Distribution and Potential Sources of OCPs and PAHs in Waters from the Danshui River Basin in Yichang, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling
2.2. Sample Pretreatment and Instrumental Analysis
2.3. Quality Assurance and Quality Control
3. Results and Discussion
3.1. Concentrations and Spatial Distribution of OCPs and PAHs
3.1.1. Concentrations and Spatial Distribution of OCPs
3.1.2. Concentrations and Spatial Distribution of PAHs
3.2. Source Diagnosis of OCPs and PAHs
3.2.1. Potential Source Analysis of OCPs
3.2.2. Potential Source Analysis of PAHs
3.3. Mass Flows of OCPs and PAHs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hong, W.-J.; Li, Y.-F.; Li, W.-L.; Jia, H.; Minh, N.H.; Sinha, R.K.; Moon, H.-B.; Nakata, H.; Chi, K.H.; Kannan, K.; et al. Soil concentrations and soil-air exchange of polycyclic aromatic hydrocarbons in five Asian countries. Sci. Total Environ. 2020, 711, 135223. [Google Scholar] [CrossRef] [PubMed]
- Pozo, K.; Harner, T.; Wania, F.; Muir, D.C.G.; Jones, K.C.; Barrie, L.A. Toward a global network for persistent organic pollutants in air: Results from the GAPS study. Environ. Sci. Technol. 2006, 40, 4867–4873. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Simonich, S.; Giri, B.; Chang, Y.; Zhang, Y.; Jia, Y.; Tao, S.; Wang, R.; Wang, B.; Li, W.; et al. Atmospheric concentrations and air–soil gas exchange of polycyclic aromatic hydrocarbons (PAHs) in remote, rural village and urban areas of Beijing–Tianjin region, North China. Sci. Total Environ. 2011, 409, 2942–2950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Y.; Price, O.R.; Tao, S.; Jones, K.C.; Sweetman, A.J. A new multimedia contaminant fate model for China: How important are environmental parameters in influencing chemical persistence and long-range transport potential? Environ. Int. 2014, 69, 18–27. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.X.; Nguyen, B.T.; Tran, H.T.T.; Mai, H.; Duong, T.T.; Bach, Q.-V. Seasonal, spatial variation, and potential sources of organochlorine pesticides in water and sediment in the lower reaches of the Dong Nai River system in Vietnam. Arch. Environ. Contam. Toxicol. 2019, 77, 514–526. [Google Scholar] [CrossRef]
- Wang, C.; Wu, S.; Zhou, S.; Wang, H.; Li, B.; Chen, H.; Yu, Y.; Shi, Y. Polycyclic aromatic hydrocarbons in soils from urban to rural areas in Nanjing: Concentration, source, spatial distribution, and potential human health risk. Sci. Total Environ. 2015, 527–528, 375–383. [Google Scholar] [CrossRef]
- Zhu, Y.; Tao, S.; Price, O.R.; Shen, H.; Jones, K.C.; Sweetman, A.J. Environmental distributions of benzo[a]pyrene in China: Current and future emission reduction scenarios explored using a spatially explicit multimedia fate model. Environ. Sci. Technol. 2015, 49, 13868–13877. [Google Scholar] [CrossRef] [Green Version]
- Qi, C.; Huang, J.; Wang, B.; Deng, S.; Wang, Y.; Yu, G. Contaminants of emerging concern in landfill leachate in China: A review. Emerg. Contam. 2018, 4, 1–10. [Google Scholar] [CrossRef]
- Zhang, J.; Xing, X.; Qi, S.; Tan, L.; Yang, D.; Chen, W.; Yang, J.; Xu, M. Organochlorine pesticides (OCPs) in soils of the coastal areas along Sanduao Bay and Xinghua Bay, southeast China. J. Geochem. Explor. 2013, 125, 153–158. [Google Scholar] [CrossRef]
- Sun, Z.; Zhu, Y.; Zhuo, S.J.; Liu, W.P.; Zeng, E.Y.; Wang, X.L.; Xing, B.S.; Tao, S. Occurrence of nitro- and oxy-PAHs in agricultural soils in eastern China and excess lifetime cancer risks from human exposure through soil ingestion. Environ. Int. 2017, 108, 261–270. [Google Scholar] [CrossRef]
- Zeng, F.M.; Jiang, Z.C.; Shen, L.N.; Chen, W.; Yang, Q.Y.; Zhang, C. Assessment of multiple and interacting modes of soil loss in the karst critical zone, Southwest China (SWC). Geomorphology 2018, 322, 97–106. [Google Scholar] [CrossRef]
- Liu, W.; Brancelj, A. Hydrochemical response of cave drip water to snowmelt water, a case study from Velika Pasica Cave, central Slovenia. Acta Carsologica 2014, 43, 65–74. [Google Scholar] [CrossRef]
- Rodríguez, A.G.P.; López, M.I.R.; Casillas, Á.D.; León, J.A.A.; Banik, S.D. Impact of pesticides in karst groundwater. Review of recent trends in Yucatan, Mexico. Groundw. Sustain. Dev. 2018, 7, 20–29. [Google Scholar] [CrossRef]
- Schwarz, K.; Gocht, T.; Grathwohl, P. Transport of polycyclic aromatic hydrocarbons in highly vulnerable karst systems. Environ. Pollut. 2011, 159, 133–139. [Google Scholar] [CrossRef]
- Perrette, Y.; Poulenard, J.; Durand, A.; Quiers, M.; Malet, E.; Fanget, B.; Naffrechoux, E. Atmospheric sources and soil filtering of PAH content in karst seepage waters. Org. Geochem. 2013, 65, 37–45. [Google Scholar] [CrossRef]
- Levy, W.; Pandelova, M.; Henkelmann, B.; Bernhöft, S.; Fischer, N.; Antritter, F.; Schramm, K.-W. Persistent organic pollutants in shallow percolated water of the Alps Karst system (Zugspitze summit, Germany). Sci. Total Environ. 2017, 579, 1269–1281. [Google Scholar] [CrossRef]
- Lan, J.; Sun, Y.; Xiao, S.; Yuan, D. Polycyclic aromatic hydrocarbon contamination in a highly vulnerable underground river system in Chongqing, Southwest China. J. Geochem. Explor. 2016, 168, 65–71. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, S.; Xie, Z.; Lan, J.; Li, T.; Yuan, D.; Yang, H.; Xing, B. Characteristics and ecological risk assessment of polycyclic aromatic hydrocarbons in soil seepage water in karst terrains, southwest China. Ecotoxicol. Environ. Saf. 2020, 190, 110122. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, S.; Lan, J.; Xie, Z.; Pu, J.; Yuan, D.; Yang, H.; Xing, B. Vertical migration from surface soils to groundwater and source appointment of polycyclic aromatic hydrocarbons in epikarst spring systems, southwest China. Chemosphere 2019, 230, 616–627. [Google Scholar] [CrossRef]
- Liu, W.; Wang, Z.; Chen, Q.; Yan, Z.; Zhang, T.; Han, Z.; Chen, W.; Zhou, H. An interpretation of water recharge in karst trough zone as determined by high-resolution tracer experiments in western Hubei, China. Environ. Earth Sci. 2020, 79, 357. [Google Scholar] [CrossRef]
- Wang, S.; Fu, Z.; Chen, H.; Nie, Y.; Xu, Q. Mechanisms of surface and subsurface runoff generation in subtropical soil-epikarst systems: Implications of rainfall simulation experiments on karst slope. J. Hydrol. 2020, 580, 124370. [Google Scholar] [CrossRef]
- Song, F.; Wu, L.-M.; Tian, R.; He, L.-G.; Wang, Z.-J.; Jiang, Y.-C.; Jiao, C.-H. General investigation and statistical analysis of crop germplasm resources in Zigui county. Hubei Agric. Sci. 2020, 59, 27–32. [Google Scholar]
- Chen, W.; Jing, M.; Bu, J.; Ellis Burnet, J.; Qi, S.; Song, Q.; Ke, Y.; Miao, J.; Liu, M.; Yang, C. Organochlorine pesticides in the surface water and sediments from the Peacock River Drainage Basin in Xinjiang, China: A study of an arid zone in Central Asia. Environ. Monit. Assess. 2011, 177, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Xing, X.; Zhang, Y.; Yang, D.; Zhang, J.; Chen, W.; Wu, C.; Liu, H.; Qi, S. Spatio-temporal variations and influencing factors of polycyclic aromatic hydrocarbons in atmospheric bulk deposition along a plain-mountain transect in western China. Atmos. Environ. 2016, 139, 131–138. [Google Scholar] [CrossRef] [Green Version]
- Qian, Z.; Mao, Y.; Xiong, S.; Peng, B.; Liu, W.; Liu, H.; Zhang, Y.; Chen, W.; Zhou, H.; Qi, S. Historical residues of organochlorine pesticides (OCPs) and polycyclic aromatic hydrocarbons (PAHs) in a flood sediment profile from the Longwang Cave in Yichang, China. Ecotoxicol. Environ. Saf. 2020, 196, 110542. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Huang, J.; Yu, G.; Hong, H. Occurrence of PAHs, PCBs and organochlorine pesticides in the Tonghui River of Beijing, China. Environ. Pollut. 2004, 130, 249–261. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, S.; Cui, W.; Meng, X.; Tang, X. Polycyclic aromatic hydrocarbons and organochlorine pesticides in surface water from the Yongding River basin, China: Seasonal distribution, source apportionment, and potential risk assessment. Sci. Total Environ. 2018, 618, 419–429. [Google Scholar] [CrossRef]
- Vilanova, R.; Fernández, P.; Martínez, C.; Grimalt, J.O. Organochlorine pollutants in remote mountain lake waters. J. Environ. Qual. 2001, 30, 1286–1295. [Google Scholar] [CrossRef]
- Guzzella, L.; Poma, G.; De Paolis, A.; Roscioli, C.; Viviano, G. Organic persistent toxic substances in soils, waters and sediments along an altitudinal gradient at Mt. Sagarmatha, Himalayas, Nepal. Environ. Pollut. 2011, 159, 2552–2564. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Dong, Y.-H.; Wang, H. Residues of organochlorine pesticides and polycyclic aromatic hydrocarbons in farm-raised livestock feeds and manures in Jiangsu, China. Sci. Total Environ. 2013, 450–451, 348–355. [Google Scholar] [CrossRef]
- Chakraborty, P.; Zhang, G.; Li, J.; Xu, Y.; Liu, X.; Tanabe, S.; Jones, K.C. Selected organochlorine pesticides in the atmosphere of major Indian cities: Levels, regional versus local variations, and sources. Environ. Sci. Technol. 2010, 44, 8038–8043. [Google Scholar] [CrossRef]
- Zhang, Z.L.; Hong, H.S.; Zhou, J.L.; Yu, G. Phase association of polycyclic aromatic hydrocarbons in the Minjiang River Estuary, China. Sci. Total Environ. 2004, 323, 71–86. [Google Scholar] [CrossRef] [PubMed]
- Barrie, L.A.; Gregor, D.; Hargrave, B.; Lake, R.; Muir, D.; Shearer, R.; Tracey, B.; Bidleman, T. Arctic contaminants: Sources, occurrence and pathways. Sci. Total Environ. 1992, 122, 1–74. [Google Scholar] [CrossRef]
- Jiang, Y.-F.; Wang, X.-T.; Jia, Y.; Wang, F.; Wu, M.-H.; Sheng, G.-Y.; Fu, J.-M. Occurrence, distribution and possible sources of organochlorine pesticides in agricultural soil of Shanghai, China. J. Hazard. Mater. 2009, 170, 989–997. [Google Scholar] [CrossRef]
- Yu, Y.; Li, Y.; Shen, Z.; Yang, Z.; Mo, L.; Kong, Y.; Lou, I. Occurrence and possible sources of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) along the Chao River, China. Chemosphere 2014, 114, 136–143. [Google Scholar] [CrossRef]
- Huang, H.; Zhang, Y.; Chen, W.; Chen, W.; Yuen, D.A.; Ding, Y.; Chen, Y.; Mao, Y.; Qi, S. Sources and transformation pathways for dichlorodiphenyltrichloroethane (DDT) and metabolites in soils from Northwest Fujian, China. Environ. Pollut. 2018, 235, 560–570. [Google Scholar] [CrossRef] [PubMed]
- Bosch, C.; Grimalt, J.O.; Fernández, P. Enantiomeric fraction and isomeric composition to assess sources of DDT residues in soils. Chemosphere 2015, 138, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zeng, F.; Liu, W.; Bu, J.; Hu, G.; Xie, S.; Yao, H.; Zhou, H.; Qi, S.; Huang, H. Organochlorine pesticides in karst soil: Levels, distribution, and source diagnosis. Int. J. Environ. Res. Public Health 2021, 18, 11589. [Google Scholar] [CrossRef] [PubMed]
- Qu, C.; Albanese, S.; Li, J.; Cicchella, D.; Zuzolo, D.; Hope, D.; Cerino, P.; Pizzolante, A.; Doherty, A.L.; Lima, A.; et al. Organochlorine pesticides in the soils from Benevento provincial territory, southern Italy: Spatial distribution, air-soil exchange, and implications for environmental health. Sci. Total Environ. 2019, 674, 159–170. [Google Scholar] [CrossRef]
- Doong, R.-A.; Sun, Y.-C.; Liao, P.-L.; Peng, C.-K.; Wu, S.-C. Distribution and fate of organochlorine pesticide residues in sediments from the selected rivers in Taiwan. Chemosphere 2002, 48, 237–246. [Google Scholar] [CrossRef]
- Gao, J.; Zhou, H.; Pan, G.; Wang, J.; Chen, B. Factors influencing the persistence of organochlorine pesticides in surface soil from the region around the Hongze Lake, China. Sci. Total Environ. 2013, 443, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Bidleman, T.F.; Jantunen, L.M.M.; Helm, P.A.; Brorström-Lundén, E.; Juntto, S. Chlordane enantiomers and temporal trends of chlordane isomers in Arctic air. Environ. Sci. Technol. 2002, 36, 539–544. [Google Scholar] [CrossRef]
- Huang, H.; Liu, H.; Xiong, S.; Zeng, F.; Bu, J.; Zhang, B.; Liu, W.; Zhou, H.; Qi, S.; Xu, L.; et al. Rapid transport of organochlorine pesticides (OCPs) in multimedia environment from karst area. Sci. Total Environ. 2021, 775, 145698. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Liu, L.; Sun, Y.; Sun, B.; Wang, D.; Su, Y.; Kannan, K.; Li, Y.-F. Monitoring and modeling endosulfan in Chinese surface soil. Environ. Sci. Technol. 2010, 44, 9279–9284. [Google Scholar] [CrossRef]
- Dong, T.T.T.; Lee, B.-K. Characteristics, toxicity, and source apportionment of polycylic aromatic hydrocarbons (PAHs) in road dust of Ulsan, Korea. Chemosphere 2009, 74, 1245–1253. [Google Scholar] [CrossRef] [PubMed]
- Yunker, M.B.; Macdonald, R.W.; Vingarzan, R.; Mitchell, R.H.; Goyette, D.; Sylvestre, S. PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Org. Geochem. 2002, 33, 489–515. [Google Scholar] [CrossRef]
Compounds | Range | Mean ± SD | Median | Detection Rates |
---|---|---|---|---|
α-HCH | <MDL–253 | 50.5 ± 59.5 | 28.6 | 65 |
β-HCH | 29.4–12,936 | 811 ± 2783 | 173 | 100 |
γ-HCH | <MDL–7743 | 455 ± 1673 | 50.8 | 90 |
δ-HCH | <MDL–546 | 76.6 ± 125 | 33.5 | 85 |
o,p′-DDE | <MDL–736 | 177 ± 227 | 76.4 | 70 |
p,p′-DDE | <MDL–110 | 20.3 ± 26.2 | <MDL | 45 |
o,p′-DDD | <MDL–1369 | 215 ± 385 | 25.9 | 45 |
p,p′-DDD | <MDL–589 | 68.0 ± 127 | 23.9 | 55 |
o,p′-DDT | <MDL–1180 | 93.8 ± 255 | <MDL | 40 |
p,p′-DDT | <MDL–561 | 266 ± 186 | 258 | 90 |
HCB | 18.3–2716 | 431 ± 753 | 85.1 | 100 |
TC | <MDL–1315 | 102 ± 285 | 14.1 | 60 |
CC | <MDL–2075 | 173 ± 447 | 33.9 | 80 |
α-Endo | <MDL–234 | 53.0 ± 58.1 | 31.0 | 65 |
β-Endo | <MDL–8493 | 476 ± 1841 | 32.1 | 60 |
heptachlor | <MDL–1027 | 274 ± 347 | 59.5 | 70 |
heptachlor-epoxide | <MDL–956 | 151 ± 264 | 37.3 | 75 |
aldrin | 16.5–3427 | 500 ± 729 | 350 | 100 |
dieldrin | <MDL–98.5 | 24.4 ± 27.5 | <MDL | 45 |
endrin | <MDL–657 | 54.2 ± 141 | <MDL | 45 |
endrin aldehyde | <MDL–199 | 44.4 ± 54.4 | <MDL | 45 |
endrin ketone | <MDL–110 | 23.4 ± 32.1 | <MDL | 20 |
ES | <MDL–338 | 45.2 ± 87.1 | <MDL | 35 |
methoxychlor | <MDL–1422 | 133 ± 312 | <MDL | 30 |
∑4HCHs | 104–20,931 | 1394 ± 4490 | 310 | 100 |
∑6DDTs | 116–3268 | 841 ± 680 | 628 | 95 |
∑24OCPs | 1225–31,225 | 4719 ± 6794 | 2230 | 100 |
Compounds | Aromatic Ring | Range | Mean ± SD | Median | Detection Rate |
---|---|---|---|---|---|
Nap | 2 | 2.76–12.1 | 5.74 ± 2.59 | 5.06 | 100 |
Acy | 3 | <MDL–1.22 | 0.33 ± 0.31 | 0.24 | 90 |
Ace | 3 | <MDL–1.69 | 0.37 ± 0.38 | 0.27 | 85 |
Flu | 3 | <MDL–6.73 | 1.24 ± 1.86 | 0.45 | 85 |
Phe | 3 | 0.20–23.3 | 4.33 ± 6.50 | 1.01 | 100 |
Ant | 3 | <MDL–0.08 | <MDL | <MDL | 25 |
Fla | 4 | <MDL–28.9 | 2.24 ± 6.29 | 0.15 | 80 |
Pyr | 4 | <MDL–161 | 8.50 ± 35.0 | 0.06 | 55 |
BaA | 4 | <MDL–0.86 | 0.41 ± 0.17 | 0.36 | 95 |
Chr | 4 | <MDL–0.41 | 0.08 ± 0.09 | 0.05 | 80 |
BbF | 5 | 0.17–3.04 | 1.46 ± 0.84 | 1.41 | 100 |
BkF | 5 | <MDL–1.03 | <MDL | <MDL | 10 |
BaP | 5 | <MDL–4.02 | 1.37 ± 1.01 | 1.13 | 90 |
Icdp | 5 | <MDL–0.08 | <MDL | <MDL | 10 |
DahA | 6 | <MDL | <MDL | <MDL | 5 |
BghiP | 6 | <MDL–0.06 | <MDL | <MDL | 10 |
LMW-PAHs | 2–3 | 3.91–44.7 | 12.0 ± 11.2 | 6.70 | 100 |
HMW-PAHs | 4–6 | 1.02–193 | 14.2 ± 41.1 | 4.51 | 95 |
∑16PAHs | / | 5.49–222 | 26.2 ± 46.8 | 12.3 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.; Peng, B.; Huang, H.; Kuang, Y.; Qian, Z.; Zhu, W.; Liu, W.; Zhang, Y.; Liao, Y.; Zhao, X.; et al. Distribution and Potential Sources of OCPs and PAHs in Waters from the Danshui River Basin in Yichang, China. Int. J. Environ. Res. Public Health 2022, 19, 263. https://doi.org/10.3390/ijerph19010263
Chen W, Peng B, Huang H, Kuang Y, Qian Z, Zhu W, Liu W, Zhang Y, Liao Y, Zhao X, et al. Distribution and Potential Sources of OCPs and PAHs in Waters from the Danshui River Basin in Yichang, China. International Journal of Environmental Research and Public Health. 2022; 19(1):263. https://doi.org/10.3390/ijerph19010263
Chicago/Turabian StyleChen, Wei, Bo Peng, Huanfang Huang, Ye Kuang, Zhe Qian, Wenting Zhu, Wei Liu, Yuan Zhang, Yuan Liao, Xiufang Zhao, and et al. 2022. "Distribution and Potential Sources of OCPs and PAHs in Waters from the Danshui River Basin in Yichang, China" International Journal of Environmental Research and Public Health 19, no. 1: 263. https://doi.org/10.3390/ijerph19010263
APA StyleChen, W., Peng, B., Huang, H., Kuang, Y., Qian, Z., Zhu, W., Liu, W., Zhang, Y., Liao, Y., Zhao, X., Zhou, H., & Qi, S. (2022). Distribution and Potential Sources of OCPs and PAHs in Waters from the Danshui River Basin in Yichang, China. International Journal of Environmental Research and Public Health, 19(1), 263. https://doi.org/10.3390/ijerph19010263