Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (224)

Search Parameters:
Keywords = perpendicular anisotropy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 6128 KiB  
Article
Viscoelastic Creep of 3D-Printed Polyethylene Terephthalate Glycol Samples
by Leons Stankevics, Olga Bulderberga, Jevgenijs Sevcenko, Roberts Joffe and Andrey Aniskevich
Polymers 2025, 17(15), 2075; https://doi.org/10.3390/polym17152075 - 29 Jul 2025
Viewed by 81
Abstract
This article explores the viscoelastic properties of polyethylene terephthalate glycol samples created by fused filament fabrication, emphasising the anisotropy introduced during fabrication. The samples were fabricated with filament direction within samples aligned along the principal axis or perpendicular. A group of samples was [...] Read more.
This article explores the viscoelastic properties of polyethylene terephthalate glycol samples created by fused filament fabrication, emphasising the anisotropy introduced during fabrication. The samples were fabricated with filament direction within samples aligned along the principal axis or perpendicular. A group of samples was loaded with constant stress for 5 h, and a recovery phase with no applied stress was observed. Another group of samples was loaded for 20 h without an additional deformation recovery phase. The continuous constant stress application results on the sample were analysed, and an overall effect of anisotropy on the samples was observed. Several models describing viscoelastic deformation were considered to adhere to experimental data, with the Prony series and general cubic theory models used in the final analysis. The models could describe experimental results up to 50% and 70% of sample strength, respectively. The analysis confirmed the nonlinear behaviour of printed samples under constant stress and the significant effect of anisotropy introduced by the 3D printing process on the material’s elastic properties. The viscoelastic properties in both directions were described using the same parameters. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

9 pages, 2434 KiB  
Article
Locally Generated Whistler-Mode Waves Before Dipolarization Fronts
by Boning Zhao, Chengming Liu, Jinbin Cao, Yangyang Liu and Xining Xing
Universe 2025, 11(8), 249; https://doi.org/10.3390/universe11080249 - 29 Jul 2025
Viewed by 130
Abstract
Whistler-mode waves, electromagnetic emissions with frequencies between the lower hybrid and electron cyclotron frequencies, are ubiquitous in planetary magnetotails. They are known to play a vital role in electron scattering and acceleration, originating primarily within strong magnetic field regions behind dipolarization fronts (DFs). [...] Read more.
Whistler-mode waves, electromagnetic emissions with frequencies between the lower hybrid and electron cyclotron frequencies, are ubiquitous in planetary magnetotails. They are known to play a vital role in electron scattering and acceleration, originating primarily within strong magnetic field regions behind dipolarization fronts (DFs). In contrast to this established knowledge, we present a comprehensive analysis of whistler-mode waves generated locally within weak magnetic field regions ahead of DFs, utilizing high-cadence measurements from the MMS mission. By resolving the wave dispersion relations, we demonstrate that these emissions arise from cyclotron resonance with local electrons exhibiting weak perpendicular temperature anisotropy (Ae < 1.2). We further propose that this anisotropy may develop due to magnetic mirror structures forming upstream of DFs. Our findings challenge the conventional view that whistler-mode generation requires strong magnetic fields near DFs, providing new insights into understanding wave excitation mechanisms in planetary magnetotails. Full article
(This article belongs to the Special Issue Universe: Feature Papers 2025—Space Science)
Show Figures

Figure 1

13 pages, 3247 KiB  
Article
Anisotropic Photoelectric Properties of Aligned P3HT Nanowire Arrays Fabricated via Solution Blade Coating and UV-Induced Molecular Ordering
by Qianxun Gong, Jin Luo, Chen Meng, Zuhong Xiong, Sijie Zhang and Tian Yu
Materials 2025, 18(11), 2649; https://doi.org/10.3390/ma18112649 - 5 Jun 2025
Viewed by 399
Abstract
This paper reports on the anisotropic optoelectronic properties of aligned poly(3-hexylthiophene) (P3HT) nanowire (NW) arrays fabricated via blade coating and UV irradiation, exhibiting a remarkably high electrical resistance anisotropy ratio of up to 8.05 between the parallel (0°) and perpendicular (90°) directions. This [...] Read more.
This paper reports on the anisotropic optoelectronic properties of aligned poly(3-hexylthiophene) (P3HT) nanowire (NW) arrays fabricated via blade coating and UV irradiation, exhibiting a remarkably high electrical resistance anisotropy ratio of up to 8.05 between the parallel (0°) and perpendicular (90°) directions. This resistance anisotropy originates from the advantage of directional charge transport. Optimized 5 mg/mL P3HT solutions under 32 min UV irradiation yielded unidirectional π-π*-stacked NWs with enhanced crystallinity. Polarized microscopy and atomic force microscopy confirmed high alignment and dense NW networks. The angular dependence of polarization exhibits a cosine-modulated response, while the angular anisotropy of the measured photocurrent points to structural alignment rather than trap-state control. The scalable fabrication and tunable anisotropy demonstrate potential for polarization-sensitive organic electronics and anisotropic logic devices. Full article
(This article belongs to the Section Optical and Photonic Materials)
Show Figures

