Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = pesticide emission to surface water

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 7698 KiB  
Article
Environmental Assessment of a Heritage Forest Urban Park on the Densely Populated Coast of Versilia, Italy
by Roberto Giannecchini, Lisa Ghezzi, Simone Arrighi, Silvia Fornasaro, Stefania Giannarelli, Alessio Pardini and Riccardo Petrini
Water 2025, 17(10), 1466; https://doi.org/10.3390/w17101466 - 13 May 2025
Viewed by 466
Abstract
The present study focuses on the sources and spatial distribution of potentially toxic elements (PTEs) and organic pollutants in water, canal bed sediment, and soil in the Versiliana urban park, an inclusive green area near the coast in the densely populated Versilia Plain [...] Read more.
The present study focuses on the sources and spatial distribution of potentially toxic elements (PTEs) and organic pollutants in water, canal bed sediment, and soil in the Versiliana urban park, an inclusive green area near the coast in the densely populated Versilia Plain of Tuscany. Surface water and bed sediments from canals crossing the urban park were collected at 10 stations during four different surveys to account for hydrological seasonality. Groundwater was collected in a survey through 10 piezometers. Eleven shallow soil samples were also collected, with the aim of evaluating the potential release of pollutants. Groundwater ranged from Ca-HCO3, to NaCl, CaCl2, and Na-HCO3 water types, indicating conservative mixing and cation exchange processes during seawater intrusion. Most waters from canals belonged to the Ca-HCO3 hydrofacies; a salinization shift, due to hydraulic connection with saline groundwater and soil sea salt dissolution, is observed. The concentration of most PTEs in groundwater and canal water is below Italian regulatory thresholds, with the only exception being As, which exceeds the legal limit in some samples. In most sediments, Ni, Cr, Zn, and As exceed the threshold effect concentration, and in some cases, the probable effect concentration. Geogenic PTE sources are attributed to metalliferous mineralization that characterizes the upstream Versilia River basin catchment. However, local PTE inputs from vehicular emissions and local industrial activities have been highlighted. Arsenic in sediments originated from geogenic sources and from arsenical pesticides, as indicated by the analysis of organic compounds, highlighting the legacy of the use of organic pesticides that have settled in bed sediments, in particular malathion and metalaxyl. The arsenic risk-based screening level in soil is lower compared with the regulatory threshold and with the measured concentration. Full article
Show Figures

Figure 1

29 pages, 12289 KiB  
Article
A Dynamic Evaluation of the Use of Natural Resources in Crop Rotation in Family Farming Production Units
by Dayhanna Stephania Vargas, Juan Carlos Osorio and Juan José Bravo
Resources 2025, 14(1), 17; https://doi.org/10.3390/resources14010017 - 20 Jan 2025
Viewed by 1124
Abstract
A total of 35.4% of the earth’s surface is used for agriculture, and 32.7% of it for crops. Agricultural activity uses 70% of the world’s freshwater, and due to the intensive use of agrochemical inputs and energy, a high percentage of greenhouse gas [...] Read more.
A total of 35.4% of the earth’s surface is used for agriculture, and 32.7% of it for crops. Agricultural activity uses 70% of the world’s freshwater, and due to the intensive use of agrochemical inputs and energy, a high percentage of greenhouse gas emissions, pollution, and waste are generated. With the increase in population and fluctuating consumption trends, it is necessary to increase crop production and productivity to meet present and future demands. A relevant factor for the analysis of the production of agricultural goods is the size of the productive unit since about 84% is less than 2 ha in size and distributed over 12% of arable land; however, it is important to highlight other factors, such as the availability of family labour, crop diversification and the development of other agricultural activities that have a lower use of insecticides, pesticides, and chemical fertilisers compared to industrial crops. Therefore, food is produced, providing social and ecological benefits. Thus, a dynamic simulation is presented to evaluate the use of natural resources in developing different rotations of transient and permanent crops in a municipality in Colombia. This study assesses the impact on land use, soil degradation due to crop development, and the total water footprint associated with each rotation. Full article
Show Figures

Figure 1

13 pages, 2924 KiB  
Article
Ratiometric Sensing of Glyphosate in Water Using Dual Fluorescent Carbon Dots
by Adryanne Clermont-Paquette, Diego-Andrés Mendoza, Amir Sadeghi, Alisa Piekny and Rafik Naccache
Sensors 2023, 23(11), 5200; https://doi.org/10.3390/s23115200 - 30 May 2023
Cited by 15 | Viewed by 3111
Abstract
Glyphosate is a broad-spectrum pesticide used in crops and is found in many products used by industry and consumers. Unfortunately, glyphosate has been shown to have some toxicity toward many organisms found in our ecosystems and has been reported to have carcinogenic effects [...] Read more.
Glyphosate is a broad-spectrum pesticide used in crops and is found in many products used by industry and consumers. Unfortunately, glyphosate has been shown to have some toxicity toward many organisms found in our ecosystems and has been reported to have carcinogenic effects on humans. Hence, there is a need to develop novel nanosensors that are more sensitive and facile and permit rapid detection. Current optical-based assays are limited as they rely on changes in signal intensity, which can be affected by multiple factors in the sample. Herein, we report the development of a dual emissive carbon dot (CD) system that can be used to optically detect glyphosate pesticides in water at different pH levels. The fluorescent CDs emit blue and red fluorescence, which we exploit as a ratiometric self-referencing assay. We observe red fluorescence quenching with increasing concentrations of glyphosate in the solution, ascribed to the interaction of the glyphosate pesticide with the CD surface. The blue fluorescence remains unaffected and serves as a reference in this ratiometric approach. Using fluorescence quenching assays, a ratiometric response is observed in the ppm range with detection limits as low as 0.03 ppm. Our CDs can be used to detect other pesticides and contaminants in water, as cost-effective and simple environmental nanosensors. Full article
(This article belongs to the Special Issue Chemical Sensors for Toxic Chemical Detection)
Show Figures

Figure 1

15 pages, 2609 KiB  
Article
Testing the Greenhouse Emission Model (GEM) for Pesticides Applied via Drip Irrigation to Stone Wool Mats Growing Sweet Pepper in a Recirculation System
by E. Louise Wipfler, Jos J. T. I. Boesten, Erik A. van Os and Wim H. J. Beltman
Horticulturae 2023, 9(4), 495; https://doi.org/10.3390/horticulturae9040495 - 14 Apr 2023
Viewed by 2419
Abstract
Pesticide emissions to surface water from greenhouses with crops grown on substrates in open or closed systems may be significant. It is important, therefore, to test models such as the Greenhouse Emission Model (GEM), which was developed to assess these emissions as part [...] Read more.
Pesticide emissions to surface water from greenhouses with crops grown on substrates in open or closed systems may be significant. It is important, therefore, to test models such as the Greenhouse Emission Model (GEM), which was developed to assess these emissions as part of the Dutch authorization procedure for use of plant protection products in greenhouses. GEM was tested using an experiment in which imidacloprid and pymetrozine were applied via drip irrigation to stone wool mats growing sweet pepper. The irrigation system in such greenhouses consists of a mixing tank to prepare the nutrient solution and a series of tanks to treat and recirculate the drain water back to the mixing tank. Emissions may occur because (part of) this recirculation water may be discharged or leached to the surface water. GEM assumes that all tanks are perfectly mixed. GEM further assumes that the water in these mats is perfectly mixed and that the pesticide behavior can be simulated by assuming one perfectly mixed reservoir. The model predicted breakthrough of both pesticides out of the mats earlier than measured, and the measured maximum concentrations were approximately two times lower than predicted. We considered a series of possible causes, including a smaller water volume in the mats, a higher plant uptake factor, and sorption to the stone wool. The model performance improved by representing the mats as a sequence of two equally large tanks with plant uptake restricted to the first tank. We recommend to study the solute transport process and the distribution of plant roots in the mats in more detail to further underpin the hypothesis used and improve the model. After this first validation, the GEM model might also be used in other countries to forecast emissions of PPPs to surface water. Full article
Show Figures

Graphical abstract

27 pages, 28912 KiB  
Article
Phenology–Gross Primary Productivity (GPP) Method for Crop Information Extraction in Areas Sensitive to Non-Point Source Pollution and Its Influence on Pollution Intensity
by Mengyao Li, Taixia Wu, Shudong Wang, Shan Sang and Yuting Zhao
Remote Sens. 2022, 14(12), 2833; https://doi.org/10.3390/rs14122833 - 13 Jun 2022
Cited by 6 | Viewed by 2826
Abstract
The excessive use of pesticides and fertilizers during agricultural production causes water pollution, which is an important type of non-point source pollution (NSP). Large amounts of harmful substances, such as nitrogen and phosphorus, flow into surface water along with farmland runoff, leading to [...] Read more.
The excessive use of pesticides and fertilizers during agricultural production causes water pollution, which is an important type of non-point source pollution (NSP). Large amounts of harmful substances, such as nitrogen and phosphorus, flow into surface water along with farmland runoff, leading to eutrophication and other problems. However, the pollutant discharge capacity of different types of cultivated land varies greatly. Areas sensitive to NSP are areas with rich crop types, large spatial differences in crop growth, and complex planting patterns. These factors can cause different amounts of fertilizer used in and absorbed by the crops to influence the emission intensity of pollutants. NSP intensity mapping can reflect the spatial distribution of lands’ pollutant discharge capacity and it can provide a basis for pollution control. However, when estimating NSP intensity, existing methods generally treat cultivated land as a category and ignore how complex crop conditions impact pollution intensity. Remote sensing technology enables the classification and monitoring of ground objects, which can provide rich geographical data for NSP intensity mapping. In this study, we used a phenology–GPP (gross primary productivity) method to extract the spatial distribution of crops in the Yuecheng reservoir catchment area from Sentinel-2 remote sensing images and the overall accuracy reached 85%. Moderate resolution imaging spectroradiometer (MODIS) GPP data were used to simulate the spatial distribution of crop growth. Finally, a new model that is more suitable for farmland was obtained by combining this large amount of remote sensing data with existing mapping models. The findings from this study highlight the differences in spatial distributions between total nitrogen and total phosphorous; they also provide the means to improve NSP intensity estimations. Full article
(This article belongs to the Section Ecological Remote Sensing)
Show Figures

Graphical abstract

14 pages, 10165 KiB  
Article
Distribution and Potential Sources of OCPs and PAHs in Waters from the Danshui River Basin in Yichang, China
by Wei Chen, Bo Peng, Huanfang Huang, Ye Kuang, Zhe Qian, Wenting Zhu, Wei Liu, Yuan Zhang, Yuan Liao, Xiufang Zhao, Hong Zhou and Shihua Qi
Int. J. Environ. Res. Public Health 2022, 19(1), 263; https://doi.org/10.3390/ijerph19010263 - 27 Dec 2021
Cited by 22 | Viewed by 4395
Abstract
To investigate the concentrations, spatial distribution, potential sources and mass fluxes of organochlorine pesticides (OCPs) and polycyclic aromatic hydrocarbons (PAHs) in waters from the Danshui River Basin, a total of 20 water samples were collected and analyzed from a karstic river in Western [...] Read more.
To investigate the concentrations, spatial distribution, potential sources and mass fluxes of organochlorine pesticides (OCPs) and polycyclic aromatic hydrocarbons (PAHs) in waters from the Danshui River Basin, a total of 20 water samples were collected and analyzed from a karstic river in Western Hubei of Central China. The average concentrations of total OCPs and PAHs in the river water were 4719 pg·L−1 and 26.2 ng·L−1, respectively. The characteristic ratios of different isomers and the composition analysis of individual OCPs and PAHs revealed that HCHs originated from a mixed input of technical HCHs and Lindane, DDTs were mainly from technical DDTs, and PAHs mainly originated from biomass and coal combustion. The mass flux analysis showed that PAHs had a higher emission and heavier burden than OCPs in the Danshui River Basin. OCPs and PAHs emitted from agricultural or other human activities could enter the groundwater and then be transported to the surface/river water in the karst area. The adsorption of OCPs and PAHs by particles and the sedimentation of particles could be the primary processes to intercept these pollutants in the water of the karstic river system. Full article
(This article belongs to the Special Issue Water Pollution: Human Health and Ecological Risks)
Show Figures

Figure 1

17 pages, 5569 KiB  
Article
Green Synthesis of Flower-Shaped Copper Oxide and Nickel Oxide Nanoparticles via Capparis decidua Leaf Extract for Synergic Adsorption-Photocatalytic Degradation of Pesticides
by Amna Iqbal, Atta ul Haq, Gabriel Antonio Cerrón-Calle, Syed Ali Raza Naqvi, Paul Westerhoff and Sergi Garcia-Segura
Catalysts 2021, 11(7), 806; https://doi.org/10.3390/catal11070806 - 30 Jun 2021
Cited by 75 | Viewed by 9588
Abstract
Green manufacturing of catalysts enables sustainable advanced oxidation processes and water treatment processes for removing trace contaminants such as pesticides. An environmentally friendly biosynthesis process produced high-surface-area CuO and NiO nanocatalysts using phytochemicals in the Capparis decidua leaf extract, which served as a [...] Read more.
Green manufacturing of catalysts enables sustainable advanced oxidation processes and water treatment processes for removing trace contaminants such as pesticides. An environmentally friendly biosynthesis process produced high-surface-area CuO and NiO nanocatalysts using phytochemicals in the Capparis decidua leaf extract, which served as a reductant and influenced catalyst shape. Capparis decidua is a bushy shrub, widely distributed in dry and arid regions of Africa, Pakistan, India, Egypt, Jordan, Sudan, Saudi Arabia. The synthesized CuO and NiO nanoparticles were characterized by UV-vis spectroscopy (UV-vis), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FT-IR), and X-ray diffraction (XRD) and thermo-gravimetric analysis/differential thermal analysis (TGA/DTA). The produced nanoparticles were spherical and flower-like in shape and have a characteristic face-centered cubic structure of CuO and NiO. Biosynthesized catalysts were photoactive and degraded recalcitrant pesticide Lambda-cyhalothrin (L-CHT). Photocatalytic degradation of L-CHT was affected by the initial L-CHT concentration, solution pH levels between 5 and 9, and photocatalyst concentration. The L-CHT removal percentage attained by CuO photocatalyst (~99%) was higher than for NiO photocatalyst (~89%). The degradation of L-CHT follows a pseudo-first-order kinetic model, and the apparent rate constant (kapp) decreased from 0.033 min−1 for CuO to 0.0084 min−1 for NiO photocatalyst. The novel flower-shaped nanoparticles demonstrated high stability in water and recyclability for removing L-CHT pesticide contamination in water. Full article
(This article belongs to the Special Issue Photo/Electrocatalysis for Wastewater Treatment)
Show Figures

Figure 1

14 pages, 3086 KiB  
Article
The Effectiveness of the Application of a Chemical Agent (Dressing) to Seed Potatoes by Means of an Innovative Valve Enabling Intermittent Flow of a Liquid
by Łukasz Gierz, Krzysztof Przybył, Krzysztof Koszela and Piotr Markowski
Agriculture 2020, 10(3), 85; https://doi.org/10.3390/agriculture10030085 - 19 Mar 2020
Cited by 1 | Viewed by 3590
Abstract
The protection of potatoes from pests and diseases, especially at an early stage of their development, is an indispensable element of cultivation. Pesticides are most commonly used for protection, but their high doses may adversely affect the natural environment, including soil and water. [...] Read more.
The protection of potatoes from pests and diseases, especially at an early stage of their development, is an indispensable element of cultivation. Pesticides are most commonly used for protection, but their high doses may adversely affect the natural environment, including soil and water. This study compares the losses of a chemical agent emitted during the dressing of seed potatoes by means of an innovative valve enabling intermittent outflow of the liquid and by means of a standard valve with a continuous outflow. The research proved that the intermittent outflow of the working liquid decreased the amount of the chemical agent emitted into the environment ten times. The article also describes the site at which the innovative valve was tested and compares the results of laboratory tests for three distances of the sprayer from the potato fall path (50, 100, 150 mm) and four different pressures of the working liquid (1–4 kPa). The research showed that the amount of losses, i.e., emissions of the chemical agent into the environment from the innovative valve (intermittent stream of the working liquid) depended on the difference in the air and liquid pressure. The solution is environmentally friendly. The results showed that the distance between the sprayer valve and the seed potato falling path had minimal influence on the amount of the agent left on the surface of seed potatoes when a continuous stream was applied, but it had considerable influence when an intermittent stream was applied. The distance had negative effect on the ratio of retention of the applied liquid at pressures of 100 and 200 kPa, but it had positive effect at pressures of 300 and 400 kPa (at an intermittent flow). When a continuous stream was applied and the distance between the spray valve and the seed potato falling path increased from 100 to 150 mm, it had positive effect on the retention coefficient for all the four pressures tested (100, 200, 300, 400 kPa). Full article
Show Figures

Figure 1

Back to TopTop