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Abstract: Glyphosate is a broad-spectrum pesticide used in crops and is found in many products
used by industry and consumers. Unfortunately, glyphosate has been shown to have some toxicity
toward many organisms found in our ecosystems and has been reported to have carcinogenic effects
on humans. Hence, there is a need to develop novel nanosensors that are more sensitive and facile
and permit rapid detection. Current optical-based assays are limited as they rely on changes in signal
intensity, which can be affected by multiple factors in the sample. Herein, we report the development
of a dual emissive carbon dot (CD) system that can be used to optically detect glyphosate pesticides
in water at different pH levels. The fluorescent CDs emit blue and red fluorescence, which we
exploit as a ratiometric self-referencing assay. We observe red fluorescence quenching with increasing
concentrations of glyphosate in the solution, ascribed to the interaction of the glyphosate pesticide
with the CD surface. The blue fluorescence remains unaffected and serves as a reference in this
ratiometric approach. Using fluorescence quenching assays, a ratiometric response is observed in the
ppm range with detection limits as low as 0.03 ppm. Our CDs can be used to detect other pesticides
and contaminants in water, as cost-effective and simple environmental nanosensors.

Keywords: carbon dots; sensing; glyphosate; ratiometric fluorescence

1. Introduction

Nowadays, pesticides and herbicides are widely used in agriculture to improve the
quality and yield of crops. Glyphosate (N-(phosphonomethyl)glycine) is a broad-spectrum,
non-selective pesticide used for crops, vegetation, and weed control. It is currently globally
used and is found in more than 750 products for agriculture, forestry, urban, and home use.
Because of its relatively low toxicity toward mammals, glyphosate has become the most
widely used pesticide; however, recent studies revealed that the overuse of glyphosate is
directly linked to environmental pollution [1–3]. Glyphosate has strong soil retention and
high solubility in water, as well as a long half-life in the environment [4,5]. According to
the International Agency for Research on Cancer (IARC), this herbicide has been linked
to possible carcinogenic effects in humans [6]. As a consequence, glyphosate represents a
health hazard, highlighting the urgent need to monitor its presence in the environment.

To date, chromatography techniques such as high-performance liquid chromatog-
raphy and gas chromatography remain the most popular approaches to evaluate the
concentrations of glyphosate in samples. Capillary electrophoresis and inductively coupled
plasma–mass spectrometry have also been established as alternative approaches [7–10].
While these analytical methods offer high sensitivity and selectivity, they are not cost-
effective and require sophisticated instrumentation [11,12]. To overcome these limitations,
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a novel approach to detect glyphosate relies on fluorescence-based sensors from quan-
tum dots (QDs), organic dyes, metal–organic frameworks, or composites, among many
others [13–15]. However, the fabrication of these materials poses numerous challenges,
such as the requirement for the use of heavy metals that can degrade and leach into the
environment, complex syntheses, as well as limited photo- or physical stability. In this con-
text, carbon dots (CDs) are attractive due to their sustainable, cost-effective synthesis and
versatile physico-chemical and optical properties [16]. CDs are defined as quasi-spherical
carbon-based nanomaterials with a size of ~10 nm [17]. They can be synthesized using
facile, accessible, and low-cost synthesis routes. They possess unique properties, such as
tunable emission, high fluorescence quantum yields, excellent water dispersibility, low
cytotoxicity, and good biocompatibility. Moreover, their surfaces are rich in functional
groups, enabling chemical tunability and reactivity with the surrounding environment. For
this reason, they have been exploited for a range of applications in the fields of sensing,
energy storage, catalysis, and theragnostics [18–20].

In recent years, several CD-based fluorescent sensors have been developed to detect
pesticides and have shown the potential to compete with the currently used analytical
techniques (Table 1). Hou et al. used a hydrothermal method to synthesize CDs from
Sophora japonica leaves, where fluorescence is quenched by the addition of Fe3+ and
recovers by interaction with glyphosate [21].

Table 1. Analytical parameters of some sensing methods used for glyphosate detection.