Figure 1

12 pages, 1552 KiB  
Article
Quantum Sensing of Local Magnetic Phase Transitions and Fluctuations near the Curie Temperature in Tm3Fe5O12 Using NV Centers
by Yuqing Zhu, Mengyuan Cai, Qian Zhang, Peiyang Wang, Yuanjie Yang, Jiaxin Zhao, Wei Zhu and Guanzhong Wang
Micromachines 2025, 16(6), 643; https://doi.org/10.3390/mi16060643 - 28 May 2025
Viewed by 625
Abstract
Thulium iron garnet (Tm3Fe5O12, TmIG) is a promising material for next-generation spintronic and quantum technologies owing to its high Curie temperature and strong perpendicular magnetic anisotropy. However, conventional magnetometry techniques are limited by insufficient spatial resolution and [...] Read more.
Thulium iron garnet (Tm3Fe5O12, TmIG) is a promising material for next-generation spintronic and quantum technologies owing to its high Curie temperature and strong perpendicular magnetic anisotropy. However, conventional magnetometry techniques are limited by insufficient spatial resolution and sensitivity to probe local magnetic phase transitions and critical spin dynamics in thin films. In this study, we present the first quantitative investigation of local magnetic field fluctuations near the Curie temperature in TmIG thin films using nitrogen-vacancy (NV) center-based quantum sensing. By integrating optically detected magnetic resonance (ODMR) and NV spin relaxometry (T1 measurements) with macroscopic techniques such as SQUID magnetometry and Hall effect measurements, we systematically characterize both the static magnetization and dynamic spin fluctuations across the magnetic phase transition. Our results reveal a pronounced enhancement in NV spin relaxation rates near 360 K, providing direct evidence of critical spin fluctuations at the nanoscale. This work highlights the unique advantages of NV quantum sensors for investigating dynamic critical phenomena in complex magnetic systems and establishes a versatile, multimodal framework for studying local phase transition kinetics in high-temperature magnetic insulators. Full article
Show Figures

Figure 1

32 pages, 5548 KiB  
Article
Analysis of the Impact of Fabric Surface Profiles on the Electrical Conductivity of Woven Fabrics
by Ayalew Gebremariam, Magdalena Tokarska and Nawar Kadi
Materials 2025, 18(11), 2456; https://doi.org/10.3390/ma18112456 - 23 May 2025
Viewed by 504
Abstract
The surface profile and structural alignment of fibers and yarns in fabrics are critical factors affecting the electrical properties of conductive textile surfaces. This study aimed to investigate the impact of fabric surface roughness and the geometrical parameters of woven fabrics on their [...] Read more.
The surface profile and structural alignment of fibers and yarns in fabrics are critical factors affecting the electrical properties of conductive textile surfaces. This study aimed to investigate the impact of fabric surface roughness and the geometrical parameters of woven fabrics on their electrical resistance properties. Surface roughness was assessed using the MicroSpy® Profile profilometer FRT (Fries Research & Technology) Metrology™, while electrical resistance was evaluated using the Van der Pauw method. The findings indicate that rougher fabric surfaces exhibit higher electrical resistance due to surface irregularities and lower yarn compactness. In contrast, smoother fabrics improve conductivity by enhancing surface uniformity and yarn contact. Fabric density, particularly weft density, governs the structural alignment of yarns. A 35% increase in weft density (W19–W27) resulted in a 13–15% reduction in resistance, confirming that denser fabrics facilitate current flow. Higher weft density also increases directional resistance differences, enhancing anisotropic behavior. Angular distribution analysis showed lower resistance and greater anisotropy at perpendicular orientations (0° and 180°, the weft direction; 90° and 270°, the warp direction), while diagonal directions (45°, 135°, 225°, and 315°) exhibited higher resistance. Surface roughness further hindered current flow, whereas increased weft density and surface mass reduced resistance and improved the directional dependencies of the electrical resistances. This analysis was conducted based on research using woven fabrics produced from silver-plated polyamide yarns (Shieldex® 117/17 HCB). These insights support the optimization of these conductive fabrics for smart textiles, wearable sensors, and e-textiles. Fabric variants W19 and W21, with lower resistance variability and better isotropic behavior under the S electrode arrangement, could be proposed as suitable materials for integration into compact sensing systems like heart rate or bio-signal monitors. Full article
Show Figures

Figure 1

12 pages, 2361 KiB  
Article
The (ProteUS) Anisotropy Effