHGs at the center of virus
classification [3]. Their identification requires most often sensitive methods of recognition
of protein homology (e.g., at HMM level) and calculation of the core proteins. With the idea
of developing a tool that combines virus clustering into groups of different taxonomic levels
with the detection and annotation of core proteins and of VHGs by sensitive and flexible
methods for protein homology, I have created VirClust (Virus Clusterer). VirClust enables
viral classification, by bringing to the table the following: (i) calculation of protein clusters,
using highly sensitive methods for homology detection (BLASTP, followed by HMM
comparisons); (ii) calculation of intergenomic distances based on the presence/absence of
protein clusters; (iii) hierarchical clustering of the viral genomes based on their respective
intergenomic distances; (iv) calculation of core protein clusters; and (v) protein annotation
based on a state-of-the art collection of sequence databases. VirClust is available both as a
web-service (virclust.icbm.de) and as a stand-alone command-line tool.

2. Materials and Methods
2.1. VirClust—Development and Workflow

VirClust was developed in the R v4.2 [18] programming language (https://cran.r-
project.org/bin/windows/base/old/4.2.0/, accessed on 5 May 2022). The web interface

https://cran.r-project.org/bin/windows/base/old/4.2.0/
https://cran.r-project.org/bin/windows/base/old/4.2.0/


Viruses 2023, 15, 1007 3 of 21

was developed under the Shiny web application framework (https://cran.r-project.org/
web/packages/shiny/index.html, accessed on 5 May 2022, RStudio, Boston, MA, USA).
The stand-alone tool for Linux was wrapped in a container using the Singularity v. 3.5.2
software (https://sylabs.io/, accessed on 23 April 2020, Sylabs.io, San Francisco Bay
Area, CA, USA). The stand-alone version can be deployed on any system running the
Singularity software.

A complete VirClust workflow (Figure 1) is organized into three branches: (i) Branch A,
based on protein clusters, (ii) Branch B, based on protein superclusters, and, (iii) Branch C,
based on protein super-super clusters. Each branch is organized into four modules: (i) pro-
tein clustering; (ii) genome clustering; (iii) calculations of core proteins; and (iv) protein
annotations. Each module consists of one or several steps.

Viruses 2023, 15, x FOR PEER REVIEW  3  of  22 
 

 

2. Materials and Methods 

2.1. VirClust—Development and Workflow 

VirClust was developed in the R v4.2 [18] programming language (https://cran.r‐pro‐

ject.org/bin/windows/base/old/4.2.0/, accessed on 5 May 2022). The web interface was de‐

veloped  under  the  Shiny  web  application  framework  (https://cran.r‐pro‐

ject.org/web/packages/shiny/index.html, accessed on 5 May 2022, RStudio, Boston, MA, 

USA). The stand‐alone tool for Linux was wrapped in a container using the Singularity v. 

3.5.2 software (https://sylabs.io/, accessed on 23 April 2020, Sylabs.io, San Francisco Bay 

Area, CA, USA). The stand‐alone version can be deployed on any system  running  the 

Singularity software. 

A complete VirClust workflow (Figure 1) is organized into three branches: (i) Branch 

A, based on protein clusters, (ii) Branch B, based on protein superclusters, and, (iii) Branch 

C, based on protein super‐super clusters. Each branch is organized into four modules: (i) 

protein clustering; (ii) genome clustering; (iii) calculations of core proteins; and (iv) pro‐

tein annotations. Each module consists of one or several steps. 

 

Figure 1. VirClust—branch and module organization. The three branches are marked in different 

colors. For each branch, the individual steps are labeld with a number followed by a letter (A, B or 

C, corresponding to each branch). 

For each given input, VirClust defines “projects”, which have a corresponding folder 

and an ID (the name of the folder). This folder is not directly exposed to the user in the 

web version, but it can be indirectly accessed through the project ID and the download 

buttons. In this folder, VirClust will save all the results, intermediary files, and status re‐

ports corresponding to the respective project. Within a project, all three branches or only 

some of them can be run, each branch either partially or completely. The three branches 

depend on each other at the level of the protein clustering modules. Branch B requires the 

protein clustering step from Branch A, and Branch C requires the protein clustering step 

from Branch B. Within a branch, most of the steps have a linear dependency amongst each 

other, meaning that they can be performed only if the previous steps have been already 

performed. In the stand‐alone version, the prerequisite steps are automatically activated. 

For example, if the user chooses to run step 4A from Branch A, the prerequisite steps will 

be automatically activated and performed. In the web‐server version, however, the user 

has to run the steps sequentially, one by one, and the corresponding elements from the 

graphical interface only become active after the prerequisite steps have been calculated. 

Within a project, both in the stand‐alone and the web‐server versions, the user can choose 

Figure 1. VirClust—branch and module organization. The three branches are marked in different
colors. For each branch, the individual steps are labeld with a number followed by a letter (A, B or C,
corresponding to each branch).

For each given input, VirClust defines “projects”, which have a corresponding folder
and an ID (the name of the folder). This folder is not directly exposed to the user in the
web version, but it can be indirectly accessed through the project ID and the download
buttons. In this folder, VirClust will save all the results, intermediary files, and status
reports corresponding to the respective project. Within a project, all three branches or only
some of them can be run, each branch either partially or completely. The three branches
depend on each other at the level of the protein clustering modules. Branch B requires the
protein clustering step from Branch A, and Branch C requires the protein clustering step
from Branch B. Within a branch, most of the steps have a linear dependency amongst each
other, meaning that they can be performed only if the previous steps have been already
performed. In the stand-alone version, the prerequisite steps are automatically activated.
For example, if the user chooses to run step 4A from Branch A, the prerequisite steps will
be automatically activated and performed. In the web-server version, however, the user
has to run the steps sequentially, one by one, and the corresponding elements from the
graphical interface only become active after the prerequisite steps have been calculated.
Within a project, both in the stand-alone and the web-server versions, the user can choose
to recalculate certain steps (e.g., using different parameters). In this case, all the results
from the steps depending on the re-calculated step will be automatically removed from the
project. For example, if the user chooses to re-calculate step 2A, which performs BLASTP-
based protein clustering, the results from all the next steps in Branch A, as well as from all

https://cran.r-project.org/web/packages/shiny/index.html
https://cran.r-project.org/web/packages/shiny/index.html
https://sylabs.io/


Viruses 2023, 15, 1007 4 of 21

steps from Branch B and C, will be deleted. A scheme defining the dependencies between
the steps is given in Figure 1.

Each step produces several files, of which some are of interest to the user and are
referred to from here on as “usable outputs”. These files can be retrieved by the user either
by downloading from the webpage (when using the VirClust web-service) or directly from
the disk space when using the VirClust stand-alone version.

Several operations are computationally intensive and some of them, e.g., BLASTP
(step 2A) and bootstrapping (steps 3A, 2B, and 2C), have been parallelized. The compu-
tational time can increase significantly with the number of proteins/P(SS)Cs, especially
during bootstrapping.

2.1.1. Protein Clustering Module from Branch A

This module consists of two steps, one for gene prediction and translation, and the
other for protein clustering based on BLASTP.

Gene Prediction and Protein Prediction—Step 1A

In the first step, VirClust uses MetaGeneAnnotator [19] to predict genes in each viral
genome, and then the seqinr R package [20] to translate the predicted genes. The user can
choose the genetic code for translation, the default being the one for bacteria and archaea
(11). The usable outputs from this step are: (i) the protein files, consisting of a single file
(.faa format) containing the proteins from all genomes, and a folder with a protein file
(.faa format) per genome; and, (ii) a table in .tsv format containing all the predicted genes
(including start, end, length, etc) and their corresponding proteins for every viral genome.
In this step, each protein receives and is saved with a unique identifier (protein ID) that
does not include the genome name, to prevent possible problems in the upstream steps due
to varying genome name formats and lengths. The correspondence between the protein and
its corresponding gene and genome can be retrieved from the genome and protein table.

From Proteins to Protein Clusters—Step 2A

In the second step, VirClust groups similar proteins into protein clusters (PCs). First,
it compares all proteins with each other using BLASTP from the BLAST+ package [21]. The
BLASTP hits (query-subject pairs) are filtered based on their e-value, bitscore, coverage
(of both subject and query), and identity. By default, hits are kept if bitscore > 50, e-
value < 0.00001, coverage > 0, and identity > 0. Further, the remaining hits are used to
cluster the proteins based on their (i) e-values, (ii) log10 transformed e-values, capped at
200 (the default) (iii) bitscore, or (iv) normalized bitscores (maximum from “bitscore for
prot1-prot2 hit/bitscore for prot1-prot1 hit” and “bitscore for prot2-prot1 hit/bitscore for
prot2-prot2 hit”). The clustering is performed by mcl (https://micans.org/mcl/ (accessed
on 27 February 2018)), with the options “-I 2 -abc -o”. The usable output from this step is
the genome-protein table from step 1A, to which a column with the corresponding PCs for
each protein has been added.

2.1.2. Protein Clustering Modules from Branch B and Branch C

The protein clustering steps from Branch B and Branch C are similar, in the sense that
they are both based on Hidden Markov Model (HMM) similarity and thus, they use almost
the same options and algorithms. In both branches, this module has only one step—1B
(Branch B) or 1C (Branch C).

From Protein Clusters to Protein Superclusters—Step 1B

In step 1B, VirClust groups the PCs and their corresponding proteins into protein
superclusters (PSCs), based on HMM similarities. First, for each PC calculated above it
creates a multiple alignment with Clustal Omega [22], options “-pileup -iter = 2”. Then, it
calculates hidden Markov models (HMMs) with hhmake (hhsuite package [23], options
“-id 100 -diff 1,000,000”). Further, it compares all HMMs with each other using hhsearch

https://micans.org/mcl/


Viruses 2023, 15, 1007 5 of 21

(hhsuite package, options “-id 100 -diff 0 -p 50 -z 1 -Z”). The results of this comparison are
filtered based on probability, coverage, and alignment length, with thresholds established
by the user. The default thresholds for keeping the results are those previously used for
organizing dsDNA viral genomes into a bipartite network [8]: probability ≥ 90, subject
coverage ≥ 50 and then, probability ≥ 99, subject coverage ≥ 20, alignment length ≥ 100.
Finally, the hits passing the thresholds are used to cluster the PCs into PSCs, using mcl
(options “ -I 2 -te 20 -o”). Similar to step 2A, the clustering of the HMM hits can be
done based on their (i) e-values; (ii) log10 transformed e-values (default); (iii) score; and
(iv) normalized score. The usable outputs from this step are: (i) a .zip archive with the
multiple alignment for each PC, in aligned multifasta format; and (ii) the genome-protein
table from step 2A, to which a column with the corresponding PSCs for each protein has
been added.

From Protein Superclusters to Protein Super-Superclusters—Step 1C

In step 1C, VirClust groups PSCs into protein super-super clusters (PSSCs). For this,
after creating a protein multiple alignment for each PSC, it proceeds similarly to step 1B.
The exception is the processing of the multiple alignment, which now includes the removal
of columns if they are made up of more than 50% gaps. The usable outputs from this
step are: (i) multiple alignments corresponding to each PSC, in aligned multifasta format;
and (ii) the genome-protein table from step 1B, to which a column with the corresponding
PSSCs for each protein has been added.

From here on, the term P(SS)C is going to be used when referring generally to clusters
of proteins, instead of using the wordier phrase “PC, PSC, or PSSC”.

2.1.3. Genome Clustering Modules from Branches A, B, and C

The genome clustering modules in the three branches are similar. They each have two
steps: (i) hierarchical clustering of viral genomes (step 3A in Branch A, 2B in Branch B,
and 2C in Branch C); and (ii) splitting of the hierarchical clustering tree into smaller viral
genome clusters (VGCs) and calculation of the corresponding statistics (step 4A in Branch
A, 3B in Branch B and 3C in Branch C). The difference between the three branches lies in
the input received by the first step in the module. In Branch A, step 3A takes as input the
PCs generated in step 2A. In Branch B, step 2B takes as input the PSCs generated at step 1B.
In Branch C, step 2C takes as input the PSSCs generated at step 1C. Each of the two steps
also has a data visualization sub-step, which enables a quick graphical representation of
the results.

Hierarchical Clustering of the Viral Genomes Based on Their P(SS)C Content—Steps 3A,
2B or 2C

VirClust first calculates pairwise intergenomic distances, based on the P(SS)C content
of each viral genome. For this, the presence of a P(SS)C in a viral genome is rewarded
a score of 1, irrespectively of how many P(SS)C replicates are found in the genome, and
the absence of a P(SS)C is rewarded a score of 0. Pairwise distances are calculated using
the formula:

DistAB = 1 − (2 × PssCsAB)/((PssCsA + PssCsB)) (1)

where,
PssCsAB = score sum for all P(SS)Cs in common between genome A and genome B
PssCsA = score sum for all P(SS)Cs present in genome A
PssCsB = score sum for all P(SS)Cs present in genome B
Further, VirClust performs a hierarchical clustering of the viral genomes based on the

above-described intergenomic distances. For clustering, it uses either the stats 3.5 package,
without bootstrapping (default), or the pvclust 2.2 package [24,25], when bootstrap resam-
pling is desired. The “complete” agglomeration method is used as default, with the other
option being “average”. Following bootstrap resampling, the pvclust package calculates
and reports three probability values for each cluster: (i) selective inference p-value (SI);



Viruses 2023, 15, 1007 6 of 21

(ii) approximately unbiased p-value (AU), and (iii) bootstrap probability (BP) value [25].
Due to the high CPU demand, the boot-strap option is inactivated if more than 50 genomes
are inputted in the VirClust web-service, but is fully available in the stand-alone version.
Usable outputs from this step are: (i) a matrix-like table in the .tsv format, containing the
calculated intergenomic distances; and (ii) a tree file in the .newick format, containing the
clustering results (the hierarchical tree). If bootstrapping is performed, then three .newick
files are generated, one each for the SI, AU, or BP values. In addition to these outputs,
the data visualization sub-step from step 3A (or 2B/2C) allows the user to generate and
download a PDF file containing an ordered and color-coded heatmap of the intergenomic
similarities (calculated as “(1 − intergenomic distance) × 100”).

Splitting into Viral Genome Clusters and Related Statistics—Steps 4A, 3B or 3C

In this step, VirClust can split the viral genomes into clusters, by “cutting” the tree
previously calculated (in step 3A for Branch A, 2B for Branch B, and 2C for Branch C) at
user-defined distances. The default distance is 0.9. This tree cutting is performed with
the “stats” package from R. The resulting viral genome clusters (VGCs) will contain viral
genomes that are more similar to each other than to other genomes, depending on the
intergenomic distance used for tree splitting.

Then, for each viral genome, VirClust calculates the following statistics: (i) total
number of proteins in the genome (corresponds to the total gene number); (ii) total number
of proteins that belong to singletons (P(SS)Cs containing only one protein, that is P(SS)Cs
which are not shared with any other virus in the dataset); (iii) total number of proteins
found in P(SS)Cs shared with other viral genomes in the dataset; (iv) total number of
proteins found in P(SS)Cs shared with viral genomes from the same VGC, regardless if
they are shared with viral genomes from outside the VGC as well; (v) total number of
proteins found in P(SS)Cs shared exclusively with viral genomes only from the same VGC;
(vi) total number of proteins found in P(SS)Cs shared with viral genomes from other VGCs,
regardless if they are shared with viral genomes from the same VGC as well; (vii) total
number of proteins found in P(SS)Cs shared exclusively with viral genomes from other
VGCs; (viii) Silhouette width (calculated with the R package “cluster” [26]). A table (.tsv
format) with all these statistics is available to the user as usable output.

Finally, a table is prepared in which the rows represent the viral genomes, ordered
similarly to the branches in the tree, and the columns represent the shared P(SS)Cs. The
column order is based on their clustering with the “stats” R package, using the “binary”
distance and the “complete” agglomeration method. This table is used for further steps,
and it is also available as a usable output, as a .tsv file.

In addition to the two tables prepared for the complete data set, VirClust returns
for each VGC: (i) a folder with a .faa file for each genome in the VGC; (ii) a .fna file with
all genomes in the VGC; (iii) a table with genome statistics only for the genomes in the
respective VGC; and (iv) a table with the pairwise intergenomic similarities for the genomes
from the respective VGC.

The data generated in this step (4A/3B/3C), together with the tree calculated in
the previous step (3A/2B/2C), can be used to generate an integrated figure in the data-
visualization sub-step. Here, VirClust uses the R package ComplexHeatmap v. 2.5.3 [27]
to generate a visual representation of the genome clustering. This is composed of: (i) the
genome clustering tree; (ii) a heatmap documenting the presence/absence of the different
P(SS)Cs in the viral genomes; (iii) several annotations documenting the genome and protein
statistics, the Silhouette width and the cluster designation. If the genome tree has been split
into several clusters, the heatmap and the corresponding annotation are split as well. The
usable output from this step is a file in .PDF format.

2.1.4. Core Proteins Modules from Branches A, B, and C

The core protein modules from the three branches are similar and each has only
one step. Their inputs differ: step 5A (Branch A) takes PCs as input, step 4B (Branch



Viruses 2023, 15, 1007 7 of 21

B) takes PSCs as input and step 4C (Branch C) takes PSSCs as input. The core proteins
represent P(SS)Cs found in all genomes from a VGC. VirClust calculates the core proteins
for each VGC generated in the genome clustering module from the respective branch. For
each VGC, the following usable outputs are generated: (i) a table (.tsv and .RDS format)
containing for each genome in the VGC its core proteins, their assignment to P(SS)Cs, their
corresponding genes, and their features (genome location, length, etc.); and (ii) two .faa
files, each containing all core proteins for the respective VGC, labeled in one case with the
VirClust protein ID and, in the other case, with a name composed of their P(SS)C number,
genome name, and gene number.

2.1.5. Protein Annotation Modules from Branches A, B, and C

The protein annotation modules from the three branches are similar. They each take
as input either all the proteins in the dataset or only the core proteins calculated in the
respective branch. VirClust annotates each protein by comparing it with several databases.
For each database, this process takes place in two phases. In the first phase, homologs are
searched for all proteins, and only the best matches (see below) are kept for each of them.
In a second phase, these annotations are added to the genome-protein table from steps
2A/1B/1C, depending on the branch. These tables are identical, except for the columns
containing protein clustering information: in Branch A the table contains the column for
PCs assignment, in Branch B it contains the columns for PCs and PSCs assignment, and in
Branch C it contains the columns for PCs, PSCs, and PSSCs assignments. After all desired
databases have been queried, all the annotation results can be merged into a single table.
These tables represent the usable outputs and can be downloaded as .tsv files.

The NR database from NCBI is searched using BLASTP (“-evalue 0.0001 –max_target_seqs
1000”). From the results, hits are removed if they represent hypothetical proteins, have a
query/subject coverage < 40, have a pident < 30, or a bitscore < 50. From the remaining hits,
that with the higher bitscore is used to annotate the query protein.

The prokaryotic Virus Orthologous Groups (pVOGs) database [28], the Virus Orthol-
ogous Group database (VOGDB, https://vogdb.csb.univie.ac.at (accessed on 2 August
2021), [29]), and the Prokaryotic Virus Remote Homologous Groups (PHROG) database [30]
are searched using hhsearch [31] (“-id 100 -diff 0 -p 50 -z 1 -Z 600”). Only hits with an
e-value lower than 0.01 are kept. For each database, the hit with the highest score is used to
annotate the query protein.

The efam and efam-XC databases are searched using hmmscan [32], options “-E 0.01”,
followed by result removal if score < 40. For each database, the hit with the highest score is
used to annotate the query protein.

The InterPro database [33] is searched using InterProScan [34]. Results with the
description “Domain of unknown function” and IP analysis “MobiDBLite” are removed.

2.2. Running VirClust on Test Datasets

For testing VirClust, a first dataset of 1951 genomes (see SI File S1) was selected
from the dsDNA bacterial viruses currently recognized by the International Committee on
Taxonomy of Viruses (ICTV). The dataset, here named dsDNA_DB, included viruses from
two viral realms: Duplodnaviria and Varidnaviria. From each genus, a maximum of four
representatives were selected. In total, this dataset contained viruses organized in 5 orders,
40 families, 103 subfamilies, and 1144 genera.

A second dataset of 887 phages, named here Fam_DB, was built from the dsDNA_DB,
by keeping only phages having a family affiliation. This resulted in a total of 40 families,
68 subfamilies, and 545 genera.

The genomes in the dsDNA_DB and Fam_DB datasets were clustered based on PCs
and PSCs, using the default VirClust parameters. The trees generated in steps 3A and
2B were imported in iTol [35] and annotated with taxonomic information. Additionally,
the trees from Fam_DB were split into clusters using various distances, from 0.05 to 0.99.
Then, for each VGCs and each family, subfamily, and genus, the following were calculated:

https://vogdb.csb.univie.ac.at


Viruses 2023, 15, 1007 8 of 21

(i) how many of the respective taxons were present per VGC, and (ii) how many VGCs
were present per taxon.

A third, smaller dataset, containing only 37 phages and named here Crz_DB, was
built by keeping from the Fam_Db only members of Chaseviridae, Rountreeviridae, and
Zobellviridae. The Crz_DB was used for further illustration of the different VirClust features.

3. Results and Discussion
3.1. VirClust—A Tool for Viral Genome Clustering, Core Protein Detection, and
Protein Annotation

VirClust is a multifaceted viral genome analysis tool, developed to assist in the cluster-
ing of prokaryotic viruses, including for taxonomic classification, and functional annotation
of their protein-encoding genes. To enable viral classification, on the one hand side it
performs a hierarchical clustering of the viral genomes, which can be used to group viruses
at different taxonomic levels, and on the other hand side it identifies core proteins, which
can be used for further phylogenetic analysis. To enable protein annotation, VirClust
searches for homologous proteins within seven different protein sequence and HMM
profiles databases.

VirClust is organized into three branches, based on PCs, PSCs, and PSSCs, respectively.
Each branch is organized into four modules (see Figure 1): (i) protein clustering; (ii) genome
clustering; (iii) calculation of core proteins and (iv) protein annotation.

In the first module, VirClust performs a series of basic steps (see Figure 1): (i) protein
prediction and translation (ii) protein grouping into PCs, based on BLASTP detectable
homologies (Branch A); (iii) PC grouping into PSCs, based on HMM profile search de-
tectable homologies (Branch B); and (iv) PSC grouping into PSSCs, again based on HMM
profiles (Branch C). HMM profiles have been successfully used in previous studies to
group viral protein clusters into superclusters [8,30] because they capture more distant
relationships between proteins. Grouping of PSCs into PSSCs, however, is not a widely
spread methodology. It was implemented in VirClust to allow the community to explore
finding even more distantly related protein and it was already used successfully for the
clustering of ssDNA phage proteins and genomes [36]. The most important clustering
parameters have been exposed to the user and are adjustable, to enable protein clustering
for a wide range of applications.

In the genome clustering module, VirClust uses the presence/absence of P(SS)Cs
in viral genomes to calculate intergenomic distances. These can be transformed into
intergenomic similarities by the formula “(1 − distance) × 100” (e.g., later, in step3A_Plot,
step2B_Plot, and step2C_Plot), which reflect the proportion of shared P(SS)Cs between
two genomes.

These distances are further used to cluster viruses hierarchically and then to split
them into VGCs based on a user-defined distance threshold. Depending on the distance
threshold used, the VGCs can contain more closely or distantly related viral genomes.
Therefore, VGC calculated for different distance thresholds potentially represent different
taxonomic ranks.

To evaluate the genome clustering, several indicators are calculated. The shared
protein statistics and the Silhouette width are genome-specific statistics that can be used to
appraise the affiliation of individual viruses to VGCs. The proportion of proteins shared
with any other viral genomes in the analyzed dataset shows what proportion of all proteins
from a single virus is used for clustering. If only a small proportion of proteins are shared
with other viruses in the dataset, it can increase the clustering uncertainty, because the
singletons can hide relationships with yet unknown viruses and potentially, a different
clustering. The Silhouette width measures, on a scale of −1 to 1, how related a virus is with
other viruses in the same VGCs. Values closer to 1 indicate higher similarity to members of
its own VGC. Values closer to −1 indicate higher similarity with viruses in other VGCs.
Similar to a negative Silhouette width, a high proportion of proteins shared outside its own
VGC can indicate an incorrect clustering. In addition, if the bootstrapping option is chosen,



Viruses 2023, 15, 1007 9 of 21

for each cluster in the hierarchical tree, three different probability values (SI, AU, and BP)
can be calculated by bootstrapping the P(SS)Cs and can be used to assess the clustering
uncertainty [24,25].

Two data visualization sub-steps are built-in in the genome clustering module. The first
one outputs a clustered heatmap of the intergenomic similarities between all genome pairs
(step3A_Plot, step2B_Plot, and step2C_Plot, see Figures 1 and 2). The second one outputs
an integrated visualization (step4A_Plot, step3B_Plot, and step3C_Plot, see Figures 1 and 3)
of the hierarchical clustering of viruses, of the distribution of their protein content and
their grouping in VGCs, with the corresponding statistics. The protein content of the
viral genomes is visualized as a heatmap, in which the columns represent P(SS)Cs and
the rows represent viral genomes, ordered according to the hierarchical clustering tree.
Only shared proteins are depicted in the heatmap, the proportion of singletons being
shown as an annotation along the heatmap (see Figure 3, “shared proteins” statistics).
Together, the heatmap and the annotated statistics allow the opening of the “black box” of
the tree. The user can visualize and thus identify which P(SS)Cs have contributed to the
hierarchical clustering, can identify which distance threshold is best for splitting the tree
into VGCs, and also, can judge the quality of the clustering. Furthermore, the heatmap
allows the identification of P(SS)Cs characteristic for certain viral groups and of potential
gene duplication/gene split events (by the increased number of a P(SS)C in a viral genome).

Viruses 2023, 15, x FOR PEER REVIEW  10  of  22 
 

 

 

Figure 2. Example of a heatmap showing pairwise intergenomic similarities (%). 

 

Figure 2. Example of a heatmap showing pairwise intergenomic similarities (%).

In the third module, VirClust calculates the corresponding core proteins for each of
the VGCs identified at steps 4A, 3B, or 3C. The core proteins are defined as those P(SS)Cs
present in all the genomes from a VGC, regardless of their copy number per genome.
The suitability of each identified core P(SS)C to be further used for phylogenetic analyses
should be judged by the user from their multiple alignments (provided for download) and
from their functional annotations (provided by the fourth module). P(SS)C subjected to
gene duplication events, which can lead to truncated proteins, as well as those having



Viruses 2023, 15, 1007 10 of 21

gene insertions (for example homing endonucleases, commonly spread in polymerases)
should be carefully evaluated. Furthermore, proteins composed of multiple domains (for
example DNA polymerases) can be encoded by a single gene or by more genes, each for a
single domain. Depending on the parameters from the protein clustering steps, the genes
for the multiple domains can be grouped in a single P(SS)C (more in the section “Protein
clustering—parameters choice”). The use of these P(SS)Cs for phylogenetic analysis should
be carefully evaluated and eventually, the single domain proteins concatenated.

Viruses 2023, 15, x FOR PEER REVIEW  10  of  22 
 

 

 

Figure 2. Example of a heatmap showing pairwise intergenomic similarities (%). 

 Figure 3. Integrated visualization of the viral clustering outputted by VirClust for the Crz_DB dataset.
The genome clustering was performed based on PCs. The resulting tree was split into VGCs using a
0.9 intergenomic distance threshold. The visual components are described further. 1. Hierarchical
tree calculated in step 3A, using PC-based intergenomic distances. 2. Silhouette width, color-coded
in a range from −1 (red) to 1 (green). 3. VGC ID, as outputted in the genome statistic table from step
4A. 4. Heatmap representation of the PC distribution in the viral genomes. Rows are represented by
individual viral genomes. Columns are represented by individual PCs. The ID of each PC can be
read at the bottom of the heatmap at image magnification. Colors encode the number of each PC per
genome, with white signifying the PC absence, and the other colors signifying various degrees of
replication (from 1 to n, see legend). 5. Viral genome-specific statistics: genome length, the proportion
of PC shared (dark grey) with any other genomes in the dataset, reported to the total PCs in the
genome (light grey bar), the proportion of PC shared in its own VGC, the proportion of PCs shared
only in its own VGC, the proportion of PCs shared also outside its own VGC, and the proportion of
PC shared only outside own VGC. For more details about these stats, see materials and methods. 6.
Virus name (here including the GenBank accession number as a suffix).

In the fourth module, VirClust annotates selected proteins (either all proteins or only
the core P(SS)Cs) by comparing them with several sequence and HMM profiles databases
(see Figure 1). Each database can be queried separately. The best hits from each database
are identified for each protein. The results are then integrated into a single table, together



Viruses 2023, 15, 1007 11 of 21

with the information about the genome localization of each protein, and the assignment
to P(SS)Cs and VGCs. The final annotation, integrating the information from all queried
databases should be decided by the user, during the careful evaluation of the annotation
table. The protein assignment to P(SS)Cs greatly facilitates the annotation of those proteins
without significant hits with any databases, because proteins grouped in the same P(SS)C
should in general have the same function. The exceptions are those proteins composed of
multiple domains or those with insertions. The evaluation of the annotation results and
the multiple alignments enables the identification of multiple domains, as well as potential
gene insertions.

3.2. Availability

The VirClust web-service (virclust.icbm.de) provides a graphical interface for running
VirClust remotely. To avoid a heavy burden on the hosting server, it should be used only
for small and medium-sized projects. Larger projects can be analyzed with VirClust stand-
alone, which can be downloaded from virclust.icbm.de and installed on the user’s servers,
run from the command line, and integrated into bioinformatics pipelines. Both VirClust
web and stand-alone come with complete and comprehensive user manuals, available at
virclust.icbm.de and also here, as supporting information (see SI Files S2 and S3).

3.3. Protein Clustering—Parameters Choice

The protein clustering into PCs, and further into PSCs and PSSCs, represents the foun-
dation on which the clustering of the viral genomes is based. This is a two-step process, in
which first homologs are detected based either on BLASTp (for PCs) or HMM searches (for
PsSC, PSSC), and then the proteins are clustered based on the found homologies. Therefore,
the parameters for defining homologs will influence which proteins cluster together, which
in turn will influence which viruses cluster together in the genome clustering module.

In the first step, the filtering of the search results is critical for the placement of proteins
into P(SS)Cs. In the case of PCs, VirClust filters the search results based on their e-value,
bitscore, alignment coverage, and percent identity of the two sequences. Different studies
have been used for protein clustering different combinations of these parameters; for
example, only e-value and bitscore [37], e-value and coverage [38], or different values of
the parameters, or even, no filtering at all [39]. In the case of PSCs and PSSCs, VirClust
filters the search results based on their probability, coverage, and HMM alignment length,
similar to Iranzo et al. [8]. Here, to enable the detection of more distant homologs, the
authors performed a two-tier filtering, selecting all hits with (i) a probability higher than
90% and coverage >50% and (ii) a probability higher than 99%, but a coverage >20% and a
minimum length of 100. In the second step, VirClust clusters proteins based on e-values, as
in Roux et al. 2015, log-transformed e-values, as in Enright et al. 2002, normalized bitscore,
as in Chan et al. 2013 [40] or bitscores.

VirClust enables the use of all the above parameters for protein clustering, including
the two-tier filtering step for HMM results. However, rather than imposing strict values
for these parameters, VirClust allows the user to set her/his values, in addition to the
default suggestions.

To illustrate the influence of the search results filtering step on the protein and genome
clustering, the Crz_DB dataset was subjected to protein clustering with three different sets
of parameters, and then intergenomic distances and genome trees were calculated with
the default parameters. Initially, the coverage and percent identity were set to 100%, to
group into PCs only identical proteins. Then, the coverage and identity were progressively
decreased to the VirClust default parameters, to allow for finding more distant protein
homologs (see Table 1). With relaxing the filtering parameters, the number of PCs formed by
the two thousand and twelve proteins of the Crz_DB dataset decreased from one thousand
nine hundred and eighty-two PCs when only identical proteins were allowed to group,
to eight hundred and five PCs when the default parameters were used (see Table 1). The
more homologous proteins were found by relaxing the filtering parameters, the more PCs



Viruses 2023, 15, 1007 12 of 21

the viral genomes had in common (see heatmaps in SI File S4, Figures S4–S6) and thus,
the lower the intergenomic distances between them (see Table 1 and SI File S4 Figures
S1–S3). Because with the first, stringent set of parameters, the intergenomic distances for
most genome pairs equaled one (no PCs in common between the respective genome pairs),
most viral genomes did not group into clusters in the genome tree (see SI File S4 Figure S4).
Decreasing the intergenomic distances resulted in more viral genomes forming clusters (see
SI File S4 Figure S5), such that, with the default VirClust parameters three large genome
clusters were obtained, corresponding to the three families in the dataset—Chaseviridae,
Rountreeviridae, and Zobellviridae (see SI File S4 Figure S6).

Table 1. Analysis of the Crz_DB dataset with different parameters for protein clustering. A summary
of the intergenomic distances is given as the 0, 25th, 50th, 75th, and 100th percentile (pctl).

Parameters Step2A

E-Value = 10−5, E-Value = 10−5, E-Value = 10−5,
Bitscore = 50, Bitscore = 50, Bitscore = 50,

Coverage = 100, Coverage = 80, Coverage = 0,
%id = 100 %id = 50 %id = 0

Number of PCs 1982 1124 805

Intergenomic distances

0 pctl 0.00 0.00 0.00

25th pctl 1.00 0.97 0.74

50th pctl 1.00 1.00 0.99

75th pctl 1.00 1.00 1.00

100th pctl 1.00 1.00 1.00

One other important aspect is the clustering of proteins composed from multiple
domains, which in some viruses can be encoded by the same gene, and in others separately.
This is the case of the DNA polymerases from Zobellviridae, and we used this dataset
to determine how the different filtering parameters can influence the clustering of such
proteins. Most genomes in this family have a DNA polymerase gene with an exonuclease
and a polymerase domain. However, a few of them have the two domains as independent
genes. From the three hit filtering parameters, the coverage parameter will most likely
influence how these proteins will be clustered. When clustered with the default settings
(for PCs—coverage = 0%; for PSCs—coverage 1 = 50% and coverage 2 = 20%), in which
the coverage does not play a significant role, all DNA-pol related proteins (having both
domains, or just the exonuclease domain, or just the polymerase domain) clustered in
a single PSC. When increasing the coverage threshold (for PCs: coverage = 70%; for
PSCs—coverage1 and coverage 2 = 60%), the exonuclease and the polymerase domains
clustered in different PSCs. However, also the DNA polymerase domains were split into
three PSCs, indicating that recognition of more distantly related homologs was hampered
by the increased coverage threshold (see SI File S5), even when using the more sensitive
HMM searches. Because multidomain proteins represent usually a small proportion of
all viral proteins, their lumping or splitting into clusters most often will not influence
significantly the intergenomic distances, and thus, the clustering of the viral genomes.
However, in the case of protein annotation, lumping can mislead the user to believe that
the two domains of the protein have the same function. Therefore, protein clustering can
be performed with a different set of parameters for protein annotation than for genome
clustering. Because the protein IDs are always the same, the two protein clustering data
sets can be reconciled afterward (e.g., through table join operations).

Due to the flexibility of the protein clustering parameters, VirClust can be used to
cluster viral genomes for very different purposes. For example, if the purpose is to discrim-
inate between highly related viral genomes, and to detect even small sequence variations
between proteins, then proteins should form clusters only if they are identical. On the other



Viruses 2023, 15, 1007 13 of 21

hand, if the purpose is to detect more distant relationships between viral genomes and to
place them for example into family-level taxons, then parameters allowing the clustering of
more distantly related proteins should be used.

3.4. VirClust Hierarchical Clustering Matches ICTV Virus Classification

Two datasets, dsDNA_DB and Fam_DB, the second representing a subset of the first,
were used to test the ability of VirClust’s default protein and genome clustering parameters
to capture relationships between viruses at different taxonomic levels. Both datasets
contained phages from Duplodnaviria and Varidnaviria. Within these two realms, as per the
official ICTV classification at the time of data analysis, all phages were classified within
genera or high-ranking taxons (realm, kingdom, phylum, and class). However, only part of
them was classified into middle-ranking taxons, e.g., family and order. As a result, from
the one thousand nine hundred and fifty-one phages in the dsDNA_DB, only eighty-three
phages were assigned to orders and eight hundred eighty-two phages were assigned to
families. This motivated the use for part of the analyses of Fam_DB, which comprises the
subset of phages in the dsDNA_DB having a family classification.

First, the genomes in dsDNA_DB were clustered based on PCs and PSCs, and the result-
ing genome trees were compared with the current ICTV taxonomy (see SI Files S6 and S7).
Within these trees, the viral genomes formed several major clusters, branching almost in-
dependently from each other, due to the large intergenomic distances between them. The
high-ranking taxons, that is realm, kingdom, phylum, and class, did not form individual
clusters, neither in the PC or PSC tree. For example, at the realm level, the Varidnaviria phages
were split among seven major clusters (SI File S6). At the order level, there were differences
between the PC and PSC-based trees. The two larger orders in the dataset, Crassvirales, and
Kalamavirales, were split among two and three major clusters in the PC tree (SI File S6), but
formed individual clusters in the PSC tree (SI File S7). From the family level down, phages
belonging to the same taxon clustered together, both in the PC and PCS-based trees (SI Files
S6 and S7). The exception is the Tectiviridae family, which was split in the PC-based tree, but
formed a single major cluster in the PSC tree.

Then, the genomes in Fam_DB were clustered, also based on PCs and PSCs. A
PSC-based tree is shown in Figure 4, with the extended tree and its annotations being
available in SI file 8. Here, the clustering together of phages from the same family is evident.
Furthermore, quite often families are seen grouped into a larger cluster, potentially of the
order level. This illustrates the potential of PSC-based genome clustering to capture also
order-level relationships.

Taken together, these data show that PSC-based intergenomic distances, as calculated
with the default protein clustering parameters, are unable to capture very distant rela-
tionships between viruses, as they take place at the class, phylum, kingdom, and realm
levels. This is consistent with the known loss of protein sequence similarity at such large
phylogenetic distances. However, these intergenomic distances will capture relationships at
the order, family, subfamily, and genus level, and, at these levels, the hierarchical clustering
produced by VirClust in general matches the current ICTV classification.



Viruses 2023, 15, 1007 14 of 21

Viruses 2023, 15, x FOR PEER REVIEW  15  of  22 
 

 

 

Figure 4. PSC‐based genome tree for the Fam_DB dataset. The annotation circles encode the ICTV 

taxonomy for each phage genome, as follows, from inner to outer circles: family, order, class, phy‐

lum, kingdom, and realm. The colors in the circles encode the different taxons (see SI File S8 for 

taxon names) The tree was split using a distance threshold of 0.9 and the resulting VGCs are en‐

coded by different branch colors. The extended tree is available in SI File S8. 

3.5. Distance Thresholds for Different Taxonomic Levels 

Organizing viruses into hierarchical taxonomic ranks implies that some types of in‐

tergenomic distance thresholds can be assigned to each rank and used for classification 

purposes. Therefore, a hierarchical genome tree, such as that produced by VirClust, could 

be split into smaller clusters of different taxonomic levels, depending on the intergenomic 

distance used for the splitting of the tree (see examples of tree splitting in SI File S2 Figures 

S17–S20). Such thresholds have been defined, for example, for the species and genus lev‐

els, by the Bacterial and Archaeal Viruses Committee of ICTV, but only for nucleic acid 

based clusters. 

Here,  to  identify  thresholds  for different  taxonomic  levels,  the PC and PSC‐based 

trees from the Fam‐DB dataset were first split with various intergenomic distances, from 

0.05 to 0.99. Then, for each resulting VGC and each of the genus, subfamily, family, and 

order levels, the number of individual taxons per VGC was evaluated. Furthermore, for 

Figure 4. PSC-based genome tree for the Fam_DB dataset. The annotation circles encode the ICTV
taxonomy for each phage genome, as follows, from inner to outer circles: family, order, class, phylum,
kingdom, and realm. The colors in the circles encode the different taxons (see SI File S8 for taxon
names) The tree was split using a distance threshold of 0.9 and the resulting VGCs are encoded by
different branch colors. The extended tree is available in SI File S8.

3.5. Distance Thresholds for Different Taxonomic Levels

Organizing viruses into hierarchical taxonomic ranks implies that some types of
intergenomic distance thresholds can be assigned to each rank and used for classifica-
tion purposes. Therefore, a hierarchical genome tree, such as that produced by VirClust,
could be split into smaller clusters of different taxonomic levels, depending on the in-
tergenomic distance used for the splitting of the tree (see examples of tree splitting in
SI File S2 Figures S17–S20). Such thresholds have been defined, for example, for the species
and genus levels, by the Bacterial and Archaeal Viruses Committee of ICTV, but only for
nucleic acid based clusters.

Here, to identify thresholds for different taxonomic levels, the PC and PSC-based
trees from the Fam-DB dataset were first split with various intergenomic distances, from
0.05 to 0.99. Then, for each resulting VGC and each of the genus, subfamily, family, and



Viruses 2023, 15, 1007 15 of 21

order levels, the number of individual taxons per VGC was evaluated. Furthermore,
for each taxonomic level, it was calculated how many VGCs were present per taxon,
at different distances. These evaluations were performed separately on Duplodnaviria
(Figure 5, SI File S9 Figures S1–S3) and Varidnaviria (Figure 6, SI File S9 Figures S4–S6). As
expected, too low distance thresholds for a certain taxonomic level resulted in the splitting
of taxons into multiple VGCs. Too high distance thresholds resulted in the clumping of
several taxons within the same VGC (see SI File S9 Figures S1–S6). Ideally, there would have
been an intergenomic distance for each taxonomic rank, at which all VGCs corresponded
to single taxons. In practice, however, because the phage taxons in the dataset were created
using different methods, and thus, different distances, there was no single intergenomic
distance at which no clumping or splitting of taxons occurred (SI File S9 Figures S1–S6). The
best threshold to use when creating new taxons is, therefore, that at which both clumping
and splitting are minimal (Figures 5 and 6). For Duplodnaviria, the following intergenomic
distance thresholds can be recommended based on data evaluation: (i) for PC-based trees,
0.925 for family, 0.625 for subfamily, and 0.3 for genus levels; and (ii) for PSC-based trees,
0.9 for family, 0.6 for subfamily and 0.225 for genus. For Varidinaviria, the following can be
recommended: (i) for PC-based trees, any distance between 0.6 and 0.725 for genus level;
(ii) for PSC-based trees, 0.95 for order, 0.9 to 0.925 for family and 0.55 to 0.675 for genus level.
For this realm, distance thresholds for the PC-based tree make sense only for the genus
level, because the members of the main order and family do not form individual clusters.

Viruses 2023, 15, x FOR PEER REVIEW  16  of  22 
 

 

each taxonomic level, it was calculated how many VGCs were present per taxon, at dif‐

ferent distances. These evaluations were performed separately on Duplodnaviria (Figure 5, 

SI File S9 Figures S1–S3) and Varidnaviria (Figure 6, SI File S9 Figures S4–S6). As expected, 

too low distance thresholds for a certain taxonomic level resulted in the splitting of taxons 

into multiple VGCs. Too high distance thresholds resulted in the clumping of several tax‐

ons within the same VGC (see SI File S9 Figures S1–S6). Ideally, there would have been an 

intergenomic distance for each taxonomic rank, at which all VGCs corresponded to single 

taxons. In practice, however, because the phage taxons in the dataset were created using 

different methods, and  thus, different distances,  there was no single  intergenomic dis‐

tance at which no clumping or splitting of taxons occurred (SI File S9 Figures S1–S6). The 

best threshold to use when creating new taxons is, therefore, that at which both clumping 

and splitting are minimal (Figures 5 and 6). For Duplodnaviria, the following intergenomic 

distance thresholds can be recommended based on data evaluation: (i) for PC‐based trees, 

0.925 for family, 0.625 for subfamily, and 0.3 for genus levels; and (ii) for PSC‐based trees, 

0.9 for family, 0.6 for subfamily and 0.225 for genus. For Varidinaviria, the following can 

be recommended:  (i)  for PC‐based  trees, any distance between 0.6 and 0.725  for genus 

level; (ii) for PSC‐based trees, 0.95 for order, 0.9 to 0.925 for family and 0.55 to 0.675 for 

genus level. For this realm, distance thresholds for the PC‐based tree make sense only for 

the genus level, because the members of the main order and family do not form individual 

clusters. 

It is evident from the data that across different virus realms different thresholds were 

used to delineate the same taxon ranks. For example, the genera in Duplodnaviria have a 

lower diversity and thus lower distance threshold, than the genera in Varidnaviria. It is up 

to the community to establish relevant thresholds, either unique for all realms, or different 

between realms. However, inside one realm, the thresholds should be coherent, to ensure 

that the viral diversity is hierarchically distributed and comparable across taxons. 

 

Figure 5. Relationship between the number of VGCs and taxons for Duplodnaviria, when the PC‐ 

and PSC‐based genomic trees of the Fam_Db dataset were cut with different intergenomic distances. 

The red arrows indicate the recommended distance‐hreshold to use for tree cutting, when creating 

VGCs. Extended figures, for all distances, are found in SI File S9. 

Figure 5. Relationship between the number of VGCs and taxons for Duplodnaviria, when the PC- and
PSC-based genomic trees of the Fam_Db dataset were cut with different intergenomic distances. The
red arrows indicate the recommended distance-hreshold to use for tree cutting, when creating VGCs.
Extended figures, for all distances, are found in SI File S9.

It is evident from the data that across different virus realms different thresholds were
used to delineate the same taxon ranks. For example, the genera in Duplodnaviria have a
lower diversity and thus lower distance threshold, than the genera in Varidnaviria. It is up
to the community to establish relevant thresholds, either unique for all realms, or different
between realms. However, inside one realm, the thresholds should be coherent, to ensure
that the viral diversity is hierarchically distributed and comparable across taxons.



Viruses 2023, 15, 1007 16 of 21
Viruses 2023, 15, x FOR PEER REVIEW  17  of  22 
 

 

 

Figure 6. Relationship between the number of VGCs and taxons for Varidnaviria, when the PC‐ and 

PSC‐based genomic trees of the Fam‐DB dataset were cut with different intergenomic distances. The 

red lines indicate the recommended distance‐hreshold to use for tree cutting, when creating VGCs. 

Extended figures, for all distances, are found in SI File S9. 

3.6. Identification and Annotation of Core‐Proteins 

In the context of viral taxonomy and classification, core proteins refer to the proteins 

that are highly conserved across different members of a viral cluster (most often family‐

level cluster). These core proteins are typically involved in critical functions of the virus, 

such as replication, transcription, and packaging of the viral genome. They are often struc‐

tural proteins that form the basic building blocks of the viral particle, or enzymes that are 

essential for the virus to replicate its genetic material. They are used to define the respec‐

tive viral cluster and to infer phylogenetic relationships. In practical terms, to recognize 

the core proteins, one needs to group first the proteins into clusters of closer or more dis‐

tant homologs. In VirClust, these clusters are represented by PCs, PSCs, or PSSCs. There‐

fore, in VirClust, core proteins are represented by those P(SS)Cs shared by all members of 

a VGC. 

To illustrate the ability of VirClust to detect core proteins, the shared PSCs for each 

family‐level VGC (intergenomic distance threshold of 0.9) in Fam_DB were calculated and 

further annotated against the PHROG database. At an intergenomic distance threshold of 

0.9, Fam_DB was split into thirty‐six VGCs. Most VGCs corresponded to one phage fam‐

ily, six VGCs were formed from two or three families, and two families (Autographiviridae 

and Tectiviridae) were split between two VGCs each (see Table 2). Core PSCs were calcu‐

lated for all but three of the VGCs, because the latter comprised only one viral genome. 

Figure 6. Relationship between the number of VGCs and taxons for Varidnaviria, when the PC- and
PSC-based genomic trees of the Fam-DB dataset were cut with different intergenomic distances. The
red lines indicate the recommended distance-hreshold to use for tree cutting, when creating VGCs.
Extended figures, for all distances, are found in SI File S9.

3.6. Identification and Annotation of Core-Proteins

In the context of viral taxonomy and classification, core proteins refer to the proteins
that are highly conserved across different members of a viral cluster (most often family-
level cluster). These core proteins are typically involved in critical functions of the virus,
such as replication, transcription, and packaging of the viral genome. They are often
structural proteins that form the basic building blocks of the viral particle, or enzymes
that are essential for the virus to replicate its genetic material. They are used to define
the respective viral cluster and to infer phylogenetic relationships. In practical terms, to
recognize the core proteins, one needs to group first the proteins into clusters of closer
or more distant homologs. In VirClust, these clusters are represented by PCs, PSCs, or
PSSCs. Therefore, in VirClust, core proteins are represented by those P(SS)Cs shared by all
members of a VGC.

To illustrate the ability of VirClust to detect core proteins, the shared PSCs for each
family-level VGC (intergenomic distance threshold of 0.9) in Fam_DB were calculated and
further annotated against the PHROG database. At an intergenomic distance threshold of
0.9, Fam_DB was split into thirty-six VGCs. Most VGCs corresponded to one phage family,
six VGCs were formed from two or three families, and two families (Autographiviridae and
Tectiviridae) were split between two VGCs each (see Table 2). Core PSCs were calculated
for all but three of the VGCs, because the latter comprised only one viral genome. The
total number of core PSCs per VGC varied between two and one hundred and eighty-three.
The VGCs with the smallest number of core PSCs mostly comprised two or three families
and had low intergenomic similarities between the cluster members (see Table 2). A low



Viruses 2023, 15, 1007 17 of 21

number of core PSCs can be caused not only by low intergenomic similarities but also by
the presence of incomplete viral genomes within the VGC. This is most likely the case of
VGC#4, one of the two VGCs representing the Autographiviridae, which had only two core
PSCs (including the signature RNA polymerase) and included many environmental viral
genomes. Intuitively, high intergenomic similarities within the VGC resulted in a high
number of core PSCs, especially if the phage genomes were large (for example VGC#34
representing Molycolviridae and VGC#31 representing Orlanjensenviridae).

Table 2. Core PSCs for each VGCs in Fam_DB, when the clustering distance used for tree splitting
was 0.9. VGCs formed from a single phage genome were excluded. The detection of four VHGs
among the core PSCs is marked with a “+” in the corresponding columns. MCP = major capsid
protein. TerL = terminase large subunit. Port = portal. DNApol = DNA polymerase.

VGC Family
Number of Core PSCs Genome

Length (kbps)
Range

Gene
Count
Range

Phage
Count

Minimum
Intergenomic
Similarity (%)

MCP TerL Por DNApol
Total Unknown

Function

Duplodnaviria
1 Peduoviridae 7 0 28.8–40.6 37–56 59 16 + + + -
3 Autographiviridae 9 0 30.8–47.7 29–65 106 17 + + - +
4 Autographiviridae 2 0 10.4–47.8 15–69 99 18 - - - -

5 Kyanoviridae +
Ackermanviridae 32 0 144.4–252.5 178–324 76 17 + + + +

6 Herelleviridae 25 3 106.1–167.5 126–294 65 14 + + + +
8 Zobellviridae 10 3 38.9–49.7 55–82 11 16 + + - +

9
Salamasviridae +
Rountreeviridae +

Guelinviridae
5 0 16.7–29 19–51 44 13 + + - +

10 Drexlerviridae 23 5 44.3–51.9 62–87 40 47 + + - -
11 Straboviridae 34 3 121.5–248.1 191–421 73 19 - - - +
12 Steigviridae 12 4 93.6–104.6 65–119 16 14 + + + -
15 Casjensviridae 17 1 54.5–64 62–88 35 26 + + + -
16 Mesyanzhinovviridae 13 0 56.6–64.1 77–93 12 22 - + + +
17 Demerecviridae 31 0 104.4–128.7 137–192 23 26 + - + +
18 Vilmaviridae 25 0 70.2–84.4 113–151 17 22 + + + +
19 Zierdtviridae 23 1 64.2–70.6 86–94 20 25 + + + +
20 Schitoviridae 13 1 59.1–104 71–127 70 13 + + + +
21 Chaseviridae 27 4 44.7–56.7 62–82 14 39 + + + +
22 Kwiatkowskiviridae 156 92 146.4–149.9 243–274 6 69 + + - +

23 Aggregaviridae +
Assiduviridae 6 4 43.2–57.5 80–110 4 12 - - - -

24 Pachyviridae 12 3 71.5–78.9 105–119 5 12 - + + -
25 Pervagoviridae 80 56 72.6–73 84–86 2 99 - + + +

27 Duneviridae +
Helgolandviridae 5 3 37.6–46.6 48–63 6 12 - - - -

30 Crevaviridae +
Intestiviridae 23 10 83.5–98.1 77–95 20 27 + + + +

31 Orlajensenviridae 24 4 17.4–17.5 24–24 3 100 + + + -
33 Winoviridae 10 8 34.8–39.7 49–62 3 18 - - - -
34 Molycolviridae 183 149 124.2–124.7 193–200 2 95 + - + +
35 Forsetiviridae 55 37 44–47.2 66–76 2 77 + + + -
36 Suoliviridae 20 10 92.6–104.1 94–172 30 19 + - + +

Varidnaviria
2 Matshushitaviridae 28 23 17.1–19.7 35–40 2 75 - + - -

7 Corticoviridae +
Autolykiviridae 3 0 10.1–10.7 16–21 7 15 + + - -

13 Simuloviridae 12 11 16.4–19 29–31 3 47 - + - -
14 Tectiviridae 3 0 14.4–16.6 22–30 6 11 - + - +
28 Tectiviridae 8 3 17.3–18.3 30–34 3 27 - + - +

Only for part of the core PSCs was a function annotated (see SI File S10). Most of
these PSCs with known functions were involved in viral genome replication or virion
morphology and morphogenesis. The major capsid protein (MCP), the portal protein, and
the terminase large subunit were part of the core PSCs in 63%, 55%, and 75% of the VGCs,
respectively. Within Duplodnaviria, the MCP at least, if not all these three VHG proteins,
should be present in all viral genomes. Being more conserved than other proteins, it would
be expected that the MCP would be present among the PSCs of the family-level VGCs.
However, even though more conserved, these proteins can still have a high degree of
sequence divergence. This can result either in the MCP assignment to different PSCs, in
which case the respective PSCs would not belong to the core of a VGC, or it can hinder its
recognition during the annotation step. Indeed, many of the VGCs without an MCP in the



Viruses 2023, 15, 1007 18 of 21

core had several core PSCs with unknown functions. Here, the annotations were performed
only by comparison with the PHROG database. Generally, using the other databases (e.g.,
VOGDB, BLAST NR, etc) would help to retrieve more annotations.

3.7. A Roadmap for Using VirClust for Virus Taxonomy and Outlook

As it was recently re-affirmed in the new guidelines for virus taxonomy, the classifica-
tion of viruses should reflect their evolutionary relationships [3]. This is best enabled by
phylogenetic analysis of accurate multiple alignments either of complete viral genomes,
when the viruses are highly related, or of their core proteins or VHGs, when the viruses are
more distantly related.

Preceding phylogenetic analysis, viruses can be initially classified by constructing hi-
erarchical clustering trees based on intergenomic distances that are not based on multiple
alignments (Figure 7). For example, pairwise intergenomic distances between viral genomes
can be computed by comparing their protein content, as is the case with tools like VICTOR [13],
VipTree [12], and now also VirClust. The trees produced by these tools are not phylogenetic
trees, because the intergenomic distances used for their calculations are not based on multiple
alignments of homologous genomic regions or proteins. However, as demonstrated with
VirClust on the Fam_DB dataset, they place viruses in clusters based on their relatedness.
VirClust produced genomes trees that grouped related viruses at different taxonomic ranks,
from order/family to genus, in a manner consistent with the current ICTV classification.
In addition, VirClust enables the calculation of core proteins for the different viral clusters
and the identification of realm-defining VHGs. The core proteins can be further used for
the reconstruction of phylogeny inside order or family-level VGCs. The VHGs can be used
for the reconstruction of more distant evolutionary relationships at the realm level, and the
classification of viruses also into higher-level taxons. Finally, the hierarchical classification
proposed by VirClust can be complemented and validated by phylogenetic analysis (see
Figure 7), as it was successfully performed for example for the classification of novel ssDNA
bacteriophages [36]. Moreover, for those viruses for which sequence divergence makes the
identification of their VHGs currently impossible, phylogenetic analysis for placement at the
order/family level cannot be performed and their classification will have to rely on shared
genomic features, as enabled by VirClust for example.

Viruses 2023, 15, x FOR PEER REVIEW  20  of  22 
 

 

 

Figure 7. A road‐map for using VirClust to enable virus taxonomy. 

VirClust has multiple functionalities and flexible parameters, which enables its use 

for various purposes,  including  initial taxonomic classification, calculation of core pro‐

teins and identification of VHGs. Methodologically, VirClust represents a complex pipe‐

line, which combines novel code with the use of several stand‐alone programs. The dif‐

ferent steps can be computationally demanding, especially for larger datasets. For exam‐

ple, the complete analysis of one thousand nine hundred and fifty‐one genomes  in the 

dsDNA‐DB dataset took about one week. The computational efficiency of VirClust can be 

improved further, for example by increasing the degree of code parallelization. The next 

version, VirClust 3, is already being developed, to enable its use on large metagenomic 

datasets. Feedback from the community is welcome, and suggestions for new features will 

be carefully taken into consideration. 

Supplementary  Materials:  The  following  supporting  information  can  be  downloaded  at: 

www.mdpi.com/xxx/s1, SI File S1: ICTV taxonomy of phages from dsDNA‐DB; SI File S2: VirClust2 

manual for the web‐server; SI File S3: VirClust2 manual for the stand‐alone version; SI File S4: in‐

tergenomic distances for Crz_DB; SI File S5: annotation of selected Zoblleviridae proteins; SI File S6: 

PC‐based trees for dsDNA_DB; SI File S7: PSC‐based trees for dsDNA_DB; SI File S8: extended PSC‐

based  trees  for Fam_DB; SI File S9: distance  thresholds  for different  taxonomic  level; SI File S10: 

annotation of core PSCs. 

Funding:  This  work  was  supported  by  the  Deutsche  Forschungsgemeinschaft  within  the 

Transregional Collaborative Research Centre Roseobacter (TRR51). 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: The stand‐alone singularity image of VirClust, along with the anno‐

tation databases can be found at virclust.icbm.de. Data about the test datasets can be found as Sup‐

plementary Information. 

Acknowledgments: I would like to thank Matthias Schröder for excellent IT support and for main‐

taining the server hosting VirClust. 

Conflicts of Interest: The author declares no conflict of interest. 

Figure 7. A road-map for using VirClust to enable virus taxonomy.



Viruses 2023, 15, 1007 19 of 21

VirClust has multiple functionalities and flexible parameters, which enables its use for
various purposes, including initial taxonomic classification, calculation of core proteins and
identification of VHGs. Methodologically, VirClust represents a complex pipeline, which
combines novel code with the use of several stand-alone programs. The different steps can
be computationally demanding, especially for larger datasets. For example, the complete
analysis of one thousand nine hundred and fifty-one genomes in the dsDNA-DB dataset
took about one week. The computational efficiency of VirClust can be improved further,
for example by increasing the degree of code parallelization. The next version, VirClust
3, is already being developed, to enable its use on large metagenomic datasets. Feedback
from the community is welcome, and suggestions for new features will be carefully taken
into consideration.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/v15041007/s1, SI File S1: ICTV taxonomy of phages from dsDNA-
DB; SI File S2: VirClust2 manual for the web-server; SI File S3: VirClust2 manual for the stand-alone
version; SI File S4: intergenomic distances for Crz_DB; SI File S5: annotation of selected Zoblleviri-
dae proteins; SI File S6: PC-based trees for dsDNA_DB; SI File S7: PSC-based trees for dsDNA_DB;
SI File S8: extended PSC-based trees for Fam_DB; SI File S9: distance thresholds for different taxonomic
level; SI File S10: annotation of core PSCs.

Funding: This work was supported by the Deutsche Forschungsgemeinschaft within the Transre-
gional Collaborative Research Centre Roseobacter (TRR51).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The stand-alone singularity image of VirClust, along with the anno-
tation databases can be found at virclust.icbm.de. Data about the test datasets can be found as
Supplementary Information.

Acknowledgments: I would like to thank Matthias Schröder for excellent IT support and for main-
taining the server hosting VirClust.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Koonin, E.V.; Dolja, V.V.; Krupovic, M.; Varsani, A.; Wolf, Y.I.; Yutin, N.; Zerbini, F.M.; Kuhn, J.H. Global Organization and

Proposed Megataxonomy of the Virus World. Microbiol. Mol. Biol. Rev. 2020, 84, e00061-19. [CrossRef] [PubMed]
2. Gorbalenya, A.E.; Krupovic, M.; Mushegian, A.; Kropinski, A.M.; Siddell, S.G.; Varsani, A.; Adams, M.J.; Davidson, A.J.; Dulith,

B.E.; Harach, B.; et al. The new scope of virus taxonomy: Partitioning the virosphere into 15 hierarchical ranks. Nat. Microbiol.
2020, 5, 668–674. [CrossRef]

3. Simmonds, P.; Adriaenssens, E.M.; Zerbini, F.M.; Abrescia, N.G.A.; Aiewsakun, P.; Alfenas-Zerbini, P.; Bao, Y.; Barylski, J.; Drosten,
C.; Duffy, S.; et al. Four principles to establish a universal virus taxonomy. PLoS Biol. 2023, 21, e3001922. [CrossRef] [PubMed]

4. Koonin, E.V.; Senkevich, T.G.; Dolja, V.V. The ancient Virus World and evolution of cells. Biol. Direct 2006, 1, 29. [CrossRef]
[PubMed]

5. Krupovic, M.; Koonin, E.V. Multiple origins of viral capsid proteins from cellular ancestors. Proc. Natl. Acad. Sci. USA 2017, 114,
E2401–E2410. [CrossRef]

6. Krupovic, M.; Dolja, V.V.; Koonin, E.V. Origin of viruses: Primordial replicators recruiting capsids from hosts. Nat. Rev. Microbiol.
2019, 17, 449–458. [CrossRef] [PubMed]

7. Kazlauskas, D.; Varsani, A.; Koonin, E.V.; Krupovic, M. Multiple origins of prokaryotic and eukaryotic single-stranded DNA
viruses from bacterial and archaeal plasmids. Nat. Commun. 2019, 10, 3425. [CrossRef]

8. Iranzo, J.; Krupovic, M.; Koonin, E.V. The Double-Stranded DNA Virosphere as a Modular Hierarchical Network of Gene Sharing.
mBio 2016, 7, e00978-16. [CrossRef]

9. Krupovic, M.; Kuhn, J.H.; Wang, F.; Baquero, D.P.; Dolja, V.V.; Egelman, E.H.; Prangishvili, D.; Koonin, E.V. Adnaviria: A new
realm for archaeal filamentous viruses with linear A-form double-stranded DNA genomes. J. Virol. 2021, 95, e00673-21. [CrossRef]

10. Hepojoki, J.; Hetzel, U.; Paraskevopoulou, S.; Drosten, C.; Harrach, B.; Zerbini, M.; Koonin, E.; Krupovic, M.; Dolja, V.; Kuhn, J.
ICTV Taxonomy Proposal: Create One New Realm (Ribozyviria) including One New Family (Kolmioviridae) Including Genus
Deltavirus and Seven New Genera for a Total of 15 Species. Available online: https://ictv.global/ictv/proposals/2020.012D.R.
Ribozyviria.zip (accessed on 20 March 2023).

https://www.mdpi.com/article/10.3390/v15041007/s1
https://www.mdpi.com/article/10.3390/v15041007/s1
https://doi.org/10.1128/MMBR.00061-19
https://www.ncbi.nlm.nih.gov/pubmed/32132243
https://doi.org/10.1038/s41564-020-0709-x
https://doi.org/10.1371/journal.pbio.3001922
https://www.ncbi.nlm.nih.gov/pubmed/36780432
https://doi.org/10.1186/1745-6150-1-29
https://www.ncbi.nlm.nih.gov/pubmed/16984643
https://doi.org/10.1073/pnas.1621061114
https://doi.org/10.1038/s41579-019-0205-6
https://www.ncbi.nlm.nih.gov/pubmed/31142823
https://doi.org/10.1038/s41467-019-11433-0
https://doi.org/10.1128/mBio.00978-16
https://doi.org/10.1128/JVI.00673-21
https://ictv.global/ictv/proposals/2020.012D.R.Ribozyviria.zip
https://ictv.global/ictv/proposals/2020.012D.R.Ribozyviria.zip


Viruses 2023, 15, 1007 20 of 21

11. Moraru, C.; Varsani, A.; Kropinski, A.M. VIRIDIC-A Novel Tool to Calculate the Intergenomic Similarities of Prokaryote-Infecting
Viruses. Viruses 2020, 12, 1268. [CrossRef]

12. Nishimura, Y.; Yoshida, T.; Kuronishi, M.; Uehara, H.; Ogata, H.; Goto, S. ViPTree: The viral proteomic tree server. Bioinformatics
2017, 33, 2379–2380. [CrossRef] [PubMed]

13. Meier-Kolthoff, J.P.; Göker, M. VICTOR: Genome-based phylogeny and classification of prokaryotic viruses. Bioinformatics 2017,
33, 3396–3404. [CrossRef] [PubMed]

14. Aiewsakun, P.; Simmonds, P. The genomic underpinnings of eukaryotic virus taxonomy: Creating a sequence-based framework
for family-level virus classification. Microbiome 2018, 6, 38. [CrossRef] [PubMed]

15. Aiewsakun, P.; Adriaenssens, E.M.; Lavigne, R.; Kropinski, A.M.; Simmonds, P. Evaluation of the genomic diversity of viruses
infecting bacteria, archaea and eukaryotes using a common bioinformatic platform: Steps towards a unified taxonomy. J. Gen.
Virol. 2018, 99, 1331–1343. [CrossRef]

16. Bolduc, B.; Jang, H.B.; Doulcier, G.; You, Z.-Q.; Roux, S.; Sullivan, M.B. vConTACT: An iVirus tool to classify double-stranded
DNA viruses that infect Archaea and Bacteria. PeerJ 2017, 5, e3243. [CrossRef] [PubMed]

17. Bin Jang, H.; Bolduc, B.; Zablocki, O.; Kuhn, J.H.; Roux, S.; Adriaenssens, E.M.; Brister, J.R.; Kropinski, A.M.; Krupovic, M.;
Lavigne, R.; et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat.
Biotechnol. 2019, 37, 632–639. [CrossRef]

18. R Core Team. R: A Language and Environment for Statistical Computing. Available online: https://www.R-project.org/
(accessed on 5 May 2022).

19. Noguchi, H.; Taniguchi, T.; Itoh, T. MetaGeneAnnotator: Detecting species-specific patterns of ribosomal binding site for precise
gene prediction in anonymous prokaryotic and phage genomes. DNA Res. Int. J. Rapid Publ. Rep. Genes Genomes 2008, 15, 387–396.
[CrossRef]

20. Charif, D.; Seqin, R. 1.0-2: A contributed package to the R project for statistical computing devoted to biological sequences
retrieval and analysis. In Structural Approaches to Sequence Evolution: Molecules, Networks, Populations; Bastolla, U., Porto, M.,
Roman, H.E., Vendruscolo, M., Eds.; Springer: New York, NY, USA, 2007; pp. 207–232. ISBN 978-3-540-35305-8.

21. Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and
applications. BMC Bioinform. 2009, 10, 421. [CrossRef]

22. Sievers, F.; Higgins, D.G. Clustal Omega for making accurate alignments of many protein sequences. Protein Sci. 2018, 27, 135–145.
[CrossRef]

23. Remmert, M.; Biegert, A.; Hauser, A.; Söding, J. HHblits: Lightning-fast iterative protein sequence searching by HMM-HMM
alignment. Nat. Methods 2011, 9, 173–175. [CrossRef]

24. Suzuki, R.; Shimodaira, H. Pvclust: An R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 2006, 22,
1540–1542. [CrossRef] [PubMed]

25. Shimodaira, H.; Terada, Y. Selective Inference for Testing Trees and Edges in Phylogenetics. Front. Ecol. Evol. 2019, 7, 459.
[CrossRef]

26. Maechler, M.; Rousseeuw, P.; Struyf, A.; Hubert, M.; Hornik, K. Cluster: Cluster Analysis Basics and Extensions. Available online:
https://CRAN.R-project.org/package=cluster (accessed on 12 May 2020).

27. Gu, Z.; Eils, R.; Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics
2016, 32, 2847–2849. [CrossRef] [PubMed]

28. Grazziotin, A.L.; Koonin, E.V.; Kristensen, D.M. Prokaryotic virus orthologous groups (pVOGs): A resource for comparative
genomics and protein family annotation. Nucleic Acids Res. 2017, 45, D491–D498. [CrossRef]

29. Kiening, M.; Ochsenreiter, R.; Hellinger, H.-J.; Rattei, T.; Hofacker, I.; Frishman, D. Conserved Secondary Structures in Viral
mRNAs. Viruses 2019, 11, 401. [CrossRef]

30. Terzian, P.; Olo Ndela, E.; Galiez, C.; Lossouarn, J.; Pérez Bucio, R.E.; Mom, R.; Toussaint, A.; Petit, M.-A.; Enault, F. PHROG:
Families of prokaryotic virus proteins clustered using remote homology. NAR Genom. Bioinform. 2021, 3, lqab067. [CrossRef]

31. Steinegger, M.; Meier, M.; Mirdita, M.; Vöhringer, H.; Haunsberger, S.J.; Söding, J. HH-suite3 for fast remote homology detection
and deep protein annotation. BMC Bioinform. 2019, 20, 473. [CrossRef]

32. Eddy, S.R. Accelerated Profile HMM Searches. PLoS Comput. Biol. 2011, 7, e1002195. [CrossRef]
33. Finn, R.D.; Attwood, T.K.; Babbitt, P.C.; Bateman, A.; Bork, P.; Bridge, A.J.; Chang, H.-Y.; Dosztányi, Z.; El-Gebali, S.; Fraser, M.;

et al. InterPro in 2017-beyond protein family and domain annotations. Nucleic Acids Res. 2017, 45, D190–D199. [CrossRef]
34. Jones, P.; Binns, D.; Chang, H.-Y.; Fraser, M.; Li, W.; McAnulla, C.; McWilliam, H.; Maslen, J.; Mitchell, A.; Nuka, G.; et al.

InterProScan 5: Genome-scale protein function classification. Bioinformatics 2014, 30, 1236–1240. [CrossRef]
35. Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids

Res. 2021, 49, W293–W296. [CrossRef] [PubMed]
36. Zucker, F.; Bischoff, V.; Olo Ndela, E.; Heyerhoff, B.; Poehlein, A.; Freese, H.M.; Roux, S.; Simon, M.; Enault, F.; Moraru, C. New

Microviridae isolated from Sulfitobacter reveals two cosmopolitan subfamilies of single-stranded DNA phages infecting marine
and terrestrial Alphaproteobacteria. Virus Evol. 2022, 8, veac070. [CrossRef] [PubMed]

37. Roux, S.; Enault, F.; Hurwitz, B.L.; Sullivan, M.B. VirSorter: Mining viral signal from microbial genomic data. PeerJ 2015, 3, e985.
[CrossRef] [PubMed]

https://doi.org/10.3390/v12111268
https://doi.org/10.1093/bioinformatics/btx157
https://www.ncbi.nlm.nih.gov/pubmed/28379287
https://doi.org/10.1093/bioinformatics/btx440
https://www.ncbi.nlm.nih.gov/pubmed/29036289
https://doi.org/10.1186/s40168-018-0422-7
https://www.ncbi.nlm.nih.gov/pubmed/29458427
https://doi.org/10.1099/jgv.0.001110
https://doi.org/10.7717/peerj.3243
https://www.ncbi.nlm.nih.gov/pubmed/28480138
https://doi.org/10.1038/s41587-019-0100-8
https://www.R-project.org/
https://doi.org/10.1093/dnares/dsn027
https://doi.org/10.1186/1471-2105-10-421
https://doi.org/10.1002/pro.3290
https://doi.org/10.1038/nmeth.1818
https://doi.org/10.1093/bioinformatics/btl117
https://www.ncbi.nlm.nih.gov/pubmed/16595560
https://doi.org/10.3389/fevo.2019.00174
https://CRAN.R-project.org/package=cluster
https://doi.org/10.1093/bioinformatics/btw313
https://www.ncbi.nlm.nih.gov/pubmed/27207943
https://doi.org/10.1093/nar/gkw975
https://doi.org/10.3390/v11050401
https://doi.org/10.1093/nargab/lqab067
https://doi.org/10.1186/s12859-019-3019-7
https://doi.org/10.1371/journal.pcbi.1002195
https://doi.org/10.1093/nar/gkw1107
https://doi.org/10.1093/bioinformatics/btu031
https://doi.org/10.1093/nar/gkab301
https://www.ncbi.nlm.nih.gov/pubmed/33885785
https://doi.org/10.1093/ve/veac070
https://www.ncbi.nlm.nih.gov/pubmed/36533142
https://doi.org/10.7717/peerj.985
https://www.ncbi.nlm.nih.gov/pubmed/26038737


Viruses 2023, 15, 1007 21 of 21

38. Zayed, A.A.; Lücking, D.; Mohssen, M.; Cronin, D.; Bolduc, B.; Gregory, A.C.; Hargreaves, K.R.; Piehowski, P.D.; White, R.A.;
Huang, E.L.; et al. efam: An expanded, metaproteome-supported HMM profile database of viral protein families. Bioinformatics
2021, 37, 4202–4208. [CrossRef] [PubMed]

39. Enright, A.J.; van Dongen, S.; Ouzounis, C.A. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res.
2002, 30, 1575–1584. [CrossRef] [PubMed]

40. Chan, C.X.; Mahbob, M.; Ragan, M.A. Clustering evolving proteins into homologous families. BMC Bioinform. 2013, 14, 120.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1093/bioinformatics/btab451
https://www.ncbi.nlm.nih.gov/pubmed/34132786
https://doi.org/10.1093/nar/30.7.1575
https://www.ncbi.nlm.nih.gov/pubmed/11917018
https://doi.org/10.1186/1471-2105-14-120

	Introduction 
	Materials and Methods 
	VirClust—Development and Workflow 
	Protein Clustering Module from Branch A 
	Protein Clustering Modules from Branch B and Branch C 
	Genome Clustering Modules from Branches A, B, and C 
	Core Proteins Modules from Branches A, B, and C 
	Protein Annotation Modules from Branches A, B, and C 

	Running VirClust on Test Datasets 

	Results and Discussion 
	VirClust—A Tool for Viral Genome Clustering, Core Protein Detection, and Protein Annotation 
	Availability 
	Protein Clustering—Parameters Choice 
	VirClust Hierarchical Clustering Matches ICTV Virus Classification 
	Distance Thresholds for Different Taxonomic Levels 
	Identification and Annotation of Core-Proteins 
	A Roadmap for Using VirClust for Virus Taxonomy and Outlook 

	References