Pesticide Analytical Methods Detection Limit References

Glyphosate

High-performance
chromatography (HPLC) 50 ng/mL (0.05 ppm) [21]

Gas chromatography–mass
spectrometry (GC-MS) 0.1 ug/mL (0.0001 ppm) [22]

Capillary electrophoresis (CE) 85 ng/mL (0.085 ppm) [23]

Inductively coupled plasma
mass spectrometry (ICP-MS) 0.7 ug/mL (0.7 ppm) [24]

Carbon dots

0.4 ng/mL (0.0004 ppm)
0.8 ng/mL (0.0008 ppm)

9 ng/mL (0.009 ppm)
12 ng/mL (0.012 ppm)
0.6 umol/L (0.10 ppm)

[25]
[26]
[27]
[28]
[29]

This probe detects glyphosate ranging from 0.1 to 16 ppm, with a detection limit of
0.008 ppm. Wu et al. designed green emissive carbon dots with similar properties, which are
quenched by the addition of Cu2+ ions, and fluorescence is recovered by glyphosate up to
110%, with a detection range of 0.5–1.3 ppm [29]. While fluorescence quenching/recovery
offer improved sensitivity and selectivity, as well as portability and a rapid response
when compared to other techniques, they are limited by environmental factors and the
instrumentation. Ratiometric sensing overcomes these challenges and offers improved
sensitivity [30–32]. Indeed, by assessing changes in the ratio between two fluorescent
signals as a function of the concentration of the target analyte, precise measurements can be
obtained regardless of the external environmental conditions or fluctuations and artefacts
associated with instrumentation [33]. Only a few ratiometric carbon-based sensors have
been developed to date. For example, Luo et al. synthesized an N-doped CD encapsulated
by a porphyrin metal–organic framework to ratiometrically detect glyphosate with a limit
of detection (LOD) of 1.6 ppm, with an integrated smartphone-assisted platform [34–37].
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Herein, we report the microwave-assisted synthesis of dual-emitting CDs from
L-glutathione and formamide for the simple and sensitive detection of glyphosate at
sub-ppm levels in aqueous solutions with different pH (3–10) to mimic various environ-
mental conditions. Our detection method is based on the ratiometric response of red
to blue fluorescence signals following the addition of glyphosate. Glyphosate quantitation
assays are developed over low (0–20 ppm) and high (0–500 ppm) concentration ranges and the
optical response of the CDs is evaluated over their entire range of emission (400–800 nm). The
surface chemistry of the CDs reveals their mechanism of glyphosate interaction. Our CDs
demonstrate the competitive, sensitive, and selective detection of glyphosate, with an LOD
as low as 0.03 ppm.

2. Materials and Methods
2.1. Chemicals and Reagents

Formamide (≥99.5%) and reduced L-glutathione (≥98.0%) were purchased from
Thermo Scientific. Glyphosate (N-(phosphonomethyl)glycine) was purchased from Sigma
Aldrich. All reagents and chemicals were used without any further modification or purification.

2.2. Synthesis of the CDs

The CDs were prepared in a microwave reactor using a one-step reaction with
L-glutathione and formamide, as previously reported [17,31,32]. The CDs were synthesized
using a CEM Discover SP Microwave Reactor. A 10 mL solution of L-glutathione (0.1 M)
in formamide was prepared and then sonicated for 20 min until the solution turned clear.
Subsequently, the solution was transferred to a 35 mL microwave vial and heated to 180 ◦C
for 5 min at 300 psi in the microwave reactor. After the reaction was completed, the solution
was dialyzed in Milli-Q water using a cellulose ester dialysis membrane (molecular weight
cutoff: 3.5–5.0 kDa) to remove unwanted material and impurities. The water was changed
twice a day for seven consecutive days. Afterwards, the solution was dried using the
rotavapor until a fine powder was acquired. Lastly, the CDs were purified and washed
twice with acetone and twice with ethanol (1:10 volume ratio of sample:solvent). After
each wash, the precipitate was collected by centrifugation at 10,000× g for 10 min, from
which the supernatant was discarded. Finally, the pellet collected was placed in an oven at
80 ◦C overnight to dry.

2.3. Fluorescence Spectroscopy

Fluorescence spectra were measured using a Cary Eclipse fluorescence spectropho-
tometer from Agilent Technologies. Spectra were acquired in a 10 mm quartz cuvette at
λex = 405 nm from 200 nm to 800 nm (1 nm intervals). The excitation and emission slits were
set to a width of 5 nm, with a PMT voltage of 600 V and a scan rate of 600 nm/min. All data
were processed using the Cary Eclipse software. The spectra were background-corrected
for the solvent (Milli-Q water).

2.4. UV–Visible Absorbance Spectroscopy (UV–Vis)

UV–visible absorption spectra were acquired from 200 to 800 nm on a Cary 5 Series
UV–Vis–NIR Spectrophotometer from Agilent Technologies using a 10 mm quartz cuvette.
A 5.0 nm bandwidth and wavelength changeover at 350 nm were used for analysis. Data
were processed using the Cary Eclipse software. The spectra were background-corrected
for the solvent (Milli-Q water).
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2.5. Fourier Transform Infrared Spectroscopy (FT-IR)

FTIR spectra were collected using a Thermo Scientific Nicolet iS5 equipped with an
iD5 ATR accessory. Approximately 10 µg of sample was used for the analysis. The spectra
were collected using 64 scans with a resolution of 0.4 cm−1, a gain of 1, an optical velocity
0.4747, and an aperture setting of 100. Data were processed using the Omnic 9 software
(v.9.2; Thermo Scientific).

2.6. X-ray Photoelectron Spectroscopy (XPS)

XPS spectra of the CDs were acquired using a Thermo Scientific K-Alpha X-Ray
Photoelectron Spectrometer (ThermoFisher Scientific, Boston, MA, USA). Each analysis
was carried out in triplicate, with 10 runs for each scan; the high-resolution and survey
scans represent the average of the triplicate measurements.

2.7. Fluorescence Lifetimes

Fluorescence lifetimes were acquired using an EasyLife X fluorescence lifetime system
(Optical Building Blocks Corporation, Birmingham, NJ, USA). Spectra were collected in a
1 cm quartz fluorescence cuvette, using a 368 nm pulsed picosecond LED excitation source.
An emission slit width of 1.5 mm, 800 channels, 1.0 s integration time, and 1 reading were
used for analysis. A bi-exponential decay was measured with a random collection mode in
logarithmic collection steps to account for any potential photobleaching and to obtain more
data points at the time of the pulse. The data were processed and analyzed using the OBB
EasyLife X software (v.10.0.0.38; Optical Building Blocks Corporate, Birmingham, NJ, USA).

2.8. Transmission Electron Spectroscopy (TEM)

TEM grids (300-mesh CU (Cu-300HD)) were prepared by pipetting 2 mL of a 2 mg/mL
dispersion of CDs onto the surface, followed by the evaporation of the solvent. The TEM
images were collected using a JEOL JEM-2100F microscope operating at 100 kV. The images
were processed, and carbon dot sizes were measured using the Fiji imaging software (v.1.53;
NIH, Bethesda, MD, USA).

3. Results and Discussion
3.1. Physico-Chemical and Optical Characterization

CDs were synthesized via a microwave-assisted technique using formamide and
L-glutathione as precursors. Following purification and isolation of the dried product, TEM
analysis was performed to evaluate the shape and morphology of the dots. In Figure 1A,
the TEM digital image reveals that the dots were quasi-spherical with a mean size of
13.1 ± 5.0 nm. Particle size distribution analysis revealed that the dots ranged from 5 to
30 nm in size. The larger sizes were attributed to agglomerations of the dots on the TEM
grid. The CDs lacked a crystalline structure, as evidenced by the XRD profile (Figure 1B),
with a broad amorphous halo spanning the range of 10–80◦ 2θ. The broad reflection at 24.3
◦2q on top of the amorphous halo was ascribed to the graphitic structure of the dots.

The CDs formed a near-colorless light green solution when dispersed in water at
a concentration of 50 µg/mL. When exposed to a wavelength of 365 nm, a violet color
was observed, which could be attributed to the simultaneous emission of blue and red
fluorescence. The UV–vis absorption spectra of the CDs are shown in Figure 1C. Three
spectral bands were observed: the first band was a π→ π* transition at 250 nm, ascribed
to the C=C bonds; the second band, at 420 nm, was assigned to the π→ π* transition of
C=O/C=N bonds, while the third band, spanning 580 to 690 nm, was associated with the
n→ π* transitions of C=S bonds [14,17,31,32]. Upon excitation of the CDs with a short
wavelength of 405 nm, dual fluorescence was produced in the blue and red regions of
the spectrum, while excitation with a long wavelength of 600 nm produced a single peak
centered at 680 nm. This optical effect can be attributed to the core and molecular states of
the CDs [38].
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Figure 1. Physico-chemical properties of CDs. (A) TEM image of a 2 mg/mL CD dispersion in
water. A Gaussian size distribution profile ranging from 0 to 30 nm is observed. The average size of
the NPs was calculated to be 13.1 ± 5.0 nm (number of counts = 100). (B) XRD profile of the CDs
shows an amorphous halo in the range of 10–80 2θ, noting the broad graphitic reflection on 24.3 o2q.
(C) The UV–vis absorption spectrum highlights three prominent bands at 250, 420, and 580–690 nm.
At an excitation wavelength of 405 nm, there are two fluorescence bands observed in the blue and
red regions of the spectrum, while excitation at 640 nm shows only red fluorescence. Under 365 nm
UV light, the CD solution displays a violet-blue color.

XPS analysis was performed to explore the chemical composition of the CDs. The
survey spectrum in Figure 2A illustrates four binding energies at 533.2, 399.7, 285.1, and
164.9 eV, corresponding to oxygen (O1s), nitrogen (N1s), carbon (C1s), and sulfur (S2s),
respectively. The high-resolution XPS (HR-XPS) spectra shown in Figure 2B reveal the
binding energies of thiophene S2p1/2 (162.1 eV), thiophene S2p3/2 (163.4 eV), and thiolate
(164.7 eV). In a similar manner, C-C/C=C, C-N, and C=O/C=N functional groups were
found by deconvoluting C1s into binding energies of 284.7, 286.1, and 287.9 eV, respectively
(Figure 2C). Likewise, deconvolution of the HR-XPS N1s spectrum (Figure 2D) resulted
in binding energies of 399.5, 399.8, and 401.2 eV, associated with pyridinic, NH2/pyrrolic,
and graphitic nitrogen, respectively. Lastly, the HR-XPS O1s spectra (Figure 2E) showed
deconvoluted binding energies at 531.5 and 533.2 eV, which could be ascribed to the
C-OH/C-O-C and C=O functional groups. The elemental composition of the CDs was
measured through XPS analysis by comparing the integrated peak areas in the HR-XPS
spectra of the respective elements. The composition of the CDs was found to be 55.95%
carbon, 14.86% nitrogen, 26.17% oxygen, and 3.02% sulfur. This composition is similar to
that of other glutathione-based CDs discussed in the literature [17,30,32,38].

To further explore the surface properties of the CDs, Fourier transform infrared spec-
troscopy (FT-IR) was performed, as shown in Figure 2F. The FT-IR spectrum revealed a
broad band centered at ~3100 cm−1, attributed to O-H and N-H stretching vibrations of
hydroxyl and amine groups. Furthermore, three strong bands at 1649, 1375, and 1300 cm−1

confirmed the presence of C=O, C-N, and C-O groups, respectively. Lastly, the band appear-
ing at 1575 cm−1 was associated with the C=C/C=N groups present in the cores and/or
surfaces of the dots. These findings are indeed in accordance with our XPS analysis.
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Figure 2. Chemical composition of dual emissive CDs. (A) XPS survey spectrum of the CDs, which
reveals four binding energies for S2p, C1s, N1s, and O1s. HR-XPS spectra of the deconvoluted
binding energies are assigned to (B) S2p at a maximum of 163.4 eV, (C) C1s at a maximum of 286.6 eV,
(D) N1s at a maximum of 400.5 eV, and (E) O1s at a maximum of 513.4 eV. (F) FT-IR spectrum of the
CDs shows the presence of O-H and N-H surface groups in addition to carbonyl and amide stretches.

3.2. Detection of Glyphosate Using a Ratiometric Approach

Next, we determined the effect of adding glyphosate on the optical properties of
the dual emissive CDs. The optical properties of the CDs in water were measured as a
function of the glyphosate concentration. As shown in both Figures 3 and S1, only the
red fluorescence changed with glyphosate concentrations from 0 to 500 ppm, while the
blue fluorescence remained virtually unaffected. The change in red fluorescence could be
explained by the interaction between the glyphosate and the surface functional groups
of the CDs. This interaction resulted in the quenching of the red fluorescence due to a
decrease in radiative emissive pathways from the surface; in contrast, the blue emission
was unchanged as this stemmed from the cores of the CDs, which did not interact with the
pesticide. Following excitation at 405 nm, the red to blue fluorescence ratio was obtained at
every glyphosate concentration using Equation (1).

Ratiored to blue =
Integrated area o f the red f luorescence f rom 600− 800 nm (λex = 405 nm)

Integrated area o f the blue f luorescence f rom 415− 600 nm (λex = 405 nm)
(1)

Since the safe maximum concentration of glyphosate for drinking water in Canada
is ~0.2 ppm, we determined the sensing capability of the CDs in the low ppm (0–10 ppm)
range {Formatting Citation}. As shown in Figure 3, following excitation at 405 nm, the ratio
of red to blue fluorescence decreased with the increase in the concentration of glyphosate,
where a negative linear response was observed with R2 = 0.996. The limit of detection (LOD)
of this ratiometric approach was calculated as 0.03 ppm using the standard deviation of the
response of the curve (Sy) and the slope of the linear regression (S) following Equation (2):

LOD = 3.3
(
Sy/S

)
(2)

Next, we determined how the pH affected the spectral properties of the CDs. The
same measurements were performed as for water, but with the pH adjusted to 3 using HCl
or 10 using NaOH, to mimic the different environmental pH conditions that can occur after
natural events such as acid rain and or unnatural events such as chemical leaks in water
sources. As shown in Figure 3, the R2 = 0.474 and 0.994 for pH 3 and 10, respectively, with
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an LOD at 0.03 ppm. The lower R2 correlation for pH 3 reflects decreased sensitivity to the
pesticide. At pH 3, both the glyphosate and the surfaces of the CDs, which comprise similar
functional groups, are fully protonated. This results in a decrease in the dipole moment
and a reduction in the electrostatic interactions between the glyphosate and the surfaces of
the CDs (vide infra).
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We also measured the sensing capabilities of the CDs at high ppm concentrations.
This was carried out to determine their potential to sense glyphosate in food samples.
The regulatory limit for food samples in Canada can range from 0.1 to 400 ppm [39]. The
ratio of red to blue fluorescence decreased with increasing glyphosate concentrations at
pH 3 (Figure S1A), in water (Figure S1B), and at pH 10 (Figure S1C), where a negative
exponential response was observed with R2 = 0.948, 0.999, and 0.998 and an LOD of 9.0, 5.0,
and 6.0 ppm, respectively. As with the low ppm concentration range for pH 3, a lower R2

correlation was also observed at high ppm. Although the correlation was stronger for higher
ppm, there was a noticeable decrease in sensing ability, likely due to reduced surface interactions.
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Lastly, we determined whether our CDs were specific to glyphosate, by testing them
with non-organophosphorus and organophosphorus pesticides. Specifically, we compared
their sensing capabilities against glyphosate, boric acid, and Phosmet by measuring changes
in the red to blue ratio as described above. As shown in Figure S2, the CDs only responded
to glyphosate, with no change in the red to blue ratio for boric acid and Phosmet with
increasing concentrations, suggesting that our CDs have strong sensitivity and selectivity
for glyphosate.

3.3. Dynamic Quenching of the Red Fluorescence

Next, we determined how the interaction between glyphosate and CDs caused fluores-
cence quenching. Fluorescence quenching is the nonradiative loss of excitation energy from
a fluorophore (CDs) through an interaction with a quencher (glyphosate). To determine
whether this interaction was static or dynamic, we investigated the change in the area of
the red to blue fluorescence ratio as a function of the change in temperature. In the case of
dynamic quenching, glyphosate would be expected to interfere with the emission of the
excited state of the fluorophore after the formation of an excited state. As the temperature
and the kinetic energy of the system increase, more collisions should occur between the
surfaces of the dots and the glyphosate. In contrast, static quenching occurs when the initial
formation of the emissive excited state is inhibited, preventing any change in fluorescence
lifetime with an increased quencher concentration (i.e., glyphosate) [40].

As shown in Figure 4, the ratio of red to blue fluorescence increased with temperature.
This effect was observed at pH 3 (Figure 4A), in water (Figure 4B), and at pH 10 (Figure 4C),
which can be explained by the increase in collisional quenching between the CDs and
the glyphosate with the increase in temperature. These findings suggest that the nature
of the interaction is most likely ionic rather than through hydrogen bonding [41,42]. To
further support our findings, a Stern–Volmer analysis plot was utilized to obtain more
quantitative data on the fluorescence quenching process. As shown in Figure S3, inter-
actions between glyphosate and the CDs supported collisional/complexional quenching
from 0 to 200 ppm with a linear relationship, thus confirming the dynamic quenching
hypothesis. Moreover, as the concentration of glyphosate increased, a downward curve
was observed, suggesting limited access to fluorophores (point of saturation). This could
be circumvented by increasing the concentration of CDs in the solution [40–42]. As shown
in Figure S4, an additional Stern–Volmer analysis was performed to further elucidate the
quenching mechanism and the effect of temperature. All three slopes remained the same,
with a positive linear relationship, suggesting that dynamic quenching occurred. Lastly,
as previously mentioned, the fluorescence lifetimes would remain unchanged in a static
quenching paradigm, and we investigated the effect of an increase in glyphosate on the
blue and red fluorescence lifetimes. In Figure S5, we can see a decrease in the fluorescence
lifetimes for both blue and red emissions, further supporting that the interaction of CDs
with glyphosate is purely dynamic.
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3.4. Ionic Interactions of CDs with Glyphosate

To reveal how glyphosate interacted with the surfaces of the CDs, we followed the
change in surface charge using zeta-potential measurements. As shown in Figure 5A, as the
pH increased, there was a considerable decrease in the surface charge of the CDs, glyphosate
(pesticide), and mixture of both. This decrease can be explained by the protonation and
deprotonation of the functional groups occurring at the different pH values.
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Figure 5. The surface charge of CDs supports different interactions with glyphosate. (A) A graph
shows the change in zeta-potential (mV) for 10 mg/mL of dispersed CDs, 120 ppm of glyphosate,
and a mixture of both in water alone (blue, middle) or at pH 3 (yellow, left) or pH 10 (green, right).
(B) A schematic shows the interaction of glyphosate pesticide with the different functional groups
present at the surfaces of the CDs at pH 3, in water (pH7), and at pH 10. Following the protonation
and deprotonation events, weak, strong, and moderate interactions are predicted to occur. The black
and red dashed lines represent the hydrogen bonding and the ionic bonding, respectively.
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Both CDs and glyphosate comprise similar functional groups, namely carboxyls
and amines, which have pKa values in the ranges of 4.0–5.0 and 9.5–11.0, respectively.
Glyphosate also contains a phosphate group with three pKa values at 2.1, 7.2, and 12.4.
At pH 3, the functional groups of both CDs and glyphosate should be fully protonated,
which supports their measured zeta-potential values of −8 mV and −2 mV, respectively. In
this case, few ionic interactions occur, and we hypothesize that interactions between the
CDs and glyphosate are mediated mostly through hydrogen bonding. Hydrogen bonds are
weaker than their ionic counterparts and this could explain why a decrease in sensitivity is
observed at pH 3 (R2 = 0.47427 at low ppm; R2 = 0.9474 at high ppm). In water, the amine
groups present at the surfaces of the CDs should be fully protonated, whilst the carboxyl
groups would be deprotonated, supporting the decrease in zeta potential to −18 mV.
Glyphosate in water should experience the same protonation and deprotonation events as
CDs, with the exception that the phosphate group will be partially deprotonated to give a
surface charge of −7 mV. The difference in surface charge between the CDs and glyphosate
would mediate ionic interactions. This is supported by the sensing ability of CDs in water
at both low and high concentrations of glyphosate, with respective R2 correlations of
0.9998 and 0.9962, respectively. Lastly, at pH 10, both functional groups of CDs would be
deprotonated, causing the measured surface charge to drop to −29 mV. The glyphosate
at pH 10 would similarly experience full deprotonation at all three functional groups
(i.e., amine, carboxyl, and phosphate), causing a measured surface charge of −37 mV.
Although the difference in surface charge is almost equivalent to the measurements in water,
the highly negatively charged surfaces of CDs and glyphosate would cause a moderate vs.
strong ionic interaction when compared to water (R2 = 0.9943 at low ppm; R2 = 0.9975 at
high ppm).

4. Conclusions

In summary, we describe the synthesis and characterization of a novel CD nanosensor
from L-glutathione and formamide precursors. We demonstrate a proof of concept for
the ratiometric sensing of the glyphosate pesticide in aqueous dispersions at different pH
levels and temperatures. This self-referencing approach achieved LODs as low as 0.03 ppm
over different concentrations. Thus, this sensitive nanosensing tool could be used to detect
glyphosate in water samples as well as food, where LODs are needed at increased ppm
levels. With their facile synthesis and dual fluorescent properties that allow for precise ratio-
metric measurements, these CDs could be suitable as new glyphosate nanosensors, offering
great advantages over more costly particles that require more specialized methodologies
and infrastructure. Lastly, we show that these CDs do not detect pesticides such as boric
acid and Phosmet, suggesting that they have high selectivity and sensitivity for glyphosate.
Since the interaction between CDs and substrates can change with surface modifications
and functionalization, other CDs could be generated for the ratiometric sensing of other
contaminants, including heavy metals, pharmaceutical drugs, and biological agents.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s23115200/s1. Figure S1. High concentration of glyphosate
sensing based on ratiometric measurements. Upon excitation at 405 nm, a change in fluorescence
is observed in the red region; the ratio of the integrated area of the red and blue emission peak
shows a negative exponential response to the change in glyphosate concentration: (A) pH 3 with
LOD = 0.03 ppm; (B) water with LOD = 0.03 ppm; (C) pH 10 with LOD = 0.03 ppm. Figure S2. Bar
graph comparing the fluorescence responses of the CDs to different concentrations of pesticides.
CDs only show selectivity and sensitivity to glyphosate. Figure S3. Stern–Volmer plot at different
environmental pH. A linear response can be observed from 0 to 200 ppm (red line) and a non-linear
curved line response for concentrations of 200–500ppm. (A) At pH 3; (B) water; (C) at pH 10. Figure S4.
Stern–Volmer plot. A positive linear response can be observed from 0 to 500 ppm of glyphosate in
water at 10 ◦C, 30 ◦C, and 50 ◦C. Figure S5. Blue and red fluorescence lifetime analysis. We observe a
decrease in both lifetimes at pH 3, in water, and at pH 10, indicating dynamic quenching.

https://www.mdpi.com/article/10.3390/s23115200/s1
https://www.mdpi.com/article/10.3390/s23115200/s1
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