Next Article in Journal
Correction: Stante et al. Four Novel Caudoviricetes Bacteriophages Isolated from Baltic Sea Water Infect Colonizers of Aurelia aurita. Viruses 2023, 15, 1525
Previous Article in Journal
Evolutionary Relationships of Unclassified Coronaviruses in Canadian Bat Species
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Systematic Review

Lytic Spectra of Tailed Bacteriophages: A Systematic Review and Meta-Analysis

by
Ivan M. Pchelin
1,*,
Andrei V. Smolensky
2,
Daniil V. Azarov
1 and
Artemiy E. Goncharov
1
1
Department of Molecular Microbiology, Institute of Experimental Medicine, Saint Petersburg 197022, Russia
2
Department of Computer Science, Neapolis University Pafos, Paphos 8042, Cyprus
*
Author to whom correspondence should be addressed.
Viruses 2024, 16(12), 1879; https://doi.org/10.3390/v16121879
Submission received: 1 October 2024 / Revised: 25 November 2024 / Accepted: 2 December 2024 / Published: 4 December 2024
(This article belongs to the Section Bacterial Viruses)

Abstract

:
As natural predators of bacteria, tailed bacteriophages can be used in biocontrol applications, including antimicrobial therapy. Also, phage lysis is a detrimental factor in technological processes based on bacterial growth and metabolism. The spectrum of bacteria bacteriophages interact with is known as the host range. Phage science produced a vast amount of host range data. However, there has been no attempt to analyse these data from the viewpoint of modern phage and bacterial taxonomy. Here, we performed a meta-analysis of spotting and plaquing host range data obtained on strains of production host species. The main metric of our study was the host range value calculated as a ratio of lysed strains to the number of tested bacterial strains. We found no boundary between narrow and broad host ranges in tailed phages taken as a whole. Family-level groups of strictly lytic bacteriophages had significantly different median plaquing host range values in the range from 0.18 (Drexlerviridae) to 0.70 (Herelleviridae). In Escherichia coli phages, broad host ranges were associated with decreased efficiency of plating. Bacteriophage morphology, genome size, and the number of tRNA-coding genes in phage genomes did not correlate with host range values. From the perspective of bacterial species, median plaquing host ranges varied from 0.04 in bacteriophages infecting Acinetobacter baumannii to 0.73 in Staphylococcus aureus phages. Taken together, our results imply that taxonomy of bacteriophages and their bacterial hosts can be predictive of intraspecies host ranges.

1. Introduction

Tailed bacteriophages are a monophyletic group of viruses and belong to the class Caudoviricetes [1]. Accounting for a predominant part of studied bacteriophage diversity [2,3], they accompany their bacterial hosts in all habitats, including seawater [4,5,6], fresh water [7], soils [8,9], and multicellular organisms [10,11]. Their ability to infect and kill pathogenic bacteria is employed in clinical, veterinary, food safety, and plant protection practices [12,13,14,15]. On the other hand, tailed phages can disrupt technological processes based on bacterial growth [16,17]. The predator–prey relationships of bacteriophages and bacteria, their genetic interactions resulting in changed prokaryote phenotypes along with phage abundance in nature support fundamental ecological and evolutionary research interests [18,19]. The capacity of a bacteriophage to interact with a certain spectrum of bacterial strains or taxa is described as a host range. Different host range types are defined by the ability of a virus to complete the steps of replication cycle and the biases inherent in laboratory techniques [20]. Existing reviews in the area cover phage infection strategies [21], molecular host range determinants [22], and ecological implications of phage–host interactions [23]. Phage activity spectra spanning multiple bacterial species were discussed in the works by Hyman and Abedon [20] and de Jonge et al. [22]. From a perspective of practical applications, the most important host ranges are those ones manifested by bacterial lysis. The reviews by Casey et al. and Glonti and Pirnay placed lytic host ranges in a broad picture of bacteriophage characteristics relevant to phage therapy [24,25]. The methodological aspects of host range determination were covered by Hyman [26] and Yerushalmy et al. [27].
Along with the type of life cycle, taxonomic affiliation, the absence of bacterial pathogenicity factors in the genome, and the frequency of bacterial resistance, the spectrum of lytic activity is an important characteristic of a therapeutic bacteriophage [12]. The concentration of bacteriophages that target an infectious agent in a preparation influences how well the bacterial population can be controlled [28,29]. Additionally, having a wider host range enables a reduction in the variety of phages used in a cocktail while still preserving a wide range of activity [24,30,31,32]. Discussing particular bacteriophage host ranges, many authors use the terms “narrow” and “broad” despite the apparent absence of quantitative synthesis in the area. Therefore, we addressed the possible presence of a boundary between narrow and broad host ranges in tailed phages taken as a whole. Another research goal was to infer median host ranges and identify significant differences between host ranges of viruses belonging to certain taxonomic groups or infecting particular bacterial species. Also, we tested the hypothesis on fitness cost of broad host ranges and analysed the connection of host ranges with bacteriophage genome size and tRNA number.
Our meta-analysis is based on the proportions of production host isolates that were lysed by particular bacteriophages. For the purpose of this review, we divide the outcomes of the most commonly used methods for determining lytic host range into two categories. Spotting host range reflects the bactericidal effect of a phage preparation. It is assessed in spot tests through placing drops of phage suspension on bacterial lawns or soft agar layers and includes bacterial strains suitable for viral propagation as well as strains susceptible to free lytic components produced during lysate preparation, strains killed through the adsorption of large amount of viral particles and abortive infections. Plaquing host range reflects the spectrum of bacteria supporting phage propagation accompanied by visible destruction of bacterial cells. In the study, we leave aside the question of cross-species specificity and focus on intraspecies host ranges.

2. Materials and Methods

2.1. Protocol Registration

The initial version of the study protocol was registered at Open Science Framework (DJPFM). Literature search, study identification, and selection complied with the PRISMA guideline [33].

2.2. Search Strategy and Eligibility Criteria

A systematic literature search was performed on 17 April 2023 in PubMed and Scopus databases using the terms (((bacteriophage host range isolation) AND (("2011"[Date - Publication] : "2023"[Date - Publication]))) AND (English[Language])) NOT (Review[Publication Type]) for PubMed and the terms TITLE-ABS-KEY ( bacteriophage AND host AND range AND isolation ) AND PUBYEAR > 2010 AND ( LIMIT-TO ( LANGUAGE , "English" ) ) AND ( EXCLUDE ( DOCTYPE , "re" ) ) for Scopus. After de-duplication using PubMed reference numbers and screening for non-original studies, the retrieved full texts were assessed for eligibility (Figure 1, Data S1). In each study, we evaluated the quality of bacterial strain collections used for host range testing. A collection of at least 10 strains belonging to the same species as production host was considered representative if at least one of the following requirements was satisfied. (1) A typing technique was employed, and there was no particular bacterial type accounting for more than a half of the collection. (2) At least two of the three factors were evidently diversified: sampling location, time on the scale of years, and the type of isolation substrate. (3) The sample of bacterial strains originated from a public culture collection. The preliminary data analysis revealed that the number of plaquing host range observations for Herelleviridae and Drexlerviridae families was not enough to perform statistical tests. Thus, an additional literature search was carried out, and relevant information from six papers meeting eligibility criteria [34,35,36,37,38,39] was added to the dataset. A total of 282 selected literature sources were included in the reference list [34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315].

2.3. Data Collection and Interpretation

The information extracted from original sources concerned species identity of bacterial host, bacteriophage genome accession number, morphology of viral particles, method of lytic activity determination, numbers of susceptible and resistant strains, and information about involvement of any approach to uncovering intraspecies diversity in bacterial sample preparation. Bacteriophage names, genome size, and taxonomic information were retrieved from GenBank. The meta-analysis was conducted with data fitting broad descriptions of spotting and plaquing host ranges. The principal difference between the two was considered to be proven ability of a phage to reproduce on a particular bacterial strain. In our dataset, spotting host range included the results of spot tests as well as the cases where positive testing results indiscriminately included lysis spots and plaques, e.g., [45,187,219]. This category included experimental results obtained with or without phage stock purification either on bacterial lawns or agar overlays. We classified all spot test results as positive or negative, including turbid spots or incomplete clearing in the count of positive outcomes. Plaquing host ranges were calculated from results associated with plaque observations. In some papers, spot test results were not reported independently of plaque-based assay results, e.g., [160,199]. In those cases, host ranges were considered to be plaquing. Production strains were included in host range calculations. Genetically modified bacterial strains were not considered, since, in most cases, the manipulations were performed in order to identify phage receptors [192] or address other aspects of bacteriophage life cycle [64]. Initially, this study was designed to include non-tailed phages and the results obtained with liquid culture-based methods. But we found only one non-tailed phage in the data and limited the analysis to Caudoviricetes. Liquid culture-based methods were used for host range estimation in 2% of papers, and the related data were not collected. When information on efficiency of plating (EOP) was available, we recorded the outcomes in three categories. These included phage-resistant strains, strains with EOP values below 0.1, and strains with EOP values above or equal to 0.1. The use of EOP categories allowed us to include into analysis both uncategorised and categorised data. Highly deviating EOP estimates from two publications were removed from the dataset [157,239].

2.4. Taxonomic Analysis

Taxonomic data were downloaded from the NCBI databases Nucleotide and Taxonomy (https://www.ncbi.nlm.nih.gov/, accessed on 12 February 2024). To increase the number of bacteriophage groups available for statistical analysis, whole-genome sequences of the bacteriophages described in the selected literature were annotated with the use of Prokka 1.14.6 [316] and employed in phylogenetic network analysis in vContact2 0.11.3 [317], with subsequent visualisation in Cytoscape 3.10.1 [318]. The parts of the phylogenetic network were subjected to phylogenomic analysis on ViPTree web service (https://www.genome.jp/viptree/, accessed on 15 February 2024). The family-level groups (FLGs) were assigned after searches for shared protein-coding genes using CoreGenes 5.0 web server and Bidirectional Best Hit group-clustering algorithm (https://coregenes.ngrok.io/, accessed on 19 February 2024) [319,320]. The shared gene analysis was carried out with annotations available in GenBank. The bacteriophage life cycles were predicted by PhaTYP script as implemented in PhaBOX tool set [321,322]. Fitness cost analysis took into account predictions with a score of 0.95 or higher. The life cycles of Aliceevansviridae were set to temperate manually [323].

2.5. Statistical Analysis

The distribution of host ranges in the general sample of 908 bacteriophages was analysed in Python libraries SciPy v1.11.1 [324] and statsmodels v0.14.0 [325]. Uniform distribution was modelled with the use of cumulative distribution function F(x) = x in the [0, 1] interval, and a mixture of uniform and triangular distributions was modelled as F(x) = 1.5 × x − 0.5 × x2 in the [0, 1] interval. The comparative analyses were performed with phage families and bacterial species using R v4.3.3 [326]. The host range values were tested for differences with the use of Mann–Whitney non-parametric test at 95% confidence interval. The required size of every particular group to be included in the statistical analysis was set at 15.
Sources of heterogeneity in the data and the relationships between variables were identified by factor analysis of mixed data (FAMD) in the R package FactoMineR version 2.11 [327]. We selected four virus–host pairs with the highest numbers of associated publications, including Drexlerviridae and Klebsiella pneumoniae, Straboviridae and Escherichia coli, Guernseyvirinae (referred to as FLG-G) and Salmonella enterica, and Herelleviridae phages tested with Staphylococcus aureus strains (Data S2). The categorical variables were virus–host pairs, employment of host typing techniques, and culture medium. The continuous variables were the number of predicted tRNA genes in the bacteriophage genome, the number of bacteriophage particles per spot, and host range. The tRNA-coding gene prediction was performed with the use of Prokka 1.14.6. Data standardisation was carried out via the built-in algorithm of FactoMineR and included scaling continuous variables to unit variance and transformation of the categorical variables into a disjunctive data table with subsequent scaling using the specific scaling of multiple correspondence analysis. The R scripts for data formatting and visualisation were included into supporting information (Code S1).

3. Results and Discussion

3.1. Dataset

The data extracted from 282 eligible papers were related to 908 unique tailed bacteriophages and included 565 spotting host range observations and 439 plaquing host range observations. For 11% phages, paired host range data points were available (n = 96). Due to low proportion of paired data points, the two types of host range data were analysed separately. Taxonomic annotations at the levels of families, subfamilies, and genera were available for 53%, 46%, and 82% of phage genomes, respectively. For 99 phages, there was no taxonomic annotation below order Caudoviricetes (11%). Host genus and genome size distributions were similar to those ones in the reference database of phage genomes INPHARED. Cook et al. described the database as being dominated by phages that infect a small number of bacterial genera [328]. The same applied to our dataset with 40 host genera, with 77% consisting of Escherichia, Salmonella, Pseudomonas, Klebsiella, Staphylococcus, Flavobacterium, Streptococcus, Yersinia, and Lactococcus phages (Figure 2a). Mycobacterium phages accounted for the major difference between the datasets, being the most prevalent group in INPHARED, but completely absent from our dataset. This difference can be explained by genomic focus of the project devoted to Mycobacterium phage description [328,329]. The bacteriophage genome size varied from 17.5 to 370.8 kb, with prominent peaks at 35–50 and 170 kb. The 35–50 kb peak was populated by all three morphotypes, and the 170 kb peak was constituted by myoviruses (Figure 2b). The observed peak pattern was very close to what was described for the INPHARED database, though the genome size distribution of our dataset lacked the 5–10 kb peak associated with non-tailed Microviridae phages.

3.2. No Clear Boundaries Between Narrow and Broad Host Ranges

To address the question of broad and narrow host ranges in tailed phages taken as a whole, we visualised the host range distributions. An evident area with relatively rare values dividing a distribution would substantiate a distinction between the two. However, there were no apparent breaks. Most peaks were formed by published series of bacteriophages with similar host ranges, implying a publication bias (Figure 3a,b).
To assess the true form of the distributions in the general population, we overlaid 500 resample histograms. Every generated resample of host range values comprised one randomly chosen measurement for each literature source. The resulting graph displayed less prominent peaks. The overlaid visualisation of spotting host range (SHR) resamples suggested the uniform distribution (a horizontal line) on the interval [0, 1] (Figure 3c). Overlaid plaquing host range (PHR) value distributions display similarity to a mixture of the uniform and triangular distributions on [0, 1] with mode at 0 (a down-sloping line) (Figure 3d). In order to quantify this similarity, one-sample Kolmogorov–Smirnov (KS) and Cramer–von Mises (CvM) tests were performed on a total of 106 resamples (out of 8 × 1043 possible combinations). Both the KS test and CvM criterion are goodness-of-fit tests for cumulative distribution function given an empirical distribution. They allow us to estimate the probability of a sample coming from a given distribution, uniform for SHR and equal mixture of uniform and triangular, with probability density p(x) = 1.5 − x, for PHR. The p-values of KS test and CvM criterion were considered as random variables. For SHR, the p-values of the KS and CvM tests were 0.37 ± 0.15 and 0.23 ± 0.11, respectively (mean ± SD, n = 106). Hence, the hypothesis that SHR distribution is uniform was not rejected. The inferred true distribution of PHR values was indistinguishable from the modelled mixture of uniform and triangular distributions with KS p-value at 0.88 ± 0.12 and CvM p-value at 0.89 ± 0.10 (mean ± SD, n = 106). Since uniform and triangular distributions are indivisible, we could not discriminate between narrow and broad host ranges in Caudoviricetes taken as a whole.

3.3. Family-Level Groups of Phages

To increase the coverage of taxonomic annotation, we (1) identified non-assigned members of major phage families and (2) evaluated subfamilies as possible substitutes for families in statistical analysis where the taxa accepted by International Committee on Taxonomy of Viruses (ICTV) were polyphyletic or lacking. Both approaches relied on the results of a phylogenetic network analysis (Figure 4). The major parts of the phylogenetic network containing annotation inconsistencies were analysed using a phylogenetic tree construction. It allowed for adding family annotations to one Drexlerviridae member (Figure S1), three Straboviridae members (Figure S2), and three Autographiviridae members (Figure S3). The group of Aliceevansviridae phages remained unchanged after the phylogenetic tree analysis (Figure S4).
In the taxonomy-based analysis of host ranges, we regarded Guernseyvirinae as a family and divided Autographiviridae in two parts. Currently, the subfamily Guernseyvirinae is an independent taxon within Caudoviricetes. According to ICTV, a viral family should be represented by a cohesive and monophyletic group inferred by standard proteome-based clustering tools. Its members are expected to share approximately 10% of orthologous genes, depending on the genome size and number of coding sequences [1]. Guernseyvirinae phages in our dataset shared six genes (n = 36). This number was very close to a required threshold of 10%, taking into account that the number of protein-coding genes in the group varied between 44 and 75. Thus, we included Guernseyvirinae in the host range analysis as a “family-level group consisting of Guernseyvirinae phages”, or FLG-G for short. The members of Autographiviridae formed two isolated parts of the phylogenetic network. One part comprised the members of subfamily Studiervirinae with ten shared genes (inferred from 49 genomes), and the other part comprised the rest of Autographiviridae, sharing four common genes (n = 82). The combined sample of Autographiviridae genomes (n = 131) shared two genes. Consequently, we considered Studiervirinae as FLG-AS. Phylogenetic analysis did not challenge its monophyly (Figure S3). The rest of Autographiviridae were taken into host range analysis as FLG-A.
In addition to the annotation inconsistencies, there were two edge cases of phages residing within a cohesive part of the phylogenetic network with the members of major phage taxa and branching at the roots of these taxa on the phylogenomic trees. In the CoreGenes analysis, the unification of Escherichia phage vB_EcoS_PTXU06 (MK373789), Escherichia phage Gluttony_ev152 (LR597646), and Escherichia phage vB_EcoS_WF5505 (MK373790) with FLG-G led to a reduction in the number of shared genes from six to two. These three phages were not considered in the host range analysis of bacteriophage taxa. Rhizobium phage RHEph01 (JX483873, Autographiviridae) resided within the Studiervirinae part of phylogenetic network but clustered as an outgroup to the core Studiervirinae members. The addition of RHEph01 genome to Studiervirinae phages from our data decreased the number of shared protein-coding genes from ten to seven. Given that the genomes of core Studiervirinae members coded for 43–58 proteins, we included RHEph01 in the FLG-AS dataset.

3.4. Host Ranges Differ Between Taxonomic Groups

To a certain extent, taxonomic identity of a bacteriophage can provide information about its ability to lyse wider or narrower spectrum of host isolates. On the one hand, the host ranges within viral families varied noticeably (Figure 5a,b), but in some cases the differences between the groups were significant (Figure 5c,d). Aliceevansviridae was the only group of temperate bacteriophages in the analysis. It is to be expected that in host range tests a part of infecting virions entered lysogenic cycle, thereby limiting observed lytic activity spectra. The two parts of Autographiviridae FLG-A and FLG-AS had statistically different plaquing host ranges (Figure 5d). To obtain an insight into this difference, we focused on two shared bacterial hosts. In Klebsiella pneumoniae, nearly all Autographiviridae phages were specific to one capsular type [184,233,268,275], irrespective of their phylogenetic position. The only exception was one FLG-AS phage able to propagate on three capsular types of K. pneumoniae [148]. The majority of host range data concerning Pseudomonas syringae lysis by Autographiviridae phages were obtained with one or two bacterial pathovars. In both groups, there were phages able to propagate on all tested pathovars [183,252]. In part, the difference between PHR of FLG-A and FLG-AS can be explained by a published series of eight FLG-A phages infecting A. baumannii [206]. In the publication, host range testing of capsular-type-specific phages was performed with 56 A. baumannii strains possessing different capsular types, resulting in PHR values close to zero. As of the time of writing, GenBank does not contain genomes of FLG-AS representatives specific to A. baumannii. Therefore, there may be biological peculiarities underlying differences in host species specificity.
In the FLG-G and Herelleviridae data, there was one prevailing bacterial host, represented by Salmonella enterica and Staphylococcus aureus, respectively. The differences between host ranges between the bacteriophage groups can be explained by the structure of bacterial cell wall and the biology of virus–host interactions. While FLG-G phages recognise polymorphic serotype-specific Salmonella O-antigen [139,330], Herelleviridae members adsorb to the conservative backbone of Staphylococcus wall teichoic acid [331]. In our host range analysis of bacteriophage family-level taxonomic groups, median host ranges of Aliceevansviridae and Herelleviridae phages represented minimum and maximum values. Leaving these two groups aside, the only pair of FLGs with significant differences between both types of host ranges were podoviruses FLG-A and myoviruses Straboviridae (Figure 5c,d).
Spotting and plaquing host ranges of the same phage may differ. For the study, 96 paired host range assessments were available. The detectable differences between spotting and plaquing host ranges (>0.1, Data S3) were found in 29% paired data points. In 6% of cases, the difference between host ranges exceeded 0.5. However, multiple studies of Drexlerviridae members [38,150,221,284,309] and phages infecting Vibrio parahaemolyticus [190,209,267,298] repeatedly reported equal spotting and plaquing host ranges. On the other hand, all available for the study paired spotting and plaquing host ranges of Herelleviridae differed [34,59,112], probably due to the high activity of phage endolysins [332].
Our analysis provides a framework for discussing phage therapy strategies. The effective clearance of infection site requires either high phage concentration or high numbers of susceptible bacteria [333], and low titres of active phage in a preparation may cause treatment to fail [334]. With other practice-relevant phage properties like adsorption rate, latent period, burst size, and virion half-life being equal [335,336], broad host range is a desirable trait. The structure of infection networks suggests that generalist phages tend to succeed in lysis of bacteria infected by lower numbers of different phages [337]. Thus, the ease of usage and universality of ready-to-use preparations are achievable through combining broad host range bacteriophages and phage cocktails probably cannot be seen as a means of expanding the host range through combination of highly specific individual viruses.
In our dataset, the phages active against Staphylococcus aureus and Pseudomonas aeruginosa had the broadest host ranges (Figure 6a,b). The two species were the targets of the three ready-to-use phage preparations with efficacy demonstrated in clinical trials. The other known ready-to-use preparations with unconfirmed efficacy targeted Proteus mirabilis, Enterococcus spp. and Escherichia coli [338,339]. Therefore, application areas of ready-to-use preparations and personalised treatment of infections can be delineated on the basis of host range breadth.
The inferred median bacteriophage host ranges in relation to particular bacterial species confirm general estimates that host ranges in most cases do not cover more than 40–50% of bacterial strains [340]. Particularly, in our study, the median host ranges of K. pneumoniae phages were estimated at 21–25% of bacterial strains. It was perfectly in line with an observation that the majority of Klebsiella phages infect 9–30% of the tested strains, while the minority of these viruses show relatively broad lytic spectra at 35–50% [341].
Broad host ranges come at a fitness cost but probably not always. We hypothesised that in strictly lytic phages, the ability to lyse wider spectrum of production host isolates comes along with decreased efficiency of plating. To test it, we plotted the ratio of strains lysed at EOP values above or equal to 0.1 to the total number of successful infections against plaquing host ranges (Figure 7). The possible association was estimated by fitting a linear regression model to the three parts of data, including the phages of the two most represented species Salmonella enterica (n = 12, nls = 8) and Escherichia coli (n = 9, nls = 5) and phages infecting other bacterial species (n = 70, nls = 32). Broader lytic spectra of Escherichia phages were associated with lower proportions of efficiently utilised host strains. Earlier, Maffei et al. studied an original sample of 68 Escherichia phages and found similar trade-offs between broad host recognition and plaquing host range [342]. Our coliphage EOP data did not include the results of Maffei et al. and were compiled from five other publications [115,142,164,232,290], providing an independent confirmation. However, we could not see these trade-offs in a broader spectrum of bacteriophage hosts. Therefore, further experimental research on well-defined bacteriophage and bacterial collections should clarify the issue.

3.5. Taxonomy of Phages and Hosts Was the Only Identified Factor, Correlating with Host Ranges

There are sources comparing host ranges in relation to bacteriophage morphotypes. In a study of marine phages, myoviruses had broader host ranges than siphoviruses [343]. In other studies, podoviruses were found to be inferior to other bacteriophage morphotypes in terms of spotting and plaquing host ranges [145,344,345]. In agreement with an experimental paper questioning this rule [346], we did not observe a connection between the host ranges and phage morphology (Figure 8).
In tailed bacteriophages, there is a positive association between genome size and the number of tRNAs, which are considered to be a viral adaptation factor [347,348]. Larger genomes have a capacity to harbour phage counter-defence systems and enzymatic activities that enable weathering host immune attacks and overcoming metabolic restrictions, thereby defining an evolutionary strategy of stronger competitors [349]. Therefore, we hypothesised that bacteriophages with larger genome size have broader intraspecies host ranges. However, this was not the case (Figure 8a,b). One possible explanation can come from the tendency of phages with larger genomes to be commonly targeted by bacterial protective systems, triggering an altruistic suicide of infected cells [342].
The study of Delesalle et al. focused on tRNA gene distribution in mycobacteriophages. They explained the presence of tRNA genes in bacteriophage genomes by differences in prevalence of particular amino acids in phage and host genomes. Since closely related phages possessing different numbers of tRNA genes infect common bacterial hosts, the higher numbers of tRNA genes hypothetically may be associated with broader lytic spectra [350]. To find if the number of predicted tRNA genes, bacteriophage and host taxonomy, culture medium type, and availability of host typing data correlate with host range values, we performed a factor analysis of mixed data. In SHR data, virus–host pairs contributed most to the second dimension. Most contributions to the first dimension came from virus–host pairs and spotting-host ranges, implying a correlation between the two (Figure 9a). In PHR data, the most contributing variables were culture medium, virus–host pairs, PHR, and the number of tRNA-coding genes. The PHR variable correlated with culture medium type and virus–host pairs (Figure 9b). However, the correlation between the PHR variable and culture medium was due to the use of different culturing media for different bacteria. Taken together, these results suggest virus and host taxonomy is a key factor determining the host ranges.

3.6. Methodological Limitations and Reliability of the Study

The limitations of our study are connected to (1) sample representativeness, (2) host range variability, and (3) methodological issues. Metagenomic data indicate higher diversity of non-cultivable viruses in comparison to the number of described bacteriophages [351]. Also, phage isolation techniques tend to be selective towards particular taxonomic groups of phages [352]. Our review concerns cultured phages, and, inevitably, the conclusions cannot be extrapolated to the diversity of tailed bacteriophages in general. Moreover, selective reporting is the common practice in the description of bacteriophages intended for the use in biocontrol applications. The list of sources explicitly stating pre-selection of broad host range viruses may include the references [75,76,172,199,287,291].
The host ranges are not constant and can be manipulated in vitro [340]. They change due to mutational processes in bacteria and viruses and emergence of phenotypic resistance mechanisms in bacteria [353]. The temporal changes in host ranges of the bacteriophages can be observed in marine environment [261], industrial and clinical settings [111,354]. However, the distribution of median bacteriophage host ranges is tractable in terms of bacteriophage life cycles and phage–host interactions. In some aspects, our key observations were confirmed by large-scale experimental studies.
Abiotic factors influence bacteriophage activity [355,356]. In some cases, methodological details omitted here for the sake of study feasibility were shown to influence the host range estimates. The addition of Ca2+ and Mg2+ ions can stabilise the interaction of the virion with host cell [94,357,358]. This stabilisation may determine the test outcome [253]. Host range breadth depends on incubation temperature [253,283,359] and time [87]. Still, our approach to study selection in relation to bacterial sample quality was robust. It can be seen from the negligible contributions of the host typing employment factor to the data variability. In the view of high diversity of host range determination techniques, the classification of host ranges may not be very precise. Therefore, we expect that real-world differences between host ranges of different bacteriophage taxa are more pronounced in comparison to what can be seen in our data.

4. Questions for Further Studies

The statement on “high bacteriophage specificity” is closely followed by a question about the degree of this specificity. The approach employed here answered this question for several well-studied taxonomic groups of bacteriophages and bacteria. Future studies may involve other taxa in similar analyses. Leaving E. coli phages aside, is there fitness cost of broad host ranges? If so, is it relevant to phage biocontrol applications? Finally, our study clearly revealed a need for improvements in bacteriophage macrotaxonomy.

5. Conclusions

In tailed bacteriophages, published lytic host ranges estimated on production host isolates vary from close to 0 to 1. There is no boundary between narrow and broad host ranges. In some cases, host range differences between bacteriophage families are significant. The same applies to phages, grouped by bacterial host species. We showed that in most lytic phages, broad host ranges come at no fitness cost in terms of efficient host utilisation and rejected the hypotheses about a connection of host ranges with bacteriophage genome size and tRNA number. In this study, the only revealed factor correlating with the breadth of lytic spectra was bacteriophage and host taxonomy. Though bacteriophage susceptibility testing by standard methods is a cornerstone of phage biocontrol applications and our approach had a number of limitations, we believe our review adds to understanding of phage functional diversity.

Supplementary Materials

The following supporting information can be downloaded at https://www.mdpi.com/article/10.3390/v16121879/s1: Code S1: Annotated R code for analysis and figure generation; Data S1: Main dataset including meta-data, qualitative and quantitative data, and information on excluded studies; Data S2: FAMD dataset; Data S3: Error of host range tests estimation; Figure S1: Phylogenetic analysis placed one bacteriophage without taxonomic annotation into the family Drexlerviridae; Figure S2: Phylogenetic analysis placed three bacteriophages into the family Straboviridae; Figure S3: Phylogenetic analysis placed three bacteriophages without taxonomic annotations into the family Autographiviridae; Figure S4: Phylogenetic analysis results were in agreement with GenBank annotations of Aliceevansviridae and related phages. Table S1: PRISMA 2020 checklist.

Author Contributions

Conceptualisation, I.M.P.; methodology, I.M.P., A.V.S. and D.V.A.; software, I.M.P.; validation, D.V.A.; formal analysis, I.M.P. and A.V.S.; investigation, I.M.P.; data curation, I.M.P.; writing—original draft preparation, I.M.P. and A.V.S.; writing—review and editing, I.M.P., A.V.S., D.V.A. and A.E.G.; visualisation, I.M.P. and A.V.S.; supervision, D.V.A. and A.E.G.; funding acquisition, A.E.G. All authors have read and agreed to the published version of the manuscript.

Funding

The work was supported by the Ministry of Science and Higher Education of the Russian Federation, no. 075-15-2022-302, Federal State Budgetary Scientific Institution “Institute of Experimental Medicine” (FSBSI “IEM”) Scientific and Educational Centre “Molecular bases of interaction of microorganisms and human” of the World-Class Research Centre “Center for Personalized Medicine” at FSBSI “IEM”.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The dataset and code are available as Supplementary Materials to the article. The study was registered at Open Science Framework website (https://osf.io/djpfm, accessed on 3 December 2024, DOI: 10.17605/OSF.IO/DJPFM).

Acknowledgments

We are grateful to all colleagues who shared the full texts and Supplementary Materials of their articles.

Conflicts of Interest

The authors declare no conflicts of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

References

  1. Turner, D.; Kropinski, A.M.; Adriaenssens, E.M. A Roadmap for Genome-Based Phage Taxonomy. Viruses 2021, 13, 506. [Google Scholar] [CrossRef] [PubMed]
  2. Dion, M.B.; Oechslin, F.; Moineau, S. Phage diversity, genomics and phylogeny. Nat. Rev. Microbiol. 2020, 18, 125–138. [Google Scholar] [CrossRef] [PubMed]
  3. Albrycht, K.; Rynkiewicz, A.A.; Harasymczuk, M.; Barylski, J.; Zielezinski, A. Daily Reports on Phage-Host Interactions. Front. Microbiol. 2022, 13, 946070. [Google Scholar] [CrossRef] [PubMed]
  4. Hanson, C.A.; Marston, M.F.; Martiny, J.B. Biogeographic variation in host range phenotypes and taxonomic composition of marine cyanophage isolates. Front. Microbiol. 2016, 7, 983. [Google Scholar] [CrossRef] [PubMed]
  5. Mayers, K.M.J.; Kuhlisch, C.; Basso, J.T.R.; Saltvedt, M.R.; Buchan, A.; Sandaa, R.A. Grazing on marine viruses and its biogeochemical implications. mBio 2023, 14, e0192121. [Google Scholar] [CrossRef] [PubMed]
  6. Ambalavanan, L.; Iehata, S.; Fletcher, R.; Stevens, E.H.; Zainathan, S.C. A Review of marine viruses in coral ecosystem. J. Mar. Sci. Eng. 2021, 9, 711. [Google Scholar] [CrossRef]
  7. Potapov, S.A.; Tikhonova, I.V.; Krasnopeev, A.Y.; Kabilov, M.R.; Tupikin, A.E.; Chebunina, N.S.; Zhuchenko, N.A.; Belykh, O.I. Metagenomic analysis of virioplankton from the pelagic zone of lake Baikal. Viruses 2019, 11, 991. [Google Scholar] [CrossRef] [PubMed]
  8. Gómez, P.; Buckling, A. Bacteria-phage antagonistic coevolution in soil. Science 2011, 332, 106–109. [Google Scholar] [CrossRef] [PubMed]
  9. Adriaenssens, E.M.; Kramer, R.; Van Goethem, M.W.; Makhalanyane, T.P.; Hogg, I.; Cowan, D.A. Environmental drivers of viral community composition in Antarctic soils identified by viromics. Microbiome 2017, 5, 83. [Google Scholar] [CrossRef] [PubMed]
  10. Grasis, J.A.; Lachnit, T.; Anton-Erxleben, F.; Lim, Y.W.; Schmieder, R.; Fraune, S.; Franzenburg, S.; Insua, S.; Machado, G.; Haynes, M.; et al. Species-specific viromes in the ancestral holobiont Hydra. PLoS ONE 2014, 9, e109952. [Google Scholar] [CrossRef] [PubMed]
  11. Kirsch, J.M.; Brzozowski, R.S.; Faith, D.; Round, J.L.; Secor, P.R.; Duerkop, B.A. Bacteriophage-bacteria interactions in the gut: From invertebrates to mammals. Annu. Rev. Virol. 2021, 8, 95–113. [Google Scholar] [CrossRef] [PubMed]
  12. Pirnay, J.P.; Blasdel, B.G.; Bretaudeau, L.; Buckling, A.; Chanishvili, N.; Clark, J.R.; Corte-Real, S.; Debarbieux, L.; Dublanchet, A.; De Vos, D.; et al. Quality and safety requirements for sustainable phage therapy products. Pharm. Res. 2015, 32, 2173–2179. [Google Scholar] [CrossRef] [PubMed]
  13. Endersen, L.; Coffey, A. The use of bacteriophages for food safety. Curr. Opin. Food Sci. 2020, 36, 1–8. [Google Scholar] [CrossRef]
  14. Wagemans, J.; Holtappels, D.; Vainio, E.; Rabiey, M.; Marzachì, C.; Herrero, S.; Ravanbakhsh, M.; Tebbe, C.C.; Ogliastro, M.; Ayllón, M.A.; et al. Going Viral: Virus-Based Biological Control Agents for Plant Protection. Annu. Rev. Phytopathol. 2022, 60, 21–42. [Google Scholar] [CrossRef] [PubMed]
  15. Desiree, K.; Mosimann, S.; Ebner, P. Efficacy of phage therapy in pigs: Systematic review and meta-analysis. J. Anim. Sci. 2021, 99, skab157. [Google Scholar] [CrossRef] [PubMed]
  16. Łos, M.; Czyz, A.; Sell, E.; Wegrzyn, A.; Neubauer, P.; Wegrzyn, G. Bacteriophage contamination: Is. there a simple method to reduce its deleterious effects in laboratory cultures and biotechnological factories? J. Appl. Genet. 2004, 45, 111–120. [Google Scholar] [PubMed]
  17. Romero, D.A.; Magill, D.; Millen, A.; Horvath, P.; Fremaux, C. Dairy lactococcal and streptococcal phage-host interactions: An industrial perspective in an evolving phage landscape. FEMS Microbiol. Rev. 2020, 44, 909–932. [Google Scholar] [CrossRef] [PubMed]
  18. Moura de Sousa, J.A.; Pfeifer, E.; Touchon, M.; Rocha, E.P.C. Causes and Consequences of Bacteriophage Diversification via Genetic Exchanges across Lifestyles and Bacterial Taxa. Mol. Biol. Evol. 2021, 38, 2497–2512. [Google Scholar] [CrossRef] [PubMed]
  19. Sommers, P.; Chatterjee, A.; Varsani, A.; Trubl, G. Integrating Viral Metagenomics into an Ecological Framework. Annu. Rev. Virol. 2021, 8, 133–158. [Google Scholar] [CrossRef] [PubMed]
  20. Hyman, P.; Abedon, S.T. Bacteriophage host range and bacterial resistance. Adv. Appl. Microbiol. 2010, 70, 217–248. [Google Scholar] [CrossRef] [PubMed]
  21. Hobbs, Z.; Abedon, S.T. Diversity of phage infection types and associated terminology: The problem with ‘Lytic or lysogenic’. FEMS Microbiol. Lett. 2016, 363, fnw047. [Google Scholar] [CrossRef] [PubMed]
  22. de Jonge, P.A.; Nobrega, F.L.; Brouns, S.J.J.; Dutilh, B.E. Molecular and Evolutionary Determinants of Bacteriophage Host Range. Trends Microbiol. 2019, 27, 51–63. [Google Scholar] [CrossRef] [PubMed]
  23. Holtappels, D.; Alfenas-Zerbini, P.; Koskella, B. Drivers and consequences of bacteriophage host range. FEMS Microbiol. Rev. 2023, 47, fuad038. [Google Scholar] [CrossRef] [PubMed]
  24. Casey, E.; van Sinderen, D.; Mahony, J. In Vitro Characteristics of Phages to Guide ‘Real Life’ Phage Therapy Suitability. Viruses 2018, 10, 163. [Google Scholar] [CrossRef] [PubMed]
  25. Glonti, T.; Pirnay, J.P. In Vitro Techniques and Measurements of Phage Characteristics That Are Important for Phage Therapy Success. Viruses 2022, 14, 1490. [Google Scholar] [CrossRef] [PubMed]
  26. Hyman, P. Phages for Phage Therapy: Isolation, Characterization, and Host Range Breadth. Pharmaceuticals 2019, 12, 35. [Google Scholar] [CrossRef] [PubMed]
  27. Yerushalmy, O.; Braunstein, R.; Alkalay-Oren, S.; Rimon, A.; Coppenhagn-Glazer, S.; Onallah, H.; Nir-Paz, R.; Hazan, R. Towards Standardization of Phage Susceptibility Testing: The Israeli Phage Therapy Center “Clinical Phage Microbiology”-A Pipeline Proposal. Clin. Infect. Dis. 2023, 77 (Suppl. S5), S337–S351. [Google Scholar] [CrossRef] [PubMed]
  28. Ryan, E.M.; Gorman, S.P.; Donnelly, R.F.; Gilmore, B.F. Recent advances in bacteriophage therapy: How delivery routes, formulation, concentration and timing influence the success of phage therapy. J. Pharm. Pharmacol. 2011, 63, 1253–1264. [Google Scholar] [CrossRef] [PubMed]
  29. Dąbrowska, K.; Abedon, S.T. Pharmacologically Aware Phage Therapy: Pharmacodynamic and Pharmacokinetic Obstacles to Phage Antibacterial Action in Animal and Human Bodies. Microbiol. Mol. Biol. Rev. 2019, 83, e00012–e00019. [Google Scholar] [CrossRef] [PubMed]
  30. Mattila, S.; Ruotsalainen, P.; Jalasvuori, M. On-Demand Isolation of Bacteriophages Against Drug-Resistant Bacteria for Personalized Phage Therapy. Front. Microbiol. 2015, 6, 1271. [Google Scholar] [CrossRef] [PubMed]
  31. Ross, A.; Ward, S.; Hyman, P. More Is Better: Selecting for Broad Host Range Bacteriophages. Front. Microbiol. 2016, 7, 1352. [Google Scholar] [CrossRef] [PubMed]
  32. Allué-Guardia, A.; Saranathan, R.; Chan, J.; Torrelles, J.B. Mycobacteriophages as Potential Therapeutic Agents against Drug-Resistant Tuberculosis. Int. J. Mol. Sci. 2021, 22, 735. [Google Scholar] [CrossRef] [PubMed]
  33. Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
  34. D’Andrea, M.M.; Frezza, D.; Romano, E.; Marmo, P.; Henrici De Angelis, L.; Perini, N.; Thaller, M.C.; Di Lallo, G. The lytic bacteriophage vB_EfaH_EF1TV, a new member of the Herelleviridae family, disrupts biofilm produced by Enterococcus faecalis clinical strains. J. Glob. Antimicrob. Resist. 2020, 21, 68–75. [Google Scholar] [CrossRef] [PubMed]
  35. Arroyo-Moreno, S.; Buttimer, C.; Bottacini, F.; Chanishvili, N.; Ross, P.; Hill, C.; Coffey, A. Insights into Gene Transcriptional Regulation of Kayvirus Bacteriophages Obtained from Therapeutic Mixtures. Viruses 2022, 14, 626. [Google Scholar] [CrossRef] [PubMed]
  36. Tkachev, P.V.; Pchelin, I.M.; Azarov, D.V.; Gorshkov, A.N.; Shamova, O.V.; Dmitriev, A.V.; Goncharov, A.E. Two Novel Lytic Bacteriophages Infecting Enterococcus spp. Are Promising Candidates for Targeted Antibacterial Therapy. Viruses 2022, 14, 831. [Google Scholar] [CrossRef] [PubMed]
  37. Kolenda, C.; Medina, M.; Bonhomme, M.; Laumay, F.; Roussel-Gaillard, T.; Martins-Simoes, P.; Tristan, A.; Pirot, F.; Ferry, T.; Laurent, F.; et al. Phage Therapy against Staphylococcus aureus: Selection and Optimization of Production Protocols of Novel Broad-Spectrum Silviavirus Phages. Pharmaceutics 2022, 14, 1885. [Google Scholar] [CrossRef] [PubMed]
  38. Nicolas, M.; Trotereau, A.; Culot, A.; Moodley, A.; Atterbury, R.; Wagemans, J.; Lavigne, R.; Velge, P.; Schouler, C. Isolation and Characterization of a Novel Phage Collection against Avian-Pathogenic Escherichia coli. Microbiol. Spectr. 2023, 11, e0429622. [Google Scholar] [CrossRef] [PubMed]
  39. Bryan, D.W.; Hudson, L.K.; Wang, J.; Denes, T.G. Characterization of a Diverse Collection of Salmonella Phages Isolated from Tennessee Wastewater. Phage 2023, 4, 90–98. [Google Scholar] [CrossRef] [PubMed]
  40. Summer, E.J.; Liu, M.; Gill, J.J.; Grant, M.; Chan-Cortes, T.N.; Ferguson, L.; Janes, C.; Lange, K.; Bertoli, M.; Moore, C.; et al. Genomic and functional analyses of Rhodococcus equi phages ReqiPepy6, ReqiPoco6, ReqiPine5, and ReqiDocB7. Appl. Environ. Microbiol. 2011, 77, 669–683. [Google Scholar] [CrossRef] [PubMed]
  41. Hsieh, S.E.; Lo, H.H.; Chen, S.T.; Lee, M.C.; Tseng, Y.H. Wide host range and strong lytic activity of Staphylococcus aureus lytic phage Stau2. Appl. Environ. Microbiol. 2011, 77, 756–761. [Google Scholar] [CrossRef] [PubMed]
  42. Monson, R.; Foulds, I.; Foweraker, J.; Welch, M.; Salmond, G.P.C. The Pseudomonas aeruginosa generalized transducing phage phiPA3 is a new member of the phiKZ-like group of ‘jumbo’ phages, and infects model laboratory strains and clinical isolates from cystic fibrosis patients. Microbiology 2011, 157 Pt 3, 859–867. [Google Scholar] [CrossRef] [PubMed]
  43. Ceyssens, P.J.; Glonti, T.; Kropinski, N.M.; Lavigne, R.; Chanishvili, N.; Kulakov, L.; Lashkhi, N.; Tediashvili, M.; Merabishvili, M. Phenotypic and genotypic variations within a single bacteriophage species. Virol. J. 2011, 8, 134. [Google Scholar] [CrossRef] [PubMed]
  44. Sekulovic, O.; Meessen-Pinard, M.; Fortier, L.C. Prophage-stimulated toxin production in Clostridium difficile NAP1/027 lysogens. J. Bacteriol. 2011, 193, 2726–2734. [Google Scholar] [CrossRef] [PubMed]
  45. Hooton, S.P.; Atterbury, R.J.; Connerton, I.F. Application of a bacteriophage cocktail to reduce Salmonella Typhimurium U288 contamination on pig skin. Int. J. Food Microbiol. 2011, 151, 157–163. [Google Scholar] [CrossRef] [PubMed]
  46. Vandersteegen, K.; Mattheus, W.; Ceyssens, P.J.; Bilocq, F.; De Vos, D.; Pirnay, J.P.; Noben, J.P.; Merabishvili, M.; Lipinska, U.; Hermans, K.; et al. Microbiological and molecular assessment of bacteriophage ISP for the control of Staphylococcus aureus. PLoS ONE 2011, 6, e24418. [Google Scholar] [CrossRef] [PubMed]
  47. Kwiatek, M.; Parasion, S.; Mizak, L.; Gryko, R.; Bartoszcze, M.; Kocik, J. Characterization of a bacteriophage, isolated from a cow with mastitis, that is lytic against Staphylococcus aureus strains. Arch. Virol. 2012, 157, 225–234. [Google Scholar] [CrossRef] [PubMed]
  48. Maura, D.; Morello, E.; du Merle, L.; Bomme, P.; Le Bouguénec, C.; Debarbieux, L. Intestinal colonization by enteroaggregative Escherichia coli supports long-term bacteriophage replication in mice. Environ. Microbiol. 2012, 14, 1844–1854. [Google Scholar] [CrossRef] [PubMed]
  49. Müller, I.; Lurz, R.; Geider, K. Tasmancin and lysogenic bacteriophages induced from Erwinia tasmaniensis strains. Microbiol. Res. 2012, 167, 381–387. [Google Scholar] [CrossRef] [PubMed]
  50. Popova, A.V.; Zhilenkov, E.L.; Myakinina, V.P.; Krasilnikova, V.M.; Volozhantsev, N.V. Isolation and characterization of wide host range lytic bacteriophage AP22 infecting Acinetobacter baumannii. FEMS Microbiol. Lett. 2012, 332, 40–46. [Google Scholar] [CrossRef] [PubMed]
  51. Yuan, Y.; Gao, M.; Wu, D.; Liu, P.; Wu, Y. Genome characteristics of a novel phage from Bacillus thuringiensis showing high similarity with phage from Bacillus cereus. PLoS ONE 2012, 7, e37557. [Google Scholar] [CrossRef] [PubMed]
  52. Turner, D.; Hezwani, M.; Nelson, S.; Salisbury, V.; Reynolds, D. Characterization of the Salmonella bacteriophage vB_SenS-Ent1. J. Gen. Virol. 2012, 93 Pt 9, 2046–2056. [Google Scholar] [CrossRef] [PubMed]
  53. Kraushaar, B.; Thanh, M.D.; Hammerl, J.A.; Reetz, J.; Fetsch, A.; Hertwig, S. Isolation and characterization of phages with lytic activity against methicillin-resistant Staphylococcus aureus strains belonging to clonal complex 398. Arch. Virol. 2013, 158, 2341–2350. [Google Scholar] [CrossRef] [PubMed]
  54. Chang, Y.; Lee, J.H.; Shin, H.; Heu, S.; Ryu, S. Characterization and complete genome sequence analysis of Staphylococcus aureus bacteriophage SA12. Virus Genes 2013, 47, 389–393. [Google Scholar] [CrossRef] [PubMed]
  55. Zhang, C.; Li, W.; Liu, W.; Zou, L.; Yan, C.; Lu, K.; Ren, H. T4-like phage Bp7, a potential antimicrobial agent for controlling drug-resistant Escherichia coli in chickens. Appl. Environ. Microbiol. 2013, 79, 5559–5565. [Google Scholar] [CrossRef] [PubMed]
  56. Yoon, H.; Yun, J.; Lim, J.A.; Roh, E.; Jung, K.S.; Chang, Y.; Ryu, S.; Heu, S. Characterization and genomic analysis of two Staphylococcus aureus bacteriophages isolated from poultry/livestock farms. J. Gen. Virol. 2013, 94 Pt 11, 2569–2576. [Google Scholar] [CrossRef] [PubMed]
  57. Jakhetia, R.; Talukder, K.A.; Verma, N.K. Isolation, characterization and comparative genomics of bacteriophage SfIV: A novel serotype converting phage from Shigella flexneri. BMC Genom. 2013, 14, 677. [Google Scholar] [CrossRef] [PubMed]
  58. Santamaría, R.I.; Bustos, P.; Sepúlveda-Robles, O.; Lozano, L.; Rodríguez, C.; Fernández, J.L.; Juárez, S.; Kameyama, L.; Guarneros, G.; Dávila, G.; et al. Narrow-host-range bacteriophages that infect Rhizobium etli associate with distinct genomic types. Appl. Environ. Microbiol. 2014, 80, 446–454. [Google Scholar] [CrossRef] [PubMed]
  59. Melo, L.D.R.; Sillankorva, S.; Ackermann, H.W.; Kropinski, A.M.; Azeredo, J.; Cerca, N. Isolation and characterization of a new Staphylococcus epidermidis broad-spectrum bacteriophage. J. Gen. Virol. 2014, 95 Pt 2, 506–515. [Google Scholar] [CrossRef] [PubMed]
  60. Kim, M.; Kim, S.; Park, B.; Ryu, S. Core lipopolysaccharide-specific phage SSU5 as an Auxiliary Component of a Phage Cocktail for Salmonella biocontrol. Appl. Environ. Microbiol. 2014, 80, 1026–1034. [Google Scholar] [CrossRef] [PubMed]
  61. Cavanagh, D.; Guinane, C.M.; Neve, H.; Coffey, A.; Ross, R.P.; Fitzgerald, G.F.; McAuliffe, O. Phages of non-dairy lactococci: Isolation and characterization of ΦL47, a phage infecting the grass isolate Lactococcus lactis ssp. cremoris DPC6860. Front. Microbiol. 2014, 4, 417. [Google Scholar] [CrossRef] [PubMed]
  62. Frampton, R.A.; Taylor, C.; Holguín Moreno, A.V.; Visnovsky, S.B.; Petty, N.K.; Pitman, A.R.; Fineran, P.C. Identification of bacteriophages for biocontrol of the kiwifruit canker phytopathogen Pseudomonas syringae pv. actinidiae. Appl. Environ. Microbiol. 2014, 80, 2216–2228. [Google Scholar] [CrossRef] [PubMed]
  63. Tan, D.; Gram, L.; Middelboe, M. Vibriophages and their interactions with the fish pathogen Vibrio anguillarum. Appl. Environ. Microbiol. 2014, 80, 3128–3140. [Google Scholar] [CrossRef] [PubMed]
  64. Baugher, J.L.; Durmaz, E.; Klaenhammer, T.R. Spontaneously induced prophages in Lactobacillus gasseri contribute to horizontal gene transfer. Appl. Environ. Microbiol. 2014, 80, 3508–3517. [Google Scholar] [CrossRef] [PubMed]
  65. Abbasifar, R.; Kropinski, A.M.; Sabour, P.M.; Chambers, J.R.; MacKinnon, J.; Malig, T.; Griffiths, M.W. Efficiency of bacteriophage therapy against Cronobacter sakazakii in Galleria mellonella (greater wax moth) larvae. Arch. Virol. 2014, 159, 2253–2261. [Google Scholar] [CrossRef] [PubMed]
  66. Di Lallo, G.; Evangelisti, M.; Mancuso, F.; Ferrante, P.; Marcelletti, S.; Tinari, A.; Superti, F.; Migliore, L.; D’Addabbo, P.; Frezza, D.; et al. Isolation and partial characterization of bacteriophages infecting Pseudomonas syringae pv. actinidiae, causal agent of kiwifruit bacterial canker. J. Basic Microbiol. 2014, 54, 1210–1221. [Google Scholar] [CrossRef] [PubMed]
  67. Merabishvili, M.; Vandenheuvel, D.; Kropinski, A.M.; Mast, J.; De Vos, D.; Verbeken, G.; Noben, J.P.; Lavigne, R.; Vaneechoutte, M.; Pirnay, J.P. Characterization of newly isolated lytic bacteriophages active against Acinetobacter baumannii. PLoS ONE 2014, 9, e104853. [Google Scholar] [CrossRef] [PubMed]
  68. Alves, D.R.; Gaudion, A.; Bean, J.E.; Perez Esteban, P.; Arnot, T.C.; Harper, D.R.; Kot, W.; Hansen, L.H.; Enright, M.C.; Jenkins, A.T. Combined use of bacteriophage K and a novel bacteriophage to reduce Staphylococcus aureus biofilm formation. Appl. Environ. Microbiol. 2014, 80, 6694–6703. [Google Scholar] [CrossRef] [PubMed]
  69. Janež, N.; Kokošin, A.; Zaletel, E.; Vranac, T.; Kovač, J.; Vučković, D.; Smole Možina, S.; Curin Šerbec, V.; Zhang, Q.; Accetto, T.; et al. Identification and characterisation of new Campylobacter group III phages of animal origin. FEMS Microbiol. Lett. 2014, 359, 64–71. [Google Scholar] [CrossRef] [PubMed]
  70. Jakhetia, R.; Marri, A.; Ståhle, J.; Widmalm, G.; Verma, N.K. Serotype-conversion in Shigella flexneri: Identification of a novel bacteriophage, Sf101, from a serotype 7a strain. BMC Genom. 2014, 15, 742. [Google Scholar] [CrossRef] [PubMed]
  71. Leon-Velarde, C.G.; Kropinski, A.M.; Chen, S.; Abbasifar, A.; Griffiths, M.W.; Odumeru, J.A. Complete genome sequence of bacteriophage vB_YenP_AP5 which infects Yersinia enterocolitica of serotype O:3. Virol. J. 2014, 11, 188. [Google Scholar] [CrossRef] [PubMed]
  72. Salem, M.; Virtanen, S.; Korkeala, H.; Skurnik, M. Isolation and characterization of Yersinia-specific bacteriophages from pig stools in Finland. J. Appl. Microbiol. 2015, 118, 599–608. [Google Scholar] [CrossRef] [PubMed]
  73. Kong, M.; Ryu, S. Bacteriophage PBC1 and its endolysin as an antimicrobial agent against Bacillus cereus. Appl. Environ. Microbiol. 2015, 81, 2274–2283. [Google Scholar] [CrossRef] [PubMed]
  74. Lagonenko, A.L.; Sadovskaya, O.; Valentovich, L.N.; Evtushenkov, A.N. Characterization of a new ViI-like Erwinia amylovora bacteriophage phiEa2809. FEMS Microbiol. Lett. 2015, 362, fnv031. [Google Scholar] [CrossRef] [PubMed]
  75. Olszak, T.; Zarnowiec, P.; Kaca, W.; Danis-Wlodarczyk, K.; Augustyniak, D.; Drevinek, P.; de Soyza, A.; McClean, S.; Drulis-Kawa, Z. In vitro and in vivo antibacterial activity of environmental bacteriophages against Pseudomonas aeruginosa strains from cystic fibrosis patients. Appl. Microbiol. Biotechnol. 2015, 99, 6021–6033. [Google Scholar] [CrossRef] [PubMed]
  76. Khan Mirzaei, M.; Nilsson, A.S. Isolation of phages for phage therapy: A comparison of spot tests and efficiency of plating analyses for determination of host range and efficacy. PLoS ONE 2015, 10, e0118557. [Google Scholar] [CrossRef] [PubMed]
  77. Eriksson, H.; Maciejewska, B.; Latka, A.; Majkowska-Skrobek, G.; Hellstrand, M.; Melefors, Ö.; Wang, J.T.; Kropinski, A.M.; Drulis-Kawa, Z.; Nilsson, A.S. A suggested new bacteriophage genus, “Kp34likevirus”, within the Autographivirinae subfamily of Podoviridae. Viruses 2015, 7, 1804–1822. [Google Scholar] [CrossRef] [PubMed]
  78. Krasowska, A.; Biegalska, A.; Augustyniak, D.; Łoś, M.; Richert, M.; Łukaszewicz, M. Isolation and Characterization of Phages Infecting Bacillus subtilis. Biomed. Res. Int. 2015, 2015, 179597. [Google Scholar] [CrossRef] [PubMed]
  79. Peters, D.L.; Lynch, K.H.; Stothard, P.; Dennis, J.J. The isolation and characterization of two Stenotrophomonas maltophilia bacteriophages capable of cross-taxonomic order infectivity. BMC Genom. 2015, 16, 664. [Google Scholar] [CrossRef] [PubMed]
  80. Zhou, Y.; Bao, H.; Zhang, H.; Wang, R. Isolation and Characterization of Lytic Phage vB_EcoM_JS09 against Clinically Isolated Antibiotic-Resistant Avian Pathogenic Escherichia coli and Enterotoxigenic Escherichia coli. Intervirology 2015, 58, 218–231. [Google Scholar] [CrossRef] [PubMed]
  81. Eraclio, G.; Tremblay, D.M.; Lacelle-Côté, A.; Labrie, S.J.; Fortina, M.G.; Moineau, S. A virulent phage infecting Lactococcus garvieae, with homology to Lactococcus lactis phages. Appl. Environ. Microbiol. 2015, 81, 8358–8365. [Google Scholar] [CrossRef] [PubMed]
  82. Chang, Y.; Shin, H.; Lee, J.H.; Park, C.J.; Paik, S.Y.; Ryu, S. Isolation and Genome Characterization of the Virulent Staphylococcus aureus Bacteriophage SA97. Viruses 2015, 7, 5225–5242. [Google Scholar] [CrossRef] [PubMed]
  83. Šimoliūnas, E.; Vilkaitytė, M.; Kaliniene, L.; Zajančkauskaitė, A.; Kaupinis, A.; Staniulis, J.; Valius, M.; Meškys, R.; Truncaitė, L. Incomplete LPS Core-Specific Felix01-Like Virus vB_EcoM_VpaE1. Viruses 2015, 7, 6163–6181. [Google Scholar] [CrossRef] [PubMed]
  84. Xu, J.; Chen, M.; He, L.; Zhang, S.; Ding, T.; Yao, H.; Lu, C.; Zhang, W. Isolation and characterization of a T4-like phage with a relatively wide host range within Escherichia coli. J. Basic Microbiol. 2016, 56, 405–421. [Google Scholar] [CrossRef] [PubMed]
  85. Chen, M.; Xu, J.; Yao, H.; Lu, C.; Zhang, W. Isolation, genome sequencing and functional analysis of two T7-like coliphages of avian pathogenic Escherichia coli. Gene 2016, 582, 47–58. [Google Scholar] [CrossRef] [PubMed]
  86. Furusawa, T.; Iwano, H.; Higuchi, H.; Yokota, H.; Usui, M.; Iwasaki, T.; Tamura, Y. Bacteriophage can lyse antibiotic-resistant Pseudomonas aeruginosa isolated from canine diseases. J. Vet. Med. Sci. 2016, 78, 1035–1038. [Google Scholar] [CrossRef] [PubMed]
  87. Rombouts, S.; Volckaert, A.; Venneman, S.; Declercq, B.; Vandenheuvel, D.; Allonsius, C.N.; Van Malderghem, C.; Jang, H.B.; Briers, Y.; Noben, J.P.; et al. Characterization of Novel Bacteriophages for Biocontrol of Bacterial Blight in Leek Caused by Pseudomonas syringae pv. porri. Front. Microbiol. 2016, 7, 279. [Google Scholar] [CrossRef] [PubMed]
  88. Jeon, J.; Ryu, C.M.; Lee, J.Y.; Park, J.H.; Yong, D.; Lee, K. In Vivo Application of Bacteriophage as a Potential Therapeutic Agent To Control OXA-66-Like Carbapenemase-Producing Acinetobacter baumannii Strains Belonging to Sequence Type 357. Appl. Environ. Microbiol. 2016, 82, 4200–4208. [Google Scholar] [CrossRef] [PubMed]
  89. Fan, J.; Zeng, Z.; Mai, K.; Yang, Y.; Feng, J.; Bai, Y.; Sun, B.; Xie, Q.; Tong, Y.; Ma, J. Preliminary treatment of bovine mastitis caused by Staphylococcus aureus, with trx-SA1, recombinant endolysin of, S. aureus bacteriophage IME-SA1. Vet. Microbiol. 2016, 191, 65–71. [Google Scholar] [CrossRef] [PubMed]
  90. Jurczak-Kurek, A.; Gąsior, T.; Nejman-Faleńczyk, B.; Bloch, S.; Dydecka, A.; Topka, G.; Necel, A.; Jakubowska-Deredas, M.; Narajczyk, M.; Richert, M.; et al. Biodiversity of bacteriophages: Morphological and biological properties of a large group of phages isolated from urban sewage. Sci. Rep. 2016, 6, 34338. [Google Scholar] [CrossRef] [PubMed]
  91. Pereira, C.; Moreirinha, C.; Lewicka, M.; Almeida, P.; Clemente, C.; Romalde, J.L.; Nunes, M.L.; Almeida, A. Characterization and in vitro evaluation of new bacteriophages for the biocontrol of Escherichia coli. Virus Res. 2017, 227, 171–182. [Google Scholar] [CrossRef] [PubMed]
  92. Rashid, S.J.; Barylski, J.; Hargreaves, K.R.; Millard, A.A.; Vinner, G.K.; Clokie, M.R. Two Novel Myoviruses from the North of Iraq Reveal Insights into Clostridium difficile Phage Diversity and Biology. Viruses 2016, 8, 310. [Google Scholar] [CrossRef] [PubMed]
  93. Mahony, J.; Oliveira, J.; Collins, B.; Hanemaaijer, L.; Lugli, G.A.; Neve, H.; Ventura, M.; Kouwen, T.R.; Cambillau, C.; van Sinderen, D. Genetic and functional characterisation of the lactococcal P335 phage-host interactions. BMC Genom. 2017, 18, 146. [Google Scholar] [CrossRef] [PubMed]
  94. Turner, D.; Wand, M.E.; Briers, Y.; Lavigne, R.; Sutton, J.M.; Reynolds, D.M. Characterisation and genome sequence of the lytic Acinetobacter baumannii bacteriophage vB_AbaS_Loki. PLoS ONE 2017, 12, e0172303. [Google Scholar] [CrossRef] [PubMed]
  95. Peters, D.L.; Stothard, P.; Dennis, J.J. The isolation and characterization of Stenotrophomonas maltophilia T4-like bacteriophage DLP6. PLoS ONE 2017, 12, e0173341. [Google Scholar] [CrossRef] [PubMed]
  96. Endersen, L.; Buttimer, C.; Nevin, E.; Coffey, A.; Neve, H.; Oliveira, H.; Lavigne, R.; O’Mahony, J. Investigating the biocontrol and anti-biofilm potential of a three phage cocktail against Cronobacter sakazakii in different brands of infant formula. Int. J. Food Microbiol. 2017, 253, 1–11. [Google Scholar] [CrossRef] [PubMed]
  97. Amgarten, D.; Martins, L.F.; Lombardi, K.C.; Antunes, L.P.; de Souza, A.P.S.; Nicastro, G.G.; Kitajima, E.W.; Quaggio, R.B.; Upton, C.; Setubal, J.C.; et al. Three novel Pseudomonas phages isolated from composting provide insights into the evolution and diversity of tailed phages. BMC Genom. 2017, 18, 346. [Google Scholar] [CrossRef] [PubMed]
  98. Wang, C.; Chen, Q.; Zhang, C.; Yang, J.; Lu, Z.; Lu, F.; Bie, X. Characterization of a broad host-spectrum virulent Salmonella bacteriophage fmb-p1 and its application on duck meat. Virus Res. 2017, 236, 14–23. [Google Scholar] [CrossRef] [PubMed]
  99. Kalatzis, P.G.; Rørbo, N.I.; Castillo, D.; Mauritzen, J.J.; Jørgensen, J.; Kokkari, C.; Zhang, F.; Katharios, P.; Middelboe, M. Stumbling across the Same Phage: Comparative Genomics of Widespread Temperate Phages Infecting the Fish Pathogen Vibrio anguillarum. Viruses 2017, 9, 122. [Google Scholar] [CrossRef] [PubMed]
  100. Cheng, M.; Liang, J.; Zhang, Y.; Hu, L.; Gong, P.; Cai, R.; Zhang, L.; Zhang, H.; Ge, J.; Ji, Y.; et al. The Bacteriophage EF-P29 Efficiently Protects against Lethal Vancomycin-Resistant Enterococcus faecalis and Alleviates Gut Microbiota Imbalance in a Murine Bacteremia Model. Front. Microbiol. 2017, 8, 837. [Google Scholar] [CrossRef] [PubMed]
  101. Popova, A.V.; Lavysh, D.G.; Klimuk, E.I.; Edelstein, M.V.; Bogun, A.G.; Shneider, M.M.; Goncharov, A.E.; Leonov, S.V.; Severinov, K.V. Novel Fri1-like Viruses Infecting Acinetobacter baumannii-vB_AbaP_AS11 and vB_AbaP_AS12-Characterization, Comparative Genomic Analysis, and Host-Recognition Strategy. Viruses 2017, 9, 188. [Google Scholar] [CrossRef] [PubMed]
  102. Abatángelo, V.; Peressutti Bacci, N.; Boncompain, C.A.; Amadio, A.F.; Carrasco, S.; Suárez, C.A.; Morbidoni, H.R. Broad-range lytic bacteriophages that kill Staphylococcus aureus local field strains. PLoS ONE 2017, 12, e0181671. [Google Scholar] [CrossRef] [PubMed]
  103. Vincent, A.T.; Paquet, V.E.; Bernatchez, A.; Tremblay, D.M.; Moineau, S.; Charette, S.J. Characterization and diversity of phages infecting Aeromonas salmonicida subsp. salmonicida. Sci. Rep. 2017, 7, 7054. [Google Scholar] [CrossRef] [PubMed]
  104. Amarillas, L.; Rubí-Rangel, L.; Chaidez, C.; González-Robles, A.; Lightbourn-Rojas, L.; León-Félix, J. Isolation and Characterization of phiLLS, a Novel Phage with Potential Biocontrol Agent against Multidrug-Resistant Escherichia coli. Front. Microbiol. 2017, 8, 1355. [Google Scholar] [CrossRef] [PubMed]
  105. Geng, P.; Tian, S.; Yuan, Z.; Hu, X. Identification and genomic comparison of temperate bacteriophages derived from emetic Bacillus cereus. PLoS ONE 2017, 12, e0184572. [Google Scholar] [CrossRef] [PubMed]
  106. Oliveira, H.; Costa, A.R.; Konstantinides, N.; Ferreira, A.; Akturk, E.; Sillankorva, S.; Nemec, A.; Shneider, M.; Dötsch, A.; Azeredo, J. Ability of phages to infect Acinetobacter calcoaceticus-Acinetobacter baumannii complex species through acquisition of different pectate lyase depolymerase domains. Environ. Microbiol. 2017, 19, 5060–5077. [Google Scholar] [CrossRef] [PubMed]
  107. Latz, S.; Krüttgen, A.; Häfner, H.; Buhl, E.M.; Ritter, K.; Horz, H.P. Differential Effect of Newly Isolated Phages Belonging to PB1-Like, phiKZ-Like and LUZ24-Like Viruses against Multi-Drug Resistant Pseudomonas aeruginosa under Varying Growth Conditions. Viruses 2017, 9, 315. [Google Scholar] [CrossRef] [PubMed]
  108. Choi, I.Y.; Lee, J.H.; Kim, H.J.; Park, M.K. Isolation and Characterization of a Novel Broad-host-range Bacteriophage Infecting Salmonella enterica subsp. enterica for Biocontrol and Rapid Detection. J. Microbiol. Biotechnol. 2017, 27, 2151–2155. [Google Scholar] [CrossRef] [PubMed]
  109. Fong, K.; LaBossiere, B.; Switt, A.I.M.; Delaquis, P.; Goodridge, L.; Levesque, R.C.; Danyluk, M.D.; Wang, S. Characterization of Four Novel Bacteriophages Isolated from British Columbia for Control of Non-typhoidal Salmonella in Vitro and on Sprouting Alfalfa Seeds. Front. Microbiol. 2017, 8, 2193. [Google Scholar] [CrossRef] [PubMed]
  110. Katharios, P.; Kalatzis, P.G.; Kokkari, C.; Sarropoulou, E.; Middelboe, M. Isolation and characterization of a N4-like lytic bacteriophage infecting Vibrio splendidus, a pathogen of fish and bivalves. PLoS ONE 2017, 12, e0190083. [Google Scholar] [CrossRef] [PubMed]
  111. Lavelle, K.; Murphy, J.; Fitzgerald, B.; Lugli, G.A.; Zomer, A.; Neve, H.; Ventura, M.; Franz, C.M.; Cambillau, C.; van Sinderen, D.; et al. A Decade of Streptococcus thermophilus Phage Evolution in an Irish Dairy Plant. Appl. Environ. Microbiol. 2018, 84, e02855-17. [Google Scholar] [CrossRef] [PubMed]
  112. Melo, L.D.R.; Brandão, A.; Akturk, E.; Santos, S.B.; Azeredo, J. Characterization of a New Staphylococcus aureus Kayvirus Harboring a Lysin Active against Biofilms. Viruses 2018, 10, 182. [Google Scholar] [CrossRef] [PubMed]
  113. Ajuebor, J.; Buttimer, C.; Arroyo-Moreno, S.; Chanishvili, N.; Gabriel, E.M.; O’Mahony, J.; McAuliffe, O.; Neve, H.; Franz, C.; Coffey, A. Comparison of Staphylococcus Phage K with Close Phage Relatives Commonly Employed in Phage Therapeutics. Antibiotics 2018, 7, 37. [Google Scholar] [CrossRef] [PubMed]
  114. Ghosh, K.; Senevirathne, A.; Kang, H.S.; Hyun, W.B.; Kim, J.E.; Kim, K.P. Complete Nucleotide Sequence Analysis of a Novel Bacillus subtilis-Infecting Bacteriophage BSP10 and Its Effect on Poly-Gamma-Glutamic Acid Degradation. Viruses 2018, 10, 240. [Google Scholar] [CrossRef] [PubMed]
  115. Sváb, D.; Falgenhauer, L.; Rohde, M.; Chakraborty, T.; Tóth, I. Identification and characterization of new broad host-range rV5-like coliphages C203 and P206 directed against enterobacteria. Infect. Genet. Evol. 2018, 64, 254–261. [Google Scholar] [CrossRef] [PubMed]
  116. Chmielewska-Jeznach, M.; Bardowski, J.K.; Szczepankowska, A.K. Molecular, physiological and phylogenetic traits of Lactococcus 936-type phages from distinct dairy environments. Sci. Rep. 2018, 8, 12540. [Google Scholar] [CrossRef] [PubMed]
  117. Son, H.M.; Duc, H.M.; Masuda, Y.; Honjoh, K.I.; Miyamoto, T. Application of bacteriophages in simultaneously controlling Escherichia coli O157:H7 and extended-spectrum beta-lactamase producing Escherichia coli. Appl. Microbiol. Biotechnol. 2018, 102, 10259–10271. [Google Scholar] [CrossRef] [PubMed]
  118. Lavelle, K.; Martinez, I.; Neve, H.; Lugli, G.A.; Franz, C.M.A.P.; Ventura, M.; Bello, F.D.; Sinderen, D.V.; Mahony, J. Biodiversity of Streptococcus thermophilus Phages in Global Dairy Fermentations. Viruses 2018, 10, 577. [Google Scholar] [CrossRef] [PubMed]
  119. Newase, S.; Kapadnis, B.P.; Shashidhar, R. Isolation and Genome Sequence Characterization of Bacteriophage vB_SalM_PM10, a Cba120virus, Concurrently Infecting Salmonella enterica Serovars Typhimurium, Typhi, and Enteritidis. Curr. Microbiol. 2019, 76, 86–94. [Google Scholar] [CrossRef] [PubMed]
  120. Geng, P.; Wan, X.; Cheng, J.; Yuan, Z.; Hu, X. vB_LspM-01: A novel myovirus displaying pseudolysogeny in Lysinibacillus sphaericus C3-41. Appl. Microbiol. Biotechnol. 2018, 102, 10691–10702. [Google Scholar] [CrossRef] [PubMed]
  121. Park, J.; Lim, J.A.; Yu, J.G.; Oh, C.S. Genomic Features and Lytic Activity of the Bacteriophage PPPL-1 Effective against Pseudomonas syringae pv. actinidiae, a Cause of Bacterial Canker in Kiwifruit. J. Microbiol. Biotechnol. 2018, 28, 1542–1546. [Google Scholar] [CrossRef] [PubMed]
  122. Bhandare, S.; Colom, J.; Baig, A.; Ritchie, J.M.; Bukhari, H.; Shah, M.A.; Sarkar, B.L.; Su, J.; Wren, B.; Barrow, P.; et al. Reviving Phage Therapy for the Treatment of Cholera. J. Infect. Dis. 2019, 219, 786–794. [Google Scholar] [CrossRef] [PubMed]
  123. Gu, Y.; Xu, Y.; Xu, J.; Yu, X.; Huang, X.; Liu, G.; Liu, X. Identification of novel bacteriophage vB_EcoP-EG1 with lytic activity against planktonic and biofilm forms of uropathogenic Escherichia coli. Appl. Microbiol. Biotechnol. 2019, 103, 315–326. [Google Scholar] [CrossRef] [PubMed]
  124. Liu, H.; Geagea, H.; Rousseau, G.M.; Labrie, S.J.; Tremblay, D.M.; Liu, X.; Moineau, S. Characterization of the Escherichia coli Virulent Myophage ST32. Viruses 2018, 10, 616. [Google Scholar] [CrossRef] [PubMed]
  125. Oliveira, H.; Costa, A.R.; Ferreira, A.; Konstantinides, N.; Santos, S.B.; Boon, M.; Noben, J.P.; Lavigne, R.; Azeredo, J. Functional Analysis and Antivirulence Properties of a New Depolymerase from a Myovirus That Infects Acinetobacter baumannii Capsule K45. J. Virol. 2019, 93, e01163-18. [Google Scholar] [CrossRef] [PubMed]
  126. Moodley, A.; Kot, W.; Nälgård, S.; Jakociune, D.; Neve, H.; Hansen, L.H.; Guardabassi, L.; Vogensen, F.K. Isolation and characterization of bacteriophages active against methicillin-resistant Staphylococcus pseudintermedius. Res. Vet. Sci. 2019, 122, 81–85. [Google Scholar] [CrossRef] [PubMed]
  127. Chakraborty, S.; von Mentzer, A.; Begum, Y.A.; Manzur, M.; Hasan, M.; Ghosh, A.N.; Hossain, M.A.; Camilli, A.; Qadri, F. Phenotypic and genomic analyses of bacteriophages targeting environmental and clinical CS3-expressing enterotoxigenic Escherichia coli (ETEC) strains. PLoS ONE 2018, 13, e0209357. [Google Scholar] [CrossRef] [PubMed]
  128. Yang, C.; Wang, H.; Ma, H.; Bao, R.; Liu, H.; Yang, L.; Liang, B.; Jia, L.; Xie, J.; Xiang, Y.; et al. Characterization and Genomic Analysis of SFPH2, a Novel T7virus Infecting Shigella. Front. Microbiol. 2018, 9, 3027. [Google Scholar] [CrossRef] [PubMed]
  129. Kazimierczak, J.; Wójcik, E.A.; Witaszewska, J.; Guziński, A.; Górecka, E.; Stańczyk, M.; Kaczorek, E.; Siwicki, A.K.; Dastych, J. Complete genome sequences of Aeromonas and Pseudomonas phages as a supportive tool for development of antibacterial treatment in aquaculture. Virol. J. 2019, 16, 4. [Google Scholar] [CrossRef] [PubMed]
  130. Li, F.; Xing, S.; Fu, K.; Zhao, S.; Liu, J.; Tong, Y.; Zhou, L. Genomic and biological characterization of the Vibrio alginolyticus-infecting “Podoviridae” bacteriophage, vB_ValP_IME271. Virus Genes 2019, 55, 218–226. [Google Scholar] [CrossRef] [PubMed]
  131. Yuan, Y.; Qu, K.; Tan, D.; Li, X.; Wang, L.; Cong, C.; Xiu, Z.; Xu, Y. Isolation and characterization of a bacteriophage and its potential to disrupt multi-drug resistant Pseudomonas aeruginosa biofilms. Microb. Pathog. 2019, 128, 329–336. [Google Scholar] [CrossRef] [PubMed]
  132. Topka, G.; Bloch, S.; Nejman-Faleńczyk, B.; Gąsior, T.; Jurczak-Kurek, A.; Necel, A.; Dydecka, A.; Richert, M.; Węgrzyn, G.; Węgrzyn, A. Characterization of Bacteriophage vB-EcoS-95, Isolated From Urban Sewage and Revealing Extremely Rapid Lytic Development. Front. Microbiol. 2019, 9, 3326. [Google Scholar] [CrossRef] [PubMed]
  133. Choi, I.Y.; Lee, C.; Song, W.K.; Jang, S.J.; Park, M.K. Lytic KFS-SE2 phage as a novel bio-receptor for Salmonella Enteritidis detection. J. Microbiol. 2019, 57, 170–179. [Google Scholar] [CrossRef] [PubMed]
  134. Pan, Y.J.; Lin, T.L.; Chen, Y.Y.; Lai, P.H.; Tsai, Y.T.; Hsu, C.R.; Hsieh, P.F.; Lin, Y.T.; Wang, J.T. Identification of three podoviruses infecting Klebsiella encoding capsule depolymerases that digest specific capsular types. Microb. Biotechnol. 2019, 12, 472–486. [Google Scholar] [CrossRef] [PubMed]
  135. Głowacka-Rutkowska, A.; Gozdek, A.; Empel, J.; Gawor, J.; Żuchniewicz, K.; Kozińska, A.; Dębski, J.; Gromadka, R.; Łobocka, M. The Ability of Lytic Staphylococcal Podovirus vB_SauP_phiAGO1.3 to Coexist in Equilibrium With Its Host Facilitates the Selection of Host Mutants of Attenuated Virulence but Does Not Preclude the Phage Antistaphylococcal Activity in a Nematode Infection Model. Front. Microbiol. 2019, 9, 3227. [Google Scholar] [CrossRef] [PubMed]
  136. Tian, C.; Zhao, J.; Zhang, Z.; Chen, X.; Wei, X.; Li, H.; Lin, W.; Ke, Y.; Hu, L.; Jiang, A.; et al. Identification and molecular characterization of Serratia marcescens phages vB_SmaA_2050H1 and vB_SmaM_2050HW. Arch. Virol. 2019, 164, 1085–1094. [Google Scholar] [CrossRef] [PubMed]
  137. Addy, H.S.; Ahmad, A.A.; Huang, Q. Molecular and Biological Characterization of Ralstonia Phage RsoM1USA, a New Species of P2virus, Isolated in the United States. Front. Microbiol. 2019, 10, 267. [Google Scholar] [CrossRef] [PubMed]
  138. Burrowes, B.H.; Molineux, I.J.; Fralick, J.A. Directed in Vitro Evolution of Therapeutic Bacteriophages: The Appelmans Protocol. Viruses. 2019, 11, 241. [Google Scholar] [CrossRef] [PubMed]
  139. Gencay, Y.E.; Gambino, M.; Prüssing, T.F.; Brøndsted, L. The genera of bacteriophages and their receptors are the major determinants of host range. Environ. Microbiol. 2019, 21, 2095–2111. [Google Scholar] [CrossRef] [PubMed]
  140. Yang, Z.; Liu, X.; Shi, Y.; Yin, S.; Shen, W.; Chen, J.; Chen, Y.; Chen, Y.; You, B.; Gong, Y.; et al. Characterization and genome annotation of a newly detected bacteriophage infecting multidrug-resistant Acinetobacter baumannii. Arch. Virol. 2019, 164, 1527–1533. [Google Scholar] [CrossRef] [PubMed]
  141. Fulgione, A.; Ianniello, F.; Papaianni, M.; Contaldi, F.; Sgamma, T.; Giannini, C.; Pastore, S.; Velotta, R.; Della Ventura, B.; Roveri, N.; et al. Biomimetic hydroxyapatite nanocrystals are an active carrier for Salmonella bacteriophages. Int. J. Nanomed. 2019, 14, 2219–2232. [Google Scholar] [CrossRef] [PubMed]
  142. Liao, Y.T.; Sun, X.; Quintela, I.A.; Bridges, D.F.; Liu, F.; Zhang, Y.; Salvador, A.; Wu, V.C.H. Discovery of Shiga Toxin-Producing Escherichia coli (STEC)-Specific Bacteriophages From Non-fecal Composts Using Genomic Characterization. Front. Microbiol. 2019, 10, 627. [Google Scholar] [CrossRef] [PubMed]
  143. Melo, L.D.R.; Ferreira, R.; Costa, A.R.; Oliveira, H.; Azeredo, J. Efficacy and safety assessment of two enterococci phages in an in vitro biofilm wound model. Sci. Rep. 2019, 9, 6643. [Google Scholar] [CrossRef] [PubMed]
  144. da Silva, F.P.; Xavier, A.D.S.; Bruckner, F.P.; de Rezende, R.R.; Vidigal, P.M.P.; Alfenas-Zerbini, P. Biological and molecular characterization of a bacteriophage infecting Xanthomonas campestris pv. campestris, isolated from brassica fields. Arch. Virol. 2019, 164, 1857–1862. [Google Scholar] [CrossRef] [PubMed]
  145. Korf, I.H.E.; Meier-Kolthoff, J.P.; Adriaenssens, E.M.; Kropinski, A.M.; Nimtz, M.; Rohde, M.; van Raaij, M.J.; Wittmann, J. Still Something to Discover: Novel Insights into Escherichia coli Phage Diversity and Taxonomy. Viruses 2019, 11, 454. [Google Scholar] [CrossRef] [PubMed]
  146. Phothaworn, P.; Dunne, M.; Supokaivanich, R.; Ong, C.; Lim, J.; Taharnklaew, R.; Vesaratchavest, M.; Khumthong, R.; Pringsulaka, O.; Ajawatanawong, P.; et al. Characterization of Flagellotropic, Chi-Like Salmonella Phages Isolated from Thai Poultry Farms. Viruses. 2019, 11, 520. [Google Scholar] [CrossRef] [PubMed]
  147. de Melo, A.C.C.; da Mata Gomes, A.; Melo, F.L.; Ardisson-Araújo, D.M.P.; de Vargas, A.P.C.; Ely, V.L.; Kitajima, E.W.; Ribeiro, B.M.; Wolff, J.L.C. Characterization of a bacteriophage with broad host range against strains of Pseudomonas aeruginosa isolated from domestic animals. BMC Microbiol. 2019, 19, 134. [Google Scholar] [CrossRef] [PubMed]
  148. Teng, T.; Li, Q.; Liu, Z.; Li, X.; Liu, Z.; Liu, H.; Liu, F.; Xie, L.; Wang, H.; Zhang, L.; et al. Characterization and genome analysis of novel Klebsiella phage Henu1 with lytic activity against clinical strains of Klebsiella pneumoniae. Arch. Virol. 2019, 164, 2389–2393. [Google Scholar] [CrossRef] [PubMed]
  149. Barros, J.; Melo, L.D.R.; Poeta, P.; Igrejas, G.; Ferraz, M.P.; Azeredo, J.; Monteiro, F.J. Lytic bacteriophages against multidrug-resistant Staphylococcus aureus, Enterococcus faecalis and Escherichia coli isolates from orthopaedic implant-associated infections. Int. J. Antimicrob. Agents 2019, 54, 329–337. [Google Scholar] [CrossRef] [PubMed]
  150. Shahin, K.; Bouzari, M.; Wang, R.; Yazdi, M. Prevalence and molecular characterization of multidrug-resistant Shigella species of food origins and their inactivation by specific lytic bacteriophages. Int. J. Food Microbiol. 2019, 305, 108252. [Google Scholar] [CrossRef] [PubMed]
  151. Piligrimova, E.G.; Kazantseva, O.A.; Nikulin, N.A.; Shadrin, A.M. Bacillus Phage vB_BtS_B83 Previously Designated as a Plasmid May Represent a New Siphoviridae Genus. Viruses 2019, 11, 624. [Google Scholar] [CrossRef] [PubMed]
  152. Akturk, E.; Oliveira, H.; Santos, S.B.; Costa, S.; Kuyumcu, S.; Melo, L.D.R.; Azeredo, J. Synergistic Action of Phage and Antibiotics: Parameters to Enhance the Killing Efficacy Against Mono and Dual-Species Biofilms. Antibiotics 2019, 8, 103. [Google Scholar] [CrossRef] [PubMed]
  153. Peng, C.; Hanawa, T.; Azam, A.H.; LeBlanc, C.; Ung, P.; Matsuda, T.; Onishi, H.; Miyanaga, K.; Tanji, Y. Silviavirus phage ϕMR003 displays a broad host range against methicillin-resistant Staphylococcus aureus of human origin. Appl. Microbiol. Biotechnol. 2019, 103, 7751–7765. [Google Scholar] [CrossRef] [PubMed]
  154. Bao, H.; Shahin, K.; Zhang, Q.; Zhang, H.; Wang, Z.; Zhou, Y.; Zhang, X.; Zhu, S.; Stefan, S.; Wang, R. Morphologic and genomic characterization of a broad host range Salmonella enterica serovar Pullorum lytic phage vB_SPuM_SP116. Microb. Pathog. 2019, 136, 103659. [Google Scholar] [CrossRef] [PubMed]
  155. Al-Zubidi, M.; Widziolek, M.; Court, E.K.; Gains, A.F.; Smith, R.E.; Ansbro, K.; Alrafaie, A.; Evans, C.; Murdoch, C.; Mesnage, S.; et al. Identification of Novel Bacteriophages with Therapeutic Potential That Target Enterococcus faecalis. Infect. Immun. 2019, 87, e00512–e00519. [Google Scholar] [CrossRef] [PubMed]
  156. Sergueev, K.V.; Filippov, A.A.; Farlow, J.; Su, W.; Kvachadze, L.; Balarjishvili, N.; Kutateladze, M.; Nikolich, M.P. Correlation of Host Range Expansion of Therapeutic Bacteriophage Sb-1 with Allele State at a Hypervariable Repeat Locus. Appl. Environ. Microbiol. 2019, 85, e01209–e01219. [Google Scholar] [CrossRef] [PubMed]
  157. Islam, M.S.; Zhou, Y.; Liang, L.; Nime, I.; Liu, K.; Yan, T.; Wang, X.; Li, J. Application of a Phage Cocktail for Control of Salmonella in Foods and Reducing Biofilms. Viruses 2019, 11, 841. [Google Scholar] [CrossRef] [PubMed]
  158. Fong, K.; Tremblay, D.M.; Delaquis, P.; Goodridge, L.; Levesque, R.C.; Moineau, S.; Suttle, C.A.; Wang, S. Diversity and Host Specificity Revealed by Biological Characterization and Whole Genome Sequencing of Bacteriophages Infecting Salmonella enterica. Viruses 2019, 11, 854. [Google Scholar] [CrossRef] [PubMed]
  159. Dunstan, R.A.; Pickard, D.; Dougan, S.; Goulding, D.; Cormie, C.; Hardy, J.; Li, F.; Grinter, R.; Harcourt, K.; Yu, L.; et al. The flagellotropic bacteriophage YSD1 targets Salmonella Typhi with a Chi-like protein tail fibre. Mol. Microbiol. 2019, 112, 1831–1846. [Google Scholar] [CrossRef] [PubMed]
  160. Kaczorowska, J.; Casey, E.; Neve, H.; Franz, C.M.A.P.; Noben, J.P.; Lugli, G.A.; Ventura, M.; Sinderen, D.V.; Mahony, J. A Quest of Great Importance-Developing a Broad Spectrum Escherichia coli Phage Collection. Viruses 2019, 11, 899. [Google Scholar] [CrossRef] [PubMed]
  161. Łubowska, N.; Grygorcewicz, B.; Kosznik-Kwaśnicka, K.; Zauszkiewicz-Pawlak, A.; Węgrzyn, A.; Dołęgowska, B.; Piechowicz, L. Characterization of the Three New Kayviruses and Their Lytic Activity Against Multidrug-Resistant Staphylococcus aureus. Microorganisms 2019, 7, 471. [Google Scholar] [CrossRef] [PubMed]
  162. Castillo, D.; Andersen, N.; Kalatzis, P.G.; Middelboe, M. Large Phenotypic and Genetic Diversity of Prophages Induced from the Fish Pathogen Vibrio anguillarum. Viruses 2019, 11, 983. [Google Scholar] [CrossRef] [PubMed]
  163. Rahimi-Midani, A.; Kim, J.O.; Kim, J.H.; Lim, J.; Ryu, J.G.; Kim, M.K.; Choi, T.J. Potential use of newly isolated bacteriophage as a biocontrol against Acidovorax citrulli. Arch. Microbiol. 2020, 202, 377–389. [Google Scholar] [CrossRef] [PubMed]
  164. Pacífico, C.; Hilbert, M.; Sofka, D.; Dinhopl, N.; Pap, I.J.; Aspöck, C.; Carriço, J.A.; Hilbert, F. Natural Occurrence of Escherichia coli-Infecting Bacteriophages in Clinical Samples. Front. Microbiol. 2019, 10, 2484. [Google Scholar] [CrossRef] [PubMed]
  165. Akter, M.; Brown, N.; Clokie, M.; Yeasmin, M.; Tareq, T.M.; Baddam, R.; Azad, M.A.K.; Ghosh, A.N.; Ahmed, N.; Talukder, K.A. Prevalence of Shigella boydii in Bangladesh: Isolation and Characterization of a Rare Phage MK-13 That Can Robustly Identify Shigellosis Caused by Shigella boydii Type 1. Front. Microbiol. 2019, 10, 2461. [Google Scholar] [CrossRef] [PubMed]
  166. Morozova, V.; Babkin, I.; Kozlova, Y.; Baykov, I.; Bokovaya, O.; Tikunov, A.; Ushakova, T.; Bardasheva, A.; Ryabchikova, E.; Zelentsova, E.; et al. Isolation and Characterization of a Novel Klebsiella pneumoniae N4-like Bacteriophage KP8. Viruses 2019, 11, 1115. [Google Scholar] [CrossRef] [PubMed]
  167. Zeman, M.; Bárdy, P.; Vrbovská, V.; Roudnický, P.; Zdráhal, Z.; Růžičková, V.; Doškař, J.; Pantůček, R. New Genus Fibralongavirus in Siphoviridae Phages of Staphylococcus pseudintermedius. Viruses 2019, 11, 1143. [Google Scholar] [CrossRef] [PubMed]
  168. Essoh, C.; Vernadet, J.P.; Vergnaud, G.; Coulibaly, A.; Kakou-N’Douba, A.; N’Guetta, A.S.; Ouassa, T.; Pourcel, C. Characterization of sixteen Achromobacter xylosoxidans phages from Abidjan, Côte d’Ivoire, isolated on a single clinical strain. Arch. Virol. 2020, 165, 725–730. [Google Scholar] [CrossRef] [PubMed]
  169. Gao, M.; Wang, C.; Qiang, X.; Liu, H.; Li, P.; Pei, G.; Zhang, X.; Mi, Z.; Huang, Y.; Tong, Y.; et al. Isolation and Characterization of a Novel Bacteriophage Infecting Carbapenem-Resistant Klebsiella pneumoniae. Curr. Microbiol. 2020, 77, 722–729. [Google Scholar] [CrossRef] [PubMed]
  170. Domingo-Calap, P.; Beamud, B.; Vienne, J.; González-Candelas, F.; Sanjuán, R. Isolation of Four Lytic Phages Infecting Klebsiella pneumoniae K22 Clinical Isolates from Spain. Int. J. Mol. Sci. 2020, 21, 425. [Google Scholar] [CrossRef] [PubMed]
  171. Mathieu, A.; Dion, M.; Deng, L.; Tremblay, D.; Moncaut, E.; Shah, S.A.; Stokholm, J.; Krogfelt, K.A.; Schjørring, S.; Bisgaard, H.; et al. Virulent coliphages in 1-year-old children fecal samples are fewer, but more infectious than temperate coliphages. Nat. Commun. 2020, 11, 378. [Google Scholar] [CrossRef] [PubMed]
  172. Imklin, N.; Nasanit, R. Characterization of Salmonella bacteriophages and their potential use in dishwashing materials. J. Appl. Microbiol. 2020, 129, 266–277. [Google Scholar] [CrossRef] [PubMed]
  173. Chmielewska-Jeznach, M.; Bardowski, J.K.; Szczepankowska, A.K. LactococcusCeduovirus Phages Isolated from Industrial Dairy Plants-from Physiological to Genomic Analyses. Viruses 2020, 12, 280. [Google Scholar] [CrossRef] [PubMed]
  174. Yang, M.; Liang, Y.; Huang, S.; Zhang, J.; Wang, J.; Chen, H.; Ye, Y.; Gao, X.; Wu, Q.; Tan, Z. Isolation and Characterization of the Novel Phages vB_VpS_BA3 and vB_VpS_CA8 for Lysing Vibrio parahaemolyticus. Front. Microbiol. 2020, 11, 259. [Google Scholar] [CrossRef] [PubMed]
  175. Li, P.; Zhang, X.; Xie, X.; Tu, Z.; Gu, J.; Zhang, A. Characterization and whole-genome sequencing of broad-host-range Salmonella-specific bacteriophages for bio-control. Microb. Pathog. 2020, 143, 104119. [Google Scholar] [CrossRef] [PubMed]
  176. Xue, Y.; Zhai, S.; Wang, Z.; Ji, Y.; Wang, G.; Wang, T.; Wang, X.; Xi, H.; Cai, R.; Zhao, R.; et al. The Yersinia Phage X1 Administered Orally Efficiently Protects a Murine Chronic Enteritis Model Against Yersinia enterocolitica Infection. Front. Microbiol. 2020, 11, 351. [Google Scholar] [CrossRef] [PubMed]
  177. Zaczek-Moczydłowska, M.A.; Young, G.K.; Trudgett, J.; Plahe, C.; Fleming, C.C.; Campbell, K.; O’ Hanlon, R. Phage cocktail containing Podoviridae and Myoviridae bacteriophages inhibits the growth of Pectobacterium spp. under in vitro and in vivo conditions. PLoS ONE 2020, 15, e0230842. [Google Scholar] [CrossRef] [PubMed]
  178. Duc, H.M.; Son, H.M.; Ngan, P.H.; Sato, J.; Masuda, Y.; Honjoh, K.I.; Miyamoto, T. Isolation and application of bacteriophages alone or in combination with nisin against planktonic and biofilm cells of Staphylococcus aureus. Appl. Microbiol. Biotechnol. 2020, 104, 5145–5158. [Google Scholar] [CrossRef] [PubMed]
  179. Mohamed, A.; Taha, O.; El-Sherif, H.M.; Connerton, P.L.; Hooton, S.P.T.; Bassim, N.D.; Connerton, I.F.; El-Shibiny, A. Bacteriophage ZCSE2 is a Potent Antimicrobial Against Salmonella enterica Serovars: Ultrastructure, Genomics and Efficacy. Viruses 2020, 12, 424. [Google Scholar] [CrossRef] [PubMed]
  180. Li, Z.; Ma, W.; Li, W.; Ding, Y.; Zhang, Y.; Yang, Q.; Wang, J.; Wang, X. A broad-spectrum phage controls multidrug-resistant Salmonella in liquid eggs. Food Res. Int. 2020, 132, 109011. [Google Scholar] [CrossRef] [PubMed]
  181. Domingo-Calap, P.; Beamud, B.; Mora-Quilis, L.; González-Candelas, F.; Sanjuán, R. Isolation and Characterization of Two Klebsiella pneumoniae Phages Encoding Divergent Depolymerases. Int. J. Mol. Sci. 2020, 21, 3160. [Google Scholar] [CrossRef] [PubMed]
  182. Shi, X.; Zhao, F.; Sun, H.; Yu, X.; Zhang, C.; Liu, W.; Pan, Q.; Ren, H. Characterization and Complete Genome Analysis of Pseudomonas aeruginosa Bacteriophage vB_PaeP_LP14 Belonging to Genus Litunavirus. Curr. Microbiol. 2020, 77, 2465–2474. [Google Scholar] [CrossRef] [PubMed]
  183. Rabiey, M.; Roy, S.R.; Holtappels, D.; Franceschetti, L.; Quilty, B.J.; Creeth, R.; Sundin, G.W.; Wagemans, J.; Lavigne, R.; Jackson, R.W. Phage biocontrol to combat Pseudomonas syringae pathogens causing disease in cherry. Microb. Biotechnol. 2020, 13, 1428–1445. [Google Scholar] [CrossRef] [PubMed]
  184. Spruit, C.M.; Wicklund, A.; Wan, X.; Skurnik, M.; Pajunen, M.I. Discovery of Three Toxic Proteins of Klebsiella Phage fHe-Kpn01. Viruses 2020, 12, 544. [Google Scholar] [CrossRef] [PubMed]
  185. Peng, S.Y.; Chen, L.K.; Wu, W.J.; Paramita, P.; Yang, P.W.; Li, Y.Z.; Lai, M.J.; Chang, K.C. Isolation and Characterization of a New Phage Infecting Elizabethkingia anophelis and Evaluation of Its Therapeutic Efficacy in vitro and in vivo. Front. Microbiol. 2020, 11, 728. [Google Scholar] [CrossRef] [PubMed]
  186. Gonzalez-Serrano, R.; Dunne, M.; Rosselli, R.; Martin-Cuadrado, A.B.; Grosboillot, V.; Zinsli, L.V.; Roda-Garcia, J.J.; Loessner, M.J.; Rodriguez-Valera, F. Alteromonas Myovirus V22 Represents a New Genus of Marine Bacteriophages Requiring a Tail Fiber Chaperone for Host Recognition. mSystems 2020, 5, e00217-20. [Google Scholar] [CrossRef] [PubMed]
  187. Furfaro, L.L.; Payne, M.S.; Chang, B.J. Host range, morphological and genomic characterisation of bacteriophages with activity against clinical Streptococcus agalactiae isolates. PLoS ONE 2020, 15, e0235002. [Google Scholar] [CrossRef] [PubMed]
  188. Buttimer, C.; Lynch, C.; Hendrix, H.; Neve, H.; Noben, J.P.; Lavigne, R.; Coffey, A. Isolation and Characterization of Pectobacterium Phage vB_PatM_CB7: New Insights into the Genus Certrevirus. Antibiotics 2020, 9, 352. [Google Scholar] [CrossRef] [PubMed]
  189. Flores, O.; Retamales, J.; Núñez, M.; León, M.; Salinas, P.; Besoain, X.; Yañez, C.; Bastías, R. Characterization of Bacteriophages against Pseudomonas syringae pv. actinidiae with Potential. Use as Natural Antimicrobials in Kiwifruit Plants. Microorganisms 2020, 8, 974. [Google Scholar] [CrossRef] [PubMed]
  190. Ding, T.; Sun, H.; Pan, Q.; Zhao, F.; Zhang, Z.; Ren, H. Isolation and characterization of Vibrio parahaemolyticus bacteriophage vB_VpaS_PG07. Virus Res. 2020, 286, 198080. [Google Scholar] [CrossRef] [PubMed]
  191. Evseev, P.; Sykilinda, N.; Gorshkova, A.; Kurochkina, L.; Ziganshin, R.; Drucker, V.; Miroshnikov, K. Pseudomonas Phage PaBG-A Jumbo Member of an Old Parasite Family. Viruses 2020, 12, 721. [Google Scholar] [CrossRef] [PubMed]
  192. Filik, K.; Szermer-Olearnik, B.; Wernecki, M.; Happonen, L.J.; Pajunen, M.I.; Nawaz, A.; Qasim, M.S.; Jun, J.W.; Mattinen, L.; Skurnik, M.; et al. The Podovirus ϕ80-18 Targets the Pathogenic American Biotype 1B Strains of Yersinia enterocolitica. Front. Microbiol. 2020, 11, 1356. [Google Scholar] [CrossRef] [PubMed]
  193. Peters, D.L.; McCutcheon, J.G.; Dennis, J.J. Characterization of Novel Broad-Host-Range Bacteriophage DLP3 Specific to Stenotrophomonas maltophilia as a Potential Therapeutic Agent. Front. Microbiol. 2020, 11, 1358. [Google Scholar] [CrossRef] [PubMed]
  194. Gambino, M.; Nørgaard Sørensen, A.; Ahern, S.; Smyrlis, G.; Gencay, Y.E.; Hendrix, H.; Neve, H.; Noben, J.P.; Lavigne, R.; Brøndsted, L. Phage S144, A New Polyvalent Phage Infecting Salmonella spp. and Cronobacter sakazakii. Int. J. Mol. Sci. 2020, 21, 5196. [Google Scholar] [CrossRef] [PubMed]
  195. Abdelkader, K.; Gutiérrez, D.; Grimon, D.; Ruas-Madiedo, P.; Lood, C.; Lavigne, R.; Safaan, A.; Khairalla, A.S.; Gaber, Y.; Dishisha, T.; et al. Lysin LysMK34 of Acinetobacter baumannii Bacteriophage PMK34 Has a Turgor Pressure-Dependent Intrinsic Antibacterial Activity and Reverts Colistin Resistance. Appl. Environ. Microbiol. 2020, 86, e01311–e01320. [Google Scholar] [CrossRef] [PubMed]
  196. McCutcheon, J.G.; Lin, A.; Dennis, J.J. Isolation and Characterization of the Novel Bacteriophage AXL3 against Stenotrophomonas maltophilia. Int. J. Mol. Sci. 2020, 21, 6338. [Google Scholar] [CrossRef] [PubMed]
  197. Peters, T.L.; Song, Y.; Bryan, D.W.; Hudson, L.K.; Denes, T.G. Mutant and Recombinant Phages Selected from In Vitro Coevolution Conditions Overcome Phage-Resistant Listeria monocytogenes. Appl. Environ. Microbiol. 2020, 86, e02138-20. [Google Scholar] [CrossRef] [PubMed]
  198. Fujiki, J.; Furusawa, T.; Munby, M.; Kawaguchi, C.; Matsuda, Y.; Shiokura, Y.; Nakamura, K.; Nakamura, T.; Sasaki, M.; Usui, M.; et al. Susceptibility of Pseudomonas aeruginosa veterinary isolates to Pbunavirus PB1-like phages. Microbiol. Immunol. 2020, 64, 778–782. [Google Scholar] [CrossRef] [PubMed]
  199. Phothaworn, P.; Supokaivanich, R.; Lim, J.; Klumpp, J.; Imam, M.; Kutter, E.; Galyov, E.E.; Dunne, M.; Korbsrisate, S. Development of a broad-spectrum Salmonella phage cocktail containing Viunalike and Jerseylike viruses isolated from Thailand. Food Microbiol. 2020, 92, 103586. [Google Scholar] [CrossRef] [PubMed]
  200. Jiang, L.; Tan, J.; Hao, Y.; Wang, Q.; Yan, X.; Wang, D.; Tuo, L.; Wei, Z.; Huang, G. Isolation and Characterization of a Novel Myophage Abp9 Against Pandrug Resistant Acinetobacter baumannii. Front. Microbiol. 2020, 11, 506068. [Google Scholar] [CrossRef] [PubMed]
  201. Zhang, R.; Zhao, F.; Wang, J.; Pei, G.; Fan, H.; Zhangxiang, L.; Mi, Z.; Shi, T.; Liu, H.; Tong, Y. Biological characteristics and genome analysis of a novel phage vB_KpnP_IME279 infecting Klebsiella pneumoniae. Folia Microbiol. 2020, 65, 925–936. [Google Scholar] [CrossRef] [PubMed]
  202. Kornienko, M.; Kuptsov, N.; Gorodnichev, R.; Bespiatykh, D.; Guliaev, A.; Letarova, M.; Kulikov, E.; Veselovsky, V.; Malakhova, M.; Letarov, A.; et al. Contribution of Podoviridae and Myoviridae bacteriophages to the effectiveness of anti-staphylococcal therapeutic cocktails. Sci. Rep. 2020, 10, 18612. [Google Scholar] [CrossRef] [PubMed]
  203. Li, C.; Yuan, X.; Li, N.; Wang, J.; Yu, S.; Zeng, H.; Zhang, J.; Wu, Q.; Ding, Y. Isolation and Characterization of Bacillus cereus Phage vB_BceP-DLc1 Reveals the Largest Member of the Φ29-Like Phages. Microorganisms 2020, 8, 1750. [Google Scholar] [CrossRef] [PubMed]
  204. Skorynina, A.V.; Piligrimova, E.G.; Kazantseva, O.A.; Kulyabin, V.A.; Baicher, S.D.; Ryabova, N.A.; Shadrin, A.M. Bacillus-infecting bacteriophage Izhevsk harbors thermostable endolysin with broad range specificity. PLoS ONE 2020, 15, e0242657. [Google Scholar] [CrossRef] [PubMed]
  205. Kosznik-Kwaśnicka, K.; Grabowski, Ł.; Grabski, M.; Kaszubski, M.; Górniak, M.; Jurczak-Kurek, A.; Węgrzyn, G.; Węgrzyn, A. Bacteriophages vB_Sen-TO17 and vB_Sen-E22, Newly Isolated Viruses from Chicken Feces, Specific for Several Salmonella enterica Strains. Int. J. Mol. Sci. 2020, 21, 8821. [Google Scholar] [CrossRef] [PubMed]
  206. Popova, A.V.; Shneider, M.M.; Arbatsky, N.P.; Kasimova, A.A.; Senchenkova, S.N.; Shashkov, A.S.; Dmitrenok, A.S.; Chizhov, A.O.; Mikhailova, Y.V.; Shagin, D.A.; et al. Specific Interaction of Novel Friunavirus Phages Encoding Tailspike Depolymerases with Corresponding Acinetobacter baumannii Capsular Types. J. Virol. 2021, 95, e01714-20. [Google Scholar] [CrossRef] [PubMed]
  207. Korf, I.H.E.; Kittler, S.; Bierbrodt, A.; Mengden, R.; Rohde, C.; Rohde, M.; Kroj, A.; Lehnherr, T.; Fruth, A.; Flieger, A.; et al. In Vitro Evaluation of a Phage Cocktail Controlling Infections with Escherichia coli. Viruses 2020, 12, 1470. [Google Scholar] [CrossRef] [PubMed]
  208. Kawasaki, T.; Endo, H.; Ogata, H.; Chatchawankanphanich, O.; Yamada, T. The complete genomic sequence of the novel myovirus RP13 infecting Ralstonia solanacearum, the causative agent of bacterial wilt. Arch. Virol. 2021, 166, 651–654. [Google Scholar] [CrossRef] [PubMed]
  209. Cao, Y.; Zhang, Y.; Lan, W.; Sun, X. Characterization of vB_VpaP_MGD2, a newly isolated bacteriophage with biocontrol potential against multidrug-resistant Vibrio parahaemolyticus. Arch. Virol. 2021, 166, 413–426. [Google Scholar] [CrossRef] [PubMed]
  210. Zurabov, F.; Zhilenkov, E. Characterization of four virulent Klebsiella pneumoniae bacteriophages, and evaluation of their potential use in complex phage preparation. Virol. J. 2021, 18, 9. [Google Scholar] [CrossRef] [PubMed]
  211. Pertics, B.Z.; Szénásy, D.; Dunai, D.; Born, Y.; Fieseler, L.; Kovács, T.; Schneider, G. Isolation of a Novel Lytic Bacteriophage against a Nosocomial Methicillin-Resistant Staphylococcus aureus Belonging to ST45. Biomed. Res Int. 2020, 2020, 5463801. [Google Scholar] [CrossRef] [PubMed]
  212. Kwon, J.; Kim, S.G.; Kim, H.J.; Giri, S.S.; Kim, S.W.; Lee, S.B.; Park, S.C. Bacteriophage as an alternative to prevent reptile-associated Salmonella transmission. Zoonoses Public Health 2021, 68, 131–143. [Google Scholar] [CrossRef] [PubMed]
  213. Zhang, W.; Zhang, R.; Hu, Y.; Liu, Y.; Wang, L.; An, X.; Song, L.; Shi, T.; Fan, H.; Tong, Y.; et al. Biological characteristics and genomic analysis of a Stenotrophomonas maltophilia phage vB_SmaS_BUCT548. Virus Genes 2021, 57, 205–216. [Google Scholar] [CrossRef] [PubMed]
  214. Chen, F.; Cheng, X.; Li, J.; Yuan, X.; Huang, X.; Lian, M.; Li, W.; Huang, T.; Xie, Y.; Liu, J.; et al. Novel Lytic Phages Protect Cells and Mice against Pseudomonas aeruginosa Infection. J. Virol. 2021, 95, e01832-20. [Google Scholar] [CrossRef] [PubMed]
  215. Del Rio, B.; Sánchez-Llana, E.; Martínez, N.; Fernández, M.; Ladero, V.; Alvarez, M.A. Isolation and Characterization of Enterococcus faecalis-Infecting Bacteriophages From Different Cheese Types. Front. Microbiol. 2021, 11, 592172. [Google Scholar] [CrossRef] [PubMed]
  216. López-Leal, G.; Reyes-Muñoz, A.; Santamaria, R.I.; Cevallos, M.A.; Pérez-Monter, C.; Castillo-Ramírez, S. A novel vieuvirus from multidrug-resistant Acinetobacter baumannii. Arch. Virol. 2021, 166, 1401–1408. [Google Scholar] [CrossRef] [PubMed]
  217. Shimamori, Y.; Pramono, A.K.; Kitao, T.; Suzuki, T.; Aizawa, S.I.; Kubori, T.; Nagai, H.; Takeda, S.; Ando, H. Isolation and Characterization of a Novel Phage SaGU1 that Infects Staphylococcus aureus Clinical Isolates from Patients with Atopic Dermatitis. Curr. Microbiol. 2021, 78, 1267–1276. [Google Scholar] [CrossRef] [PubMed]
  218. Salem, M.; Pajunen, M.I.; Jun, J.W.; Skurnik, M. T4-like Bacteriophages Isolated from Pig Stools Infect Yersinia pseudotuberculosis and Yersinia pestis Using LPS and OmpF as Receptors. Viruses 2021, 13, 296. [Google Scholar] [CrossRef] [PubMed]
  219. Townsend, E.M.; Kelly, L.; Gannon, L.; Muscatt, G.; Dunstan, R.; Michniewski, S.; Sapkota, H.; Kiljunen, S.J.; Kolsi, A.; Skurnik, M.; et al. Isolation and Characterization of Klebsiella Phages for Phage Therapy. Phage 2021, 2, 26–42. [Google Scholar] [CrossRef] [PubMed]
  220. Wang, J.B.; Yu, M.S.; Tseng, T.T.; Lin, L.C. Molecular Characterization of Ahp2, a Lytic Bacteriophage of Aeromonas hydrophila. Viruses 2021, 13, 477. [Google Scholar] [CrossRef] [PubMed]
  221. Pertics, B.Z.; Cox, A.; Nyúl, A.; Szamek, N.; Kovács, T.; Schneider, G. Isolation and Characterization of a Novel Lytic Bacteriophage against the K2 Capsule-Expressing Hypervirulent Klebsiella pneumoniae Strain 52145, and Identification of Its Functional Depolymerase. Microorganisms 2021, 9, 650. [Google Scholar] [CrossRef] [PubMed]
  222. Lee, S.Y.; Thapa Magar, R.; Kim, H.J.; Choi, K.; Lee, S.W. Complete Genome Sequence of a Novel Bacteriophage RpY1 Infecting Ralstonia solanacearum Strains. Curr. Microbiol. 2021, 78, 2044–2050. [Google Scholar] [CrossRef] [PubMed]
  223. Kim, S.G.; Giri, S.S.; Yun, S.; Kim, S.W.; Han, S.J.; Kwon, J.; Oh, W.T.; Lee, S.B.; Park, Y.H.; Park, S.C. Two Novel Bacteriophages Control Multidrug- and Methicillin-Resistant Staphylococcus pseudintermedius Biofilm. Front. Med. 2021, 8, 524059. [Google Scholar] [CrossRef] [PubMed]
  224. Kasurinen, J.; Spruit, C.M.; Wicklund, A.; Pajunen, M.I.; Skurnik, M. Screening of Bacteriophage Encoded Toxic Proteins with a Next Generation Sequencing-Based Assay. Viruses 2021, 13, 750. [Google Scholar] [CrossRef] [PubMed]
  225. Feng, T.; Leptihn, S.; Dong, K.; Loh, B.; Zhang, Y.; Stefan, M.I.; Li, M.; Guo, X.; Cui, Z. JD419, a Staphylococcus aureus Phage With a Unique Morphology and Broad Host Range. Front. Microbiol. 2021, 12, 602902. [Google Scholar] [CrossRef] [PubMed]
  226. Fišarová, L.; Botka, T.; Du, X.; Mašlaňová, I.; Bárdy, P.; Pantůček, R.; Benešík, M.; Roudnický, P.; Winstel, V.; Larsen, J.; et al. Staphylococcus epidermidis Phages Transduce Antimicrobial Resistance Plasmids and Mobilize Chromosomal Islands. mSphere 2021, 6, e00223-21. [Google Scholar] [CrossRef] [PubMed]
  227. Han, P.; Hu, Y.; An, X.; Song, L.; Fan, H.; Tong, Y. Biochemical and genomic characterization of a novel bacteriophage BUCT555 lysing Stenotrophomonas maltophilia. Virus Res. 2021, 301, 198465. [Google Scholar] [CrossRef] [PubMed]
  228. Nga, N.T.T.; Tran, T.N.; Holtappels, D.; Kim Ngan, N.L.; Hao, N.P.; Vallino, M.; Tien, D.T.K.; Khanh-Pham, N.H.; Lavigne, R.; Kamei, K.; et al. Phage Biocontrol of Bacterial Leaf Blight Disease on Welsh Onion Caused by Xanthomonas axonopodis pv. allii. Antibiotics 2021, 10, 517. [Google Scholar] [CrossRef] [PubMed]
  229. Kauppinen, A.; Siponen, S.; Pitkänen, T.; Holmfeldt, K.; Pursiainen, A.; Torvinen, E.; Miettinen, I.T. Phage Biocontrol of Pseudomonas aeruginosa in Water. Viruses 2021, 13, 928. [Google Scholar] [CrossRef] [PubMed]
  230. Shchurova, A.S.; Shneider, M.M.; Arbatsky, N.P.; Shashkov, A.S.; Chizhov, A.O.; Skryabin, Y.P.; Mikhaylova, Y.V.; Sokolova, O.S.; Shelenkov, A.A.; Miroshnikov, K.A.; et al. Novel Acinetobacter baumannii Myovirus TaPaz Encoding Two Tailspike Depolymerases: Characterization and Host-Recognition Strategy. Viruses 2021, 13, 978. [Google Scholar] [CrossRef] [PubMed]
  231. Park, H.; Kim, J.; Kim, M.; Park, Y.; Ryu, S. Development of new strategy combining heat treatment and phage cocktail for post-contamination prevention. Food Res. Int. 2021, 145, 110415. [Google Scholar] [CrossRef] [PubMed]
  232. Sui, B.; Qi, X.; Wang, X.; Ren, H.; Liu, W.; Zhang, C. Characterization of a Novel Bacteriophage swi2 Harboring Two Lysins Can Naturally Lyse Escherichia coli. Front. Microbiol. 2021, 12, 670799. [Google Scholar] [CrossRef] [PubMed]
  233. Li, M.; Li, P.; Chen, L.; Guo, G.; Xiao, Y.; Chen, L.; Du, H.; Zhang, W. Identification of a phage-derived depolymerase specific for KL64 capsule of Klebsiella pneumoniae and its anti-biofilm effect. Virus Genes 2021, 57, 434–442. [Google Scholar] [CrossRef] [PubMed]
  234. Lin, Y.; Zhou, B.; Zhu, W. Pathogenic Escherichia coli-Specific Bacteriophages and Polyvalent Bacteriophages in Piglet Guts with Increasing Coliphage Numbers after Weaning. Appl. Environ. Microbiol. 2021, 87, e0096621. [Google Scholar] [CrossRef] [PubMed]
  235. Kim, S.G.; Roh, E.; Park, J.; Giri, S.S.; Kwon, J.; Kim, S.W.; Kang, J.W.; Lee, S.B.; Jung, W.J.; Lee, Y.M.; et al. The Bacteriophage pEp_SNUABM_08 Is a Novel Singleton Siphovirus with High Host Specificity for Erwinia pyrifoliae. Viruses 2021, 13, 1231. [Google Scholar] [CrossRef] [PubMed]
  236. Lam, H.Y.P.; Lai, M.J.; Chen, T.Y.; Wu, W.J.; Peng, S.Y.; Chang, K.C. Therapeutic Effect of a Newly Isolated Lytic Bacteriophage against Multi-Drug-Resistant Cutibacterium acnes Infection in Mice. Int. J. Mol. Sci. 2021, 22, 7031. [Google Scholar] [CrossRef] [PubMed]
  237. Nazir, A.; Dong, Z.; Liu, J.; Tahir, R.A.; Ashraf, N.; Qing, H.; Peng, D.; Tong, Y. Isolation, Characterization, and Genome Sequence Analysis of a Novel Lytic Phage, Xoo-sp15 Infecting Xanthomonas oryzae pv. oryzae. Curr. Microbiol. 2021, 78, 3192–3200. [Google Scholar] [CrossRef] [PubMed]
  238. Blundell-Hunter, G.; Enright, M.C.; Negus, D.; Dorman, M.J.; Beecham, G.E.; Pickard, D.J.; Wintachai, P.; Voravuthikunchai, S.P.; Thomson, N.R.; Taylor, P.W. Characterisation of Bacteriophage-Encoded Depolymerases Selective for Key Klebsiella pneumoniae Capsular Exopolysaccharides. Front. Cell Infect. Microbiol. 2021, 11, 686090. [Google Scholar] [CrossRef] [PubMed]
  239. Guo, M.; Gao, Y.; Xue, Y.; Liu, Y.; Zeng, X.; Cheng, Y.; Ma, J.; Wang, H.; Sun, J.; Wang, Z.; et al. Bacteriophage Cocktails Protect Dairy Cows Against Mastitis Caused By Drug Resistant Escherichia coli Infection. Front. Cell Infect. Microbiol. 2021, 11, 690377. [Google Scholar] [CrossRef] [PubMed]
  240. Shang, Y.; Sun, Q.; Chen, H.; Wu, Q.; Chen, M.; Yang, S.; Du, M.; Zha, F.; Ye, Q.; Zhang, J. Isolation and Characterization of a Novel Salmonella Phage vB_SalP_TR2. Front. Microbiol. 2021, 12, 664810. [Google Scholar] [CrossRef] [PubMed]
  241. Hu, Y.; Tong, S.; Li, P.; An, X.; Song, L.; Fan, H.; Tong, Y. Characterization and genome sequence of the genetically unique Escherichia bacteriophage vB_EcoM_IME392. Arch. Virol. 2021, 166, 2505–2520. [Google Scholar] [CrossRef] [PubMed]
  242. Whittard, E.; Redfern, J.; Xia, G.; Millard, A.; Ragupathy, R.; Malic, S.; Enright, M.C. Phenotypic and Genotypic Characterization of Novel Polyvalent Bacteriophages With Potent In Vitro Activity Against an International Collection of Genetically Diverse Staphylococcus aureus. Front. Cell Infect. Microbiol. 2021, 11, 698909. [Google Scholar] [CrossRef] [PubMed]
  243. Zhang, Y.; Liao, Y.T.; Salvador, A.; Lavenburg, V.M.; Wu, V.C.H. Characterization of Two New Shiga Toxin-Producing Escherichia coli O103-Infecting Phages Isolated from an Organic Farm. Microorganisms 2021, 9, 1527. [Google Scholar] [CrossRef] [PubMed]
  244. Koonjan, S.; Cooper, C.J.; Nilsson, A.S. Complete Genome Sequence of vB_EcoP_SU7, a Podoviridae Coliphage with the Rare C3 Morphotype. Microorganisms 2021, 9, 1576. [Google Scholar] [CrossRef] [PubMed]
  245. Park, D.W.; Park, J.H. Characterization and Food Application of the Novel Lytic Phage BECP10: Specifically Recognizes the O-polysaccharide of Escherichia coli O157:H7. Viruses 2021, 13, 1469. [Google Scholar] [CrossRef] [PubMed]
  246. Xu, J.; Zhang, R.; Yu, X.; Zhang, X.; Liu, G.; Liu, X. Molecular Characteristics of Novel Phage vB_ShiP-A7 Infecting Multidrug-Resistant Shigella flexneri and Escherichia coli, and Its Bactericidal Effect in vitro and in vivo. Front. Microbiol. 2021, 12, 698962. [Google Scholar] [CrossRef] [PubMed]
  247. Dien, L.T.; Ky, L.B.; Huy, B.T.; Mursalim, M.F.; Kayansamruaj, P.; Senapin, S.; Rodkhum, C.; Dong, H.T. Characterization and protective effects of lytic bacteriophage pAh6.2TG against a pathogenic multidrug-resistant Aeromonas hydrophila in Nile tilapia (Oreochromis niloticus). Transbound. Emerg. Dis. 2022, 69, e435–e450. [Google Scholar] [CrossRef] [PubMed]
  248. Bozdeveci, A.; Akpınar, R.; Karaoğlu, Ş.A. Isolation, characterization, and comparative genomic analysis of vB_PlaP_SV21, new bacteriophage of Paenibacillus larvae. Virus Res. 2021, 305, 198571. [Google Scholar] [CrossRef] [PubMed]
  249. Timoshina, O.Y.; Shneider, M.M.; Evseev, P.V.; Shchurova, A.S.; Shelenkov, A.A.; Mikhaylova, Y.V.; Sokolova, O.S.; Kasimova, A.A.; Arbatsky, N.P.; Dmitrenok, A.S.; et al. Novel Acinetobacter baumannii Bacteriophage Aristophanes Encoding Structural Polysaccharide Deacetylase. Viruses 2021, 13, 1688. [Google Scholar] [CrossRef] [PubMed]
  250. Ahmad, A.A.; Addy, H.S.; Huang, Q. Biological and Molecular Characterization of a Jumbo Bacteriophage Infecting Plant Pathogenic Ralstonia solanacearum Species Complex Strains. Front. Microbiol. 2021, 12, 741600. [Google Scholar] [CrossRef] [PubMed]
  251. Rigvava, S.; Kusradze, I.; Tchgkonia, I.; Karumidze, N.; Dvalidze, T.; Goderdzishvili, M. Novel lytic bacteriophage vB_GEC_EfS_9 against Enterococcus faecium. Virus Res. 2022, 307, 198599. [Google Scholar] [CrossRef] [PubMed]
  252. Martino, G.; Holtappels, D.; Vallino, M.; Chiapello, M.; Turina, M.; Lavigne, R.; Wagemans, J.; Ciuffo, M. Molecular Characterization and Taxonomic Assignment of Three Phage Isolates from a Collection Infecting Pseudomonas syringae pv. actinidiae and, P. syringae pv. phaseolicola from Northern Italy. Viruses 2021, 13, 2083. [Google Scholar] [CrossRef] [PubMed]
  253. Hammerl, J.A.; Barac, A.; Erben, P.; Fuhrmann, J.; Gadicherla, A.; Kumsteller, F.; Lauckner, A.; Müller, F.; Hertwig, S. Properties of Two Broad Host Range Phages of Yersinia enterocolitica Isolated from Wild Animals. Int. J. Mol. Sci. 2021, 22, 11381. [Google Scholar] [CrossRef] [PubMed]
  254. Choi, H.J.; Kim, M. Improved bactericidal efficacy and thermostability of Staphylococcus aureus-specific bacteriophage SA3821 by repeated sodium pyrophosphate challenges. Sci. Rep. 2021, 11, 22951. [Google Scholar] [CrossRef] [PubMed]
  255. Loose, M.; Sáez Moreno, D.; Mutti, M.; Hitzenhammer, E.; Visram, Z.; Dippel, D.; Schertler, S.; Tišáková, L.P.; Wittmann, J.; Corsini, L.; et al. Natural Bred ε2-Phages Have an Improved Host Range and Virulence against Uropathogenic Escherichia coli over Their Ancestor Phages. Antibiotics 2021, 10, 1337. [Google Scholar] [CrossRef] [PubMed]
  256. Happonen, L.J.; Pajunen, M.I.; Jun, J.W.; Skurnik, M. BtuB-Dependent Infection of the T5-like Yersinia Phage ϕR2-01. Viruses 2021, 13, 2171. [Google Scholar] [CrossRef] [PubMed]
  257. Peng, W.; Zeng, F.; Wu, Z.; Jin, Z.; Li, W.; Zhu, M.; Wang, Q.; Tong, Y.; Chen, L.; Bai, Q. Isolation and genomic analysis of temperate phage 5W targeting multidrug-resistant Acinetobacter baumannii. Arch. Microbiol. 2021, 204, 58. [Google Scholar] [CrossRef] [PubMed]
  258. Chaudhary, N.; Mohan, B.; Mavuduru, R.S.; Kumar, Y.; Taneja, N. Characterization, genome analysis and in vitro activity of a novel phage vB_EcoA_RDN8.1 active against multi-drug resistant and extensively drug-resistant biofilm-forming uropathogenic Escherichia coli isolates, India. J. Appl. Microbiol. 2022, 132, 3387–3404. [Google Scholar] [CrossRef] [PubMed]
  259. Harada, L.K.; Silva, E.C.; Rossi, F.P.; Cieza, B.; Oliveira, T.J.; Pereira, C.; Tomazetto, G.; Silva, B.B.; Squina, F.M.; Vila, M.M.; et al. Characterization and in vitro testing of newly isolated lytic bacteriophages for the biocontrol of Pseudomonas aeruginosa. Future Microbiol. 2022, 17, 111–141. [Google Scholar] [CrossRef] [PubMed]
  260. Hammerl, J.A.; Barac, A.; Bienert, A.; Demir, A.; Drüke, N.; Jäckel, C.; Matthies, N.; Jun, J.W.; Skurnik, M.; Ulrich, J.; et al. Birds Kept in the German Zoo “Tierpark Berlin” Are a Common Source for Polyvalent Yersinia pseudotuberculosis Phages. Front. Microbiol. 2022, 12, 634289. [Google Scholar] [CrossRef] [PubMed]
  261. Runtuvuori-Salmela, A.; Kunttu, H.M.T.; Laanto, E.; Almeida, G.M.F.; Mäkelä, K.; Middelboe, M.; Sundberg, L.R. Prevalence of genetically similar Flavobacterium columnare phages across aquaculture environments reveals a strong potential for pathogen control. Environ. Microbiol. 2022, 24, 2404–2420. [Google Scholar] [CrossRef] [PubMed]
  262. Pacios, O.; Fernández-García, L.; Bleriot, I.; Blasco, L.; Ambroa, A.; López, M.; Ortiz-Cartagena, C.; Cuenca, F.F.; Oteo-Iglesias, J.; Pascual, Á.; et al. Phenotypic and Genomic Comparison of Klebsiella pneumoniae Lytic Phages: vB_KpnM-VAC66 and vB_KpnM-VAC13. Viruses 2021, 14, 6. [Google Scholar] [CrossRef] [PubMed]
  263. Kazantseva, O.A.; Buzikov, R.M.; Pilipchuk, T.A.; Valentovich, L.N.; Kazantsev, A.N.; Kalamiyets, E.I.; Shadrin, A.M. The Bacteriophage Pf-10-A Component of the Biopesticide “Multiphage” Used to Control Agricultural Crop Diseases Caused by Pseudomonas syringae. Viruses 2021, 14, 42. [Google Scholar] [CrossRef] [PubMed]
  264. Vera-Mansilla, J.; Sánchez, P.; Silva-Valenzuela, C.A.; Molina-Quiroz, R.C. Isolation and Characterization of Novel Lytic Phages Infecting Multidrug-Resistant Escherichia coli. Microbiol. Spectr. 2022, 10, e0167821. [Google Scholar] [CrossRef] [PubMed]
  265. Yang, M.; Chen, H.; Huang, Q.; Xie, Z.; Liu, Z.; Zhang, J.; Ding, Y.; Chen, M.; Xue, L.; Wu, Q.; et al. Characterization of the Novel Phage vB_VpaP_FE11 and Its Potential Role in Controlling Vibrio parahaemolyticus Biofilms. Viruses 2022, 14, 264. [Google Scholar] [CrossRef] [PubMed]
  266. Zhou, Y.; Li, L.; Han, K.; Wang, L.; Cao, Y.; Ma, D.; Wang, X. A Polyvalent Broad-Spectrum Escherichia Phage Tequatrovirus EP01 Capable of Controlling Salmonella and Escherichia coli Contamination in Foods. Viruses 2022, 14, 286. [Google Scholar] [CrossRef] [PubMed]
  267. González-Gómez, J.P.; López-Cuevas, O.; Castro-Del Campo, N.; González-López, I.; Martínez-Rodríguez, C.I.; Gomez-Gil, B.; Chaidez, C. Genomic and biological characterization of the novel phages vB_VpaP_AL-1 and vB_VpaS_AL-2 infecting Vibrio parahaemolyticus associated with acute hepatopancreatic necrosis disease (AHPND). Virus Res. 2022, 312, 198719. [Google Scholar] [CrossRef] [PubMed]
  268. Fang, Q.; Zong, Z. Lytic Phages against ST11 K47 Carbapenem-Resistant Klebsiella pneumoniae and the Corresponding Phage Resistance Mechanisms. mSphere 2022, 7, e0008022. [Google Scholar] [CrossRef] [PubMed]
  269. Li, N.; Yuan, X.; Li, C.; Chen, N.; Wang, J.; Chen, B.; Yu, S.; Yu, P.; Zhang, J.; Zeng, H.; et al. A novel Bacillus cereus bacteriophage DLn1 and its endolysin as biocontrol agents against Bacillus cereus in milk. Int. J. Food Microbiol. 2022, 369, 109615. [Google Scholar] [CrossRef] [PubMed]
  270. Han, K.; He, X.; Fan, H.; Song, L.; An, X.; Li, M.; Tong, Y. Characterization and genome analysis of a novel Stenotrophomonas maltophilia bacteriophage BUCT598 with extreme pH resistance. Virus Res. 2022, 314, 198751. [Google Scholar] [CrossRef] [PubMed]
  271. Tarakanov, R.I.; Lukianova, A.A.; Evseev, P.V.; Toshchakov, S.V.; Kulikov, E.E.; Ignatov, A.N.; Miroshnikov, K.A.; Dzhalilov, F.S. Bacteriophage Control of Pseudomonas savastanoi pv. glycinea in Soybean. Plants 2022, 11, 938. [Google Scholar] [CrossRef] [PubMed]
  272. Mencke, J.L.; He, Y.; Filippov, A.A.; Nikolich, M.P.; Belew, A.T.; Fouts, D.E.; McGann, P.T.; Swierczewski, B.E.; Getnet, D.; Ellison, D.W.; et al. Identification and Characterization of vB_PreP_EPr2, a Lytic Bacteriophage of Pan-Drug Resistant Providencia rettgeri. Viruses 2022, 14, 708. [Google Scholar] [CrossRef] [PubMed]
  273. Ge, H.; Lin, C.; Xu, Y.; Hu, M.; Xu, Z.; Geng, S.; Jiao, X.; Chen, X. A phage for the controlling of Salmonella in poultry and reducing biofilms. Vet. Microbiol. 2022, 269, 109432. [Google Scholar] [CrossRef] [PubMed]
  274. Carmody, C.M.; Farquharson, E.L.; Nugen, S.R. Enterobacteria Phage SV76 Host Range and Genomic Characterization. Phage 2022, 3, 59–63. [Google Scholar] [CrossRef] [PubMed]
  275. Li, M.; Wang, H.; Chen, L.; Guo, G.; Li, P.; Ma, J.; Chen, R.; Du, H.; Liu, Y.; Zhang, W. Identification of a phage-derived depolymerase specific for KL47 capsule of Klebsiella pneumoniae and its therapeutic potential in mice. Virol. Sin. 2022, 37, 538–546. [Google Scholar] [CrossRef] [PubMed]
  276. Davis, C.M.; Ruest, M.K.; Cole, J.H.; Dennis, J.J. The Isolation and Characterization of a Broad Host Range Bcep22-like Podovirus JC1. Viruses 2022, 14, 938. [Google Scholar] [CrossRef] [PubMed]
  277. Xia, H.; Yang, H.; Yan, N.; Hou, W.; Wang, H.; Wang, X.; Wang, H.; Zhou, M. Bacteriostatic effects of phage F23s1 and its endolysin on Vibrio parahaemolyticus. J. Basic Microbiol. 2022, 62, 963–974. [Google Scholar] [CrossRef] [PubMed]
  278. Park, J.; Kim, B.; Song, S.; Lee, Y.W.; Roh, E. Isolation of Nine Bacteriophages Shown Effective against Erwinia amylovora in Korea. Plant Pathol. J. 2022, 38, 248–253. [Google Scholar] [CrossRef] [PubMed]
  279. Zhu, L.; Hou, Y.; Huang, X.; Wang, S.; Xie, R.; Yang, J.; Lv, Q.; Hua, L.; Liang, W.; Peng, Z.; et al. Isolation of Three Coliphages and the Evaluation of Their Phage Cocktail for Biocontrol of Shiga Toxin-Producing Escherichia coli O157 in Milk. Curr. Microbiol. 2022, 79, 216. [Google Scholar] [CrossRef] [PubMed]
  280. Li, L.; Wu, Y.; Ma, D.; Zhou, Y.; Wang, L.; Han, K.; Cao, Y.; Wang, X. Isolation and characterization of a novel Escherichia coli phage Kayfunavirus ZH4. Virus Genes 2022, 58, 448–457. [Google Scholar] [CrossRef] [PubMed]
  281. Yin, Y.; Wang, X.; Mou, Z.; Ren, H.; Zhang, C.; Zou, L.; Liu, H.; Liu, W.; Liu, Z. Characterization and genome analysis of Pseudomonas aeruginosa phage vB_PaeP_Lx18 and the antibacterial activity of its lysozyme. Arch. Virol. 2022, 167, 1805–1817. [Google Scholar] [CrossRef] [PubMed]
  282. McCutcheon, J.G.; Lin, A.; Dennis, J.J. Characterization of Stenotrophomonas maltophilia phage AXL1 as a member of the genus Pamexvirus encoding resistance to trimethoprim-sulfamethoxazole. Sci. Rep. 2022, 12, 10299. [Google Scholar] [CrossRef] [PubMed]
  283. Hammerl, J.A.; El-Mustapha, S.; Bölcke, M.; Trampert, H.; Barac, A.; Jäckel, C.; Gadicherla, A.K.; Hertwig, S. Host Range, Morphology and Sequence Analysis of Ten Temperate Phages Isolated from Pathogenic Yersinia enterocolitica Strains. Int. J. Mol. Sci. 2022, 23, 6779. [Google Scholar] [CrossRef] [PubMed]
  284. Asghar, S.; Ahmed, A.; Khan, S.; Lail, A.; Shakeel, M. Genomic characterization of lytic bacteriophages A¥L and A¥M infecting ESBL K. pneumoniae and its therapeutic potential on biofilm dispersal and in-vivo bacterial clearance. Microbiol. Res. 2022, 262, 127104. [Google Scholar] [CrossRef] [PubMed]
  285. Yang, Y.; Ma, R.; Yu, C.; Ye, J.; Chen, X.; Wang, L.; Jiao, N.; Zhang, R. A Novel Alteromonas Phage Lineage with a Broad Host Range and Small Burst Size. Microbiol. Spectr. 2022, 10, e0149922. [Google Scholar] [CrossRef] [PubMed]
  286. Wang, Y.; Li, X.; Dance, D.A.B.; Xia, H.; Chen, C.; Luo, N.; Li, A.; Li, Y.; Zhu, Q.; Sun, Q.; et al. A novel lytic phage potentially effective for phage therapy against Burkholderia pseudomallei in the tropics. Infect. Dis. Poverty 2022, 11, 87. [Google Scholar] [CrossRef] [PubMed]
  287. El-Sayed, D.; Elsayed, T.; Amin, N.; Al-Shahaby, A.; Goda, H. Evaluating the Phenotypic and Genomic Characterization of Some Egyptian Phages Infecting Shiga Toxin-Producing Escherichia coli O157:H7 for the Prospective Application in Food Bio-Preservation. Biology 2022, 11, 1180. [Google Scholar] [CrossRef] [PubMed]
  288. Kim, S.; Song, H.; Jin, J.S.; Lee, W.J.; Kim, J. Genomic and Phenotypic Characterization of Cutibacterium acnes Bacteriophages Isolated from Acne Patients. Antibiotics 2022, 11, 1041. [Google Scholar] [CrossRef] [PubMed]
  289. Noor Mohammadi, T.; Shen, C.; Li, Y.; Zayda, M.G.; Sato, J.; Masuda, Y.; Honjoh, K.I.; Miyamoto, T. Characterization and optimization of bacteriophage cocktails to control Clostridium perfringens in vitro and in curry roux. Int. J. Food Microbiol. 2022, 380, 109886. [Google Scholar] [CrossRef] [PubMed]
  290. Cui, J.Q.; Liu, W.H.; Zang, Y.X.; Zhang, C.; Zou, L.; Sun, H.Z.; Pan, Q.; Ren, H.Y. Characterization and complete genome analysis of a bacteriophage vB_EcoM_DE7 infecting donkey-derived Escherichia coli. Virus Res. 2022, 321, 198913. [Google Scholar] [CrossRef] [PubMed]
  291. Rai, P.; Shetty, S.S.; Prabell, S.; Kuntar, A.; Pinto, D.; Kumar, B.K.; Divyashree, M.; Raj, J.R.M.; Premanath, R.; Deekshit, V.K.; et al. Characterisation of broad-spectrum phiKZ like jumbo phage and its utilisation in controlling multidrug-resistant Pseudomonas aeruginosa isolates. Microb. Pathog. 2022, 172, 105767. [Google Scholar] [CrossRef] [PubMed]
  292. Jørgensen, J.B.; Djurhuus, A.M.; Carstens, A.B.; Kot, W.; Neve, H.; Morris, C.E.; Hansen, L.H. Presentation of Three Novel Tailed Phages Targeting Multiple Strains of Pseudomonas syringae. Phage 2020, 1, 245–250. [Google Scholar] [CrossRef] [PubMed]
  293. McDougall, D.L.; Soutar, C.D.; Perry, B.J.; Brown, C.; Alexander, D.; Yost, C.K.; Stavrinides, J. Isolation and Characterization of vB_PagP-SK1, a T7-Like Phage Infecting Pantoea agglomerans. Phage 2020, 1, 45–56. [Google Scholar] [CrossRef] [PubMed]
  294. Smith-Zaitlik, T.; Shibu, P.; McCartney, A.L.; Foster, G.; Hoyles, L.; Negus, D. Extended genomic analyses of the broad-host-range phages vB_KmiM-2Di and vB_KmiM-4Dii reveal slopekviruses have highly conserved genomes. Microbiology 2022, 168, 001247. [Google Scholar] [CrossRef] [PubMed]
  295. Di Lallo, G.; Falconi, M.; Iacovelli, F.; Frezza, D.; D’Addabbo, P. Analysis of Four New Enterococcus faecalis Phages and Modeling of a Hyaluronidase Catalytic Domain from Saphexavirus. Phage 2021, 2, 131–141. [Google Scholar] [CrossRef] [PubMed]
  296. Gan, L.; Fu, H.; Tian, Z.; Cui, J.; Yan, C.; Xue, G.; Fan, Z.; Du, B.; Feng, J.; Zhao, H.; et al. Bacteriophage Effectively Rescues Pneumonia Caused by Prevalent Multidrug-Resistant Klebsiella pneumoniae in the Early Stage. Microbiol. Spectr. 2022, 10, e0235822. [Google Scholar] [CrossRef] [PubMed]
  297. Zhu, H.; Guo, S.; Zhao, J.; Arbab Sakandar, H.; Lv, R.; Wen, Q.; Chen, X. Whole Genome Sequence Analysis of Lactiplantibacillus plantarum Bacteriophage P2. Pol. J. Microbiol. 2022, 71, 421–428. [Google Scholar] [CrossRef] [PubMed]
  298. Orozco-Ochoa, A.K.; González-Gómez, J.P.; Castro-Del Campo, N.; Lira-Morales, J.D.; Martínez-Rodríguez, C.I.; Gomez-Gil, B.; Chaidez, C. Characterization and genome analysis of six novel Vibrio parahaemolyticus phages associated with acute hepatopancreatic necrosis disease (AHPND). Virus Res. 2023, 323, 198973. [Google Scholar] [CrossRef] [PubMed]
  299. Kazantseva, O.A.; Piligrimova, E.G.; Shadrin, A.M. Novel Bacillus-Infecting Bacteriophage B13-The Founding Member of the Proposed New Genus Bunatrivirus. Viruses 2022, 14, 2300. [Google Scholar] [CrossRef] [PubMed]
  300. Domingo-Calap, M.L.; Bernabéu-Gimeno, M.; M Aure, C.; Marco-Noales, E.; Domingo-Calap, P. Comparative Analysis of Novel Lytic Phages for Biological Control of Phytopathogenic Xanthomonas spp. Microbiol. Spectr. 2022, 10, e0296022. [Google Scholar] [CrossRef] [PubMed]
  301. Cao, S.; Yang, W.; Zhu, X.; Liu, C.; Lu, J.; Si, Z.; Pei, L.; Zhang, L.; Hu, W.; Li, Y.; et al. Isolation and identification of the broad-spectrum high-efficiency phage vB_SalP_LDW16 and its therapeutic application in chickens. BMC Vet. Res. 2022, 18, 386. [Google Scholar] [CrossRef] [PubMed]
  302. Skorynina, A.V.; Koposova, O.N.; Kazantseva, O.A.; Piligrimova, E.G.; Ryabova, N.A.; Shadrin, A.M. Isolation and Characterization of Two Novel Siphoviruses Novomoskovsk and Bolokhovo, Encoding Polysaccharide Depolymerases Active against Bacillus pumilus. Int. J. Mol. Sci. 2022, 23, 12988. [Google Scholar] [CrossRef] [PubMed]
  303. Choo, K.W.; Mao, L.; Mustapha, A. CAM-21, a novel lytic phage with high specificity towards Escherichia coli O157:H7 in food products. Int. J. Food Microbiol. 2023, 386, 110026. [Google Scholar] [CrossRef] [PubMed]
  304. Han, K.; Dong, Y.; An, X.; Song, L.; Li, M.; Fan, H.; Tong, Y. Potential. application of a newly isolated phage BUCT609 infecting Stenotrophomonas maltophilia. Front. Microbiol. 2022, 13, 1001237. [Google Scholar] [CrossRef] [PubMed]
  305. Holtappels, D.; Fortuna, K.J.; Vallino, M.; Lavigne, R.; Wagemans, J. Isolation, characterization and genome analysis of an orphan phage FoX4 of the new Foxquatrovirus genus. BMC Microbiol. 2022, 22, 304. [Google Scholar] [CrossRef] [PubMed]
  306. Huang, L.; Huang, S.; Jiang, L.; Tan, J.; Yan, X.; Gou, C.; Chen, X.; Xiang, L.; Wang, D.; Huang, G.; et al. Characterisation and sequencing of the novel phage Abp95, which is effective against multi-genotypes of carbapenem-resistant Acinetobacter baumannii. Sci. Rep. 2023, 13, 188. [Google Scholar] [CrossRef] [PubMed]
  307. Ding, Y.; Huang, C.; Zhu, W.; Li, Z.; Zhang, Y.; Wang, J.; Pan, H.; Li, H.; Wang, X. Characterization of a novel Jerseyvirus phage T102 and its inhibition effect on biofilms of multidrug-resistant Salmonella. Virus Res. 2023, 326, 199054. [Google Scholar] [CrossRef] [PubMed]
  308. Bleriot, I.; Blasco, L.; Pacios, O.; Fernández-García, L.; López, M.; Ortiz-Cartagena, C.; Barrio-Pujante, A.; Fernández-Cuenca, F.; Pascual, Á.; Martínez-Martínez, L.; et al. Proteomic Study of the Interactions between Phages and the Bacterial Host Klebsiella pneumoniae. Microbiol. Spectr. 2023, 11, e0397422. [Google Scholar] [CrossRef] [PubMed]
  309. Pertics, B.Z.; Kovács, T.; Schneider, G. Characterization of a Lytic Bacteriophage and Demonstration of Its Combined Lytic Effect with a K2 Depolymerase on the Hypervirulent Klebsiella pneumoniae Strain 52145. Microorganisms 2023, 11, 669. [Google Scholar] [CrossRef] [PubMed]
  310. Obradović, M.; Malešević, M.; Di Luca, M.; Kekić, D.; Gajić, I.; McAuliffe, O.; Neve, H.; Stanisavljević, N.; Vukotić, G.; Kojić, M. Isolation, Characterization, Genome Analysis and Host Resistance Development of Two Novel Lastavirus Phages Active against Pandrug-Resistant Klebsiella pneumoniae. Viruses 2023, 15, 628. [Google Scholar] [CrossRef] [PubMed]
  311. Peters, D.L.; Davis, C.M.; Harris, G.; Zhou, H.; Rather, P.N.; Hrapovic, S.; Lam, E.; Dennis, J.J.; Chen, W. Characterization of Virulent T4-Like Acinetobacter baumannii Bacteriophages DLP1 and DLP2. Viruses 2023, 15, 739. [Google Scholar] [CrossRef] [PubMed]
  312. Castillo, D.; Højsting, A.R.; Roosvall, A.; Smyrlis, G.; Jørgensen, J.; Middelboe, M. In Vitro Evolution of Specific Phages Infecting the Fish Pathogen Flavobacterium psychrophilum. Phage 2022, 3, 28–37. [Google Scholar] [CrossRef] [PubMed]
  313. Stone, E.; Lhomet, A.; Neve, H.; Grant, I.R.; Campbell K and McAuliffe, O. Isolation and characterization of Listeria monocytogenes phage vB_LmoH_P61, a phage with biocontrol potential on different food matrices. Front. Sustain. Food Syst. 2020, 4, 521645. [Google Scholar] [CrossRef]
  314. Bhunchoth, A.; Blanc-Mathieu, R.; Mihara, T.; Nishimura, Y.; Askora, A.; Phironrit, N.; Leksomboon, C.; Chatchawankanphanich, O.; Kawasaki, T.; Nakano, M.; et al. Two Asian jumbo phages, ϕRSL2 and ϕRSF1, infect Ralstonia solanacearum and show common features of ϕKZ-related phages. Virology 2016, 494, 56–66. [Google Scholar] [CrossRef] [PubMed]
  315. Jun, J.W.; Park, S.C.; Wicklund, A.; Skurnik, M. Bacteriophages reduce Yersinia enterocolitica contamination of food and kitchenware. Int. J. Food Microbiol. 2018, 271, 33–47. [Google Scholar] [CrossRef] [PubMed]
  316. Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [PubMed]
  317. Bolduc, B.; Jang, H.B.; Doulcier, G.; You, Z.Q.; Roux, S.; Sullivan, M.B. vConTACT: An iVirus tool to classify double-stranded DNA viruses that infect Archaea and Bacteria. PeerJ 2017, 5, e3243. [Google Scholar] [CrossRef] [PubMed]
  318. Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
  319. Contreras-Moreira, B.; Vinuesa, P. GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl. Environ. Microbiol. 2013, 79, 7696–7701. [Google Scholar] [CrossRef] [PubMed]
  320. Davis, P.; Seto, D.; Mahadevan, P. CoreGenes5.0: An Updated User-Friendly web server for the Determination of Core Genes from Sets of Viral and Bacterial Genomes. Viruses 2022, 14, 2534. [Google Scholar] [CrossRef] [PubMed]
  321. Shang, J.; Tang, X.; Sun, Y. PhaTYP: Predicting the lifestyle for bacteriophages using BERT. Brief. Bioinform. 2023, 24, bbac487. [Google Scholar] [CrossRef] [PubMed]
  322. Shang, J.; Peng, C.; Liao, H.; Tang, X.; Sun, Y. PhaBOX: A web server for identifying and characterizing phage contigs in metagenomic data. Bioinform. Adv. 2023, 3, vbad101. [Google Scholar] [CrossRef] [PubMed]
  323. Kropinski, A.M.; Turner, D.; Tolstoy, I.; Moraru, C.; Adriaenssens, E.M.; Mahony, J. Create one new family (Aliceevansviridae) with one new genus (Vansinderenvirus) and two existing genera (Moineauvirus and Brussowvirus) (Caudoviricetes). 2022. Available online: https://ictv.global/ictv/proposals/2022.001B.Aliceevansviridae.zip (accessed on 16 September 2024).
  324. Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [PubMed]
  325. Seabold, S.; Perktold, J. Statsmodels: Econometric and statistical modeling with python. SciPy 2010, 7, 57–61. [Google Scholar]
  326. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 17 April 2023).
  327. Lê, S.; Josse, J.; Husson, F. FactoMineR: A Package for Multivariate Analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef]
  328. Cook, R.; Brown, N.; Redgwell, T.; Rihtman, B.; Barnes, M.; Clokie, M.; Stekel, D.J.; Hobman, J.; Jones, M.A.; Millard, A. INfrastructure for a PHAge REference Database: Identification of Large-Scale Biases in the Current Collection of Cultured Phage Genomes. Phage 2021, 2, 214–223. [Google Scholar] [CrossRef] [PubMed]
  329. Hatfull, G.F.; Pedulla, M.L.; Jacobs-Sera, D.; Cichon, P.M.; Foley, A.; Ford, M.E.; Gonda, R.M.; Houtz, J.M.; Hryckowian, A.J.; Kelchner, V.A.; et al. Exploring the mycobacteriophage metaproteome: Phage genomics as an educational platform. PLoS Genet. 2006, 2, e92. [Google Scholar] [CrossRef] [PubMed]
  330. Liu, B.; Knirel, Y.A.; Feng, L.; Perepelov, A.V.; Senchenkova, S.N.; Reeves, P.R.; Wang, L. Structural diversity in Salmonella O antigens and its genetic basis. FEMS Microbiol. Rev. 2014, 38, 56–89. [Google Scholar] [CrossRef] [PubMed]
  331. Xia, G.; Corrigan, R.M.; Winstel, V.; Goerke, C.; Gründling, A.; Peschel, A. Wall teichoic Acid-dependent adsorption of staphylococcal siphovirus and myovirus. J. Bacteriol. 2011, 193, 4006–4009. [Google Scholar] [CrossRef] [PubMed]
  332. Buzikov, R.M.; Kazantseva, O.A.; Piligrimova, E.G.; Ryabova, N.A.; Shadrin, A.M. Bacteriolytic Potential of Enterococcus Phage iF6 Isolated from “Sextaphag®” Therapeutic Phage Cocktail and Properties of Its Endolysins, Gp82 and Gp84. Viruses 2023, 15, 767. [Google Scholar] [CrossRef] [PubMed]
  333. Nilsson, A.S. Pharmacological limitations of phage therapy. Upsala J. Med. Sci. 2019, 124, 218–227. [Google Scholar] [CrossRef] [PubMed]
  334. Bozidis, P.; Markou, E.; Gouni, A.; Gartzonika, K. Does Phage Therapy Need a Pan-Phage? Pathogens 2024, 13, 522. [Google Scholar] [CrossRef] [PubMed]
  335. Nilsson, A.S. Cocktail, a Computer Program for Modelling Bacteriophage Infection Kinetics. Viruses 2022, 14, 2483. [Google Scholar] [CrossRef] [PubMed]
  336. Abedon, S.T. Automating Predictive Phage Therapy Pharmacology. Antibiotics 2023, 12, 1423. [Google Scholar] [CrossRef] [PubMed]
  337. Molina, F.; Simancas, A.; Ramírez, M.; Tabla, R.; Roa, I.; Rebollo, J.E. A New Pipeline for Designing Phage Cocktails Based on Phage-Bacteria Infection Networks. Front. Microbiol. 2021, 12, 564532. [Google Scholar] [CrossRef] [PubMed]
  338. Fedorov, E.; Samokhin, A.; Kozlova, Y.; Kretien, S.; Sheraliev, T.; Morozova, V.; Tikunova, N.; Kiselev, A.; Pavlov, V. Short-Term Outcomes of Phage-Antibiotic Combination Treatment in Adult Patients with Periprosthetic Hip Joint Infection. Viruses 2023, 15, 499. [Google Scholar] [CrossRef] [PubMed]
  339. Stacey, H.J.; De Soir, S.; Jones, J.D. The Safety and Efficacy of Phage Therapy: A Systematic Review of Clinical and Safety Trials. Antibiotics 2022, 11, 1340. [Google Scholar] [CrossRef] [PubMed]
  340. Merabishvili, M.; Pirnay, J.P.; De Vos, D. Guidelines to Compose an Ideal Bacteriophage Cocktail. Methods Mol. Biol. 2024, 2734, 49–66. [Google Scholar] [CrossRef] [PubMed]
  341. Weber-Dąbrowska, B.; Żaczek, M.; Łobocka, M.; Łusiak-Szelachowska, M.; Owczarek, B.; Orwat, F.; Łodej, N.; Skaradzińska, A.; Łaczmański, Ł.; Martynowski, D.; et al. Characteristics of Environmental Klebsiella pneumoniae and Klebsiella oxytoca Bacteriophages and Their Therapeutic Applications. Pharmaceutics 2023, 15, 434. [Google Scholar] [CrossRef] [PubMed]
  342. Maffei, E.; Shaidullina, A.; Burkolter, M.; Heyer, Y.; Estermann, F.; Druelle, V.; Sauer, P.; Willi, L.; Michaelis, S.; Hilbi, H.; et al. Systematic exploration of Escherichia coli phage-host interactions with the BASEL phage collection. PLoS Biol. 2021, 19, e3001424. [Google Scholar] [CrossRef] [PubMed]
  343. Sullivan, M.B.; Waterbury, J.B.; Chisholm, S.W. Cyanophages infecting the oceanic cyanobacterium Prochlorococcus. Nature 2003, 424, 1047–1051. [Google Scholar] [CrossRef] [PubMed]
  344. Wichels, A.; Biel, S.S.; Gelderblom, H.R.; Brinkhoff, T.; Muyzer, G.; Schütt, C. Bacteriophage diversity in the North Sea. Appl. Environ. Microbiol. 1998, 64, 4128–4133. [Google Scholar] [CrossRef] [PubMed]
  345. Sáez Moreno, D.; Visram, Z.; Mutti, M.; Restrepo-Córdoba, M.; Hartmann, S.; Kremers, A.I.; Tišáková, L.; Schertler, S.; Wittmann, J.; Kalali, B.; et al. ε2-Phages Are Naturally Bred and Have a Vastly Improved Host Range in Staphylococcus aureus over Wild Type Phages. Pharmaceuticals 2021, 14, 325. [Google Scholar] [CrossRef] [PubMed]
  346. Nilsson, E.; Bayfield, O.W.; Lundin, D.; Antson, A.A.; Holmfeldt, K. Diversity and Host Interactions Among Virulent and Temperate Baltic Sea Flavobacterium Phages. Viruses 2020, 12, 158. [Google Scholar] [CrossRef] [PubMed]
  347. Bailly-Bechet, M.; Vergassola, M.; Rocha, E. Causes for the intriguing presence of tRNAs in phages. Genome Res. 2007, 17, 1486–1495. [Google Scholar] [CrossRef] [PubMed]
  348. Esposito, L.A.; Gupta, S.; Streiter, F.; Prasad, A.; Dennehy, J.J. Evolutionary interpretations of mycobacteriophage biodiversity and host-range through the analysis of codon usage bias. Microb. Genom. 2016, 2, e000079. [Google Scholar] [CrossRef] [PubMed]
  349. Iyer, L.M.; Anantharaman, V.; Krishnan, A.; Burroughs, A.M.; Aravind, L. Jumbo Phages: A Comparative Genomic Overview of Core Functions and Adaptions for Biological Conflicts. Viruses 2021, 13, 63. [Google Scholar] [CrossRef] [PubMed]
  350. Delesalle, V.A.; Tanke, N.T.; Vill, A.C.; Krukonis, G.P. Testing hypotheses for the presence of tRNA genes in mycobacteriophage genomes. Bacteriophage 2016, 6, e1219441. [Google Scholar] [CrossRef] [PubMed]
  351. Coclet, C.; Roux, S. Global overview and major challenges of host prediction methods for uncultivated phages. Curr. Opin. Virol. 2021, 49, 117–126. [Google Scholar] [CrossRef] [PubMed]
  352. d’Humières, C.; Touchon, M.; Dion, S.; Cury, J.; Ghozlane, A.; Garcia-Garcera, M.; Bouchier, C.; Ma, L.; Denamur, E.; Rocha, E.P.C. A simple, reproducible and cost-effective procedure to analyse gut phageome: From phage isolation to bioinformatic approach. Sci. Rep. 2019, 9, 11331. [Google Scholar] [CrossRef] [PubMed]
  353. Rendueles, O.; de Sousa, J.A.M.; Rocha, E.P.C. Competition between lysogenic and sensitive bacteria is determined by the fitness costs of the different emerging phage-resistance strategies. Elife 2023, 12, e83479. [Google Scholar] [CrossRef] [PubMed]
  354. Liu, M.; Hernandez-Morales, A.; Clark, J.; Le, T.; Biswas, B.; Bishop-Lilly, K.A.; Henry, M.; Quinones, J.; Voegtly, L.J.; Cer, R.Z.; et al. Comparative genomics of Acinetobacter baumannii and therapeutic bacteriophages from a patient undergoing phage therapy. Nat. Commun. 2022, 13, 3776. [Google Scholar] [CrossRef] [PubMed]
  355. Jończyk, E.; Kłak, M.; Międzybrodzki, R.; Górski, A. The influence of external factors on bacteriophages—Review. Folia Microbiol. 2011, 56, 191–200. [Google Scholar] [CrossRef] [PubMed]
  356. Díaz-Muñoz, S.L.; Koskella, B. Bacteria-phage interactions in natural environments. Adv. Appl. Microbiol. 2014, 89, 135–183. [Google Scholar] [CrossRef] [PubMed]
  357. Li, L.; Zhang, Z. Isolation and characterization of a virulent bacteriophage SPW specific for Staphylococcus aureus isolated from bovine mastitis of lactating dairy cattle. Mol. Biol. Rep. 2014, 41, 5829–5838. [Google Scholar] [CrossRef] [PubMed]
  358. Jamal, M.; Hussain, T.; Das, C.R.; Andleeb, S. Characterization of Siphoviridae phage Z and studying its efficacy against multidrug-resistant Klebsiella pneumoniae planktonic cells and biofilm. J. Med. Microbiol. 2015, 64 Pt 4, 454–462. [Google Scholar] [CrossRef] [PubMed]
  359. Martins, W.M.B.S.; Cino, J.; Lenzi, M.H.; Sands, K.; Portal, E.; Hassan, B.; Dantas, P.P.; Migliavacca, R.; Medeiros, E.A.; Gales, A.C. Diversity of lytic bacteriophages against XDR Klebsiella pneumoniae sequence type 16 recovered from sewage samples in different parts of the world. Sci. Total Environ. 2022, 839, 156074. [Google Scholar] [CrossRef] [PubMed]
Figure 1. PRISMA flowchart of source identification and selection. PRISMA, preferred reporting items for systematic reviews and meta-analyses [33].
Figure 1. PRISMA flowchart of source identification and selection. PRISMA, preferred reporting items for systematic reviews and meta-analyses [33].
Viruses 16 01879 g001
Figure 2. Overview of the dataset: (a) bacterial host genera arranged by their prevalence (top 22 genera are shown); (b) distribution of bacteriophage genome size and morphology.
Figure 2. Overview of the dataset: (a) bacterial host genera arranged by their prevalence (top 22 genera are shown); (b) distribution of bacteriophage genome size and morphology.
Viruses 16 01879 g002
Figure 3. Host range distributions are biased by published phage series and cannot be divided in parts. (a,b) The peaks in the original distributions are formed by data points originating from papers with high numbers of described bacteriophages, uncovering the prevalence of published series of bacteriophages with similar host ranges and a publication bias of large datasets. (c,d) The unbiased forms of the distributions were inferred by random choice of one data point from each paper in 500 replicates. The superimposed visualisations implied uniform distribution of spotting host ranges and a mixture of uniform and triangular distributions for plaquing host ranges. The visualisations are based on the host range data of all selected tailed bacteriophages, including the viruses with unknown taxonomic position within the class Caudoviricetes.
Figure 3. Host range distributions are biased by published phage series and cannot be divided in parts. (a,b) The peaks in the original distributions are formed by data points originating from papers with high numbers of described bacteriophages, uncovering the prevalence of published series of bacteriophages with similar host ranges and a publication bias of large datasets. (c,d) The unbiased forms of the distributions were inferred by random choice of one data point from each paper in 500 replicates. The superimposed visualisations implied uniform distribution of spotting host ranges and a mixture of uniform and triangular distributions for plaquing host ranges. The visualisations are based on the host range data of all selected tailed bacteriophages, including the viruses with unknown taxonomic position within the class Caudoviricetes.
Viruses 16 01879 g003
Figure 4. Genetic diversity of bacteriophages in the sample visualised by phylogenetic network. The groups of phage genomes numbered from #1 to #4 were further analysed by phylogenetic tree construction (Figures S1–S4). Subfamily Guernseyvirinae was included in host range data analysis as a family-level group FLG-G. Host ranges of Autographiviridae members were analysed in two independent groups, FLG-A and FLG-AS (Studiervirinae).
Figure 4. Genetic diversity of bacteriophages in the sample visualised by phylogenetic network. The groups of phage genomes numbered from #1 to #4 were further analysed by phylogenetic tree construction (Figures S1–S4). Subfamily Guernseyvirinae was included in host range data analysis as a family-level group FLG-G. Host ranges of Autographiviridae members were analysed in two independent groups, FLG-A and FLG-AS (Studiervirinae).
Viruses 16 01879 g004
Figure 5. The distributions of bacteriophage host ranges differed between phage family-level groups: (a) Spotting host ranges. (b) Plaquing host ranges. Given the estimated error of repeated host range assessments at 0.1 (Data S3), PHR of Straboviridae and FLG-G, and the two host range types in Drexlerviridae, FLG-A and FLG-AS varied across the entire interval of values. (c) Differences between SHR value distributions and (d) differences between PHR value distributions assessed by Mann–Whitney U test. The order of family-level taxonomic groups of phages follows the increase in median spotting host ranges. med, median; n, number of host range data points; nls, number of literature sources; S. thermophilus, Streptococcus thermophilus.
Figure 5. The distributions of bacteriophage host ranges differed between phage family-level groups: (a) Spotting host ranges. (b) Plaquing host ranges. Given the estimated error of repeated host range assessments at 0.1 (Data S3), PHR of Straboviridae and FLG-G, and the two host range types in Drexlerviridae, FLG-A and FLG-AS varied across the entire interval of values. (c) Differences between SHR value distributions and (d) differences between PHR value distributions assessed by Mann–Whitney U test. The order of family-level taxonomic groups of phages follows the increase in median spotting host ranges. med, median; n, number of host range data points; nls, number of literature sources; S. thermophilus, Streptococcus thermophilus.
Viruses 16 01879 g005
Figure 6. The distributions of bacteriophage host ranges differed between bacterial species: (a) Spotting host ranges. (b) Plaquing host ranges. Given the estimated error of repeated host range assessments at 0.1 (Data S3), SHR of A. baumannii phages, PHR of E. coli phages, and the two host range types of S. enterica phages varied across the entire interval of values. (c) Differences between SHR value distributions and (d) differences between PHR value distributions assessed by Mann–Whitney U test. The order of bacterial species follows the increase in median spotting host ranges. med, median; n, number of host range data points; nls, number of literature sources; S. thermophilus, Streptococcus thermophilus.
Figure 6. The distributions of bacteriophage host ranges differed between bacterial species: (a) Spotting host ranges. (b) Plaquing host ranges. Given the estimated error of repeated host range assessments at 0.1 (Data S3), SHR of A. baumannii phages, PHR of E. coli phages, and the two host range types of S. enterica phages varied across the entire interval of values. (c) Differences between SHR value distributions and (d) differences between PHR value distributions assessed by Mann–Whitney U test. The order of bacterial species follows the increase in median spotting host ranges. med, median; n, number of host range data points; nls, number of literature sources; S. thermophilus, Streptococcus thermophilus.
Viruses 16 01879 g006
Figure 7. In strictly lytic bacteriophages, broader plaquing host ranges may be associated with decreased proportion of efficiently utilised host strains. The lines depict linear regression analysis results with 95% confidence intervals shaded grey. In E. coli bacteriophages, there is a negative correlation between plaquing host ranges and the efficiency of plating (EOP). In the groups of bacteriophages propagating on S. enterica and all other hosts, the correlation cannot be seen.
Figure 7. In strictly lytic bacteriophages, broader plaquing host ranges may be associated with decreased proportion of efficiently utilised host strains. The lines depict linear regression analysis results with 95% confidence intervals shaded grey. In E. coli bacteriophages, there is a negative correlation between plaquing host ranges and the efficiency of plating (EOP). In the groups of bacteriophages propagating on S. enterica and all other hosts, the correlation cannot be seen.
Viruses 16 01879 g007
Figure 8. Bacteriophages morphotypes in the coordinates of host range and genome size: (a) Spotting host range. (b) Plaquing host range. There is no correlation between host ranges, morphotypes, and genome size. The visualisations are based on host range data of all selected tailed bacteriophages, including the viruses with unknown taxonomic position within the class Caudoviricetes.
Figure 8. Bacteriophages morphotypes in the coordinates of host range and genome size: (a) Spotting host range. (b) Plaquing host range. There is no correlation between host ranges, morphotypes, and genome size. The visualisations are based on host range data of all selected tailed bacteriophages, including the viruses with unknown taxonomic position within the class Caudoviricetes.
Viruses 16 01879 g008
Figure 9. Sources of heterogeneity identified by factor analysis of mixed data: (a) Spotting host ranges. (b) Plaquing host ranges.
Figure 9. Sources of heterogeneity identified by factor analysis of mixed data: (a) Spotting host ranges. (b) Plaquing host ranges.
Viruses 16 01879 g009
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Pchelin, I.M.; Smolensky, A.V.; Azarov, D.V.; Goncharov, A.E. Lytic Spectra of Tailed Bacteriophages: A Systematic Review and Meta-Analysis. Viruses 2024, 16, 1879. https://doi.org/10.3390/v16121879

AMA Style

Pchelin IM, Smolensky AV, Azarov DV, Goncharov AE. Lytic Spectra of Tailed Bacteriophages: A Systematic Review and Meta-Analysis. Viruses. 2024; 16(12):1879. https://doi.org/10.3390/v16121879

Chicago/Turabian Style

Pchelin, Ivan M., Andrei V. Smolensky, Daniil V. Azarov, and Artemiy E. Goncharov. 2024. "Lytic Spectra of Tailed Bacteriophages: A Systematic Review and Meta-Analysis" Viruses 16, no. 12: 1879. https://doi.org/10.3390/v16121879

APA Style

Pchelin, I. M., Smolensky, A. V., Azarov, D. V., & Goncharov, A. E. (2024). Lytic Spectra of Tailed Bacteriophages: A Systematic Review and Meta-Analysis. Viruses, 16(12), 1879. https://doi.org/10.3390/v16121879

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop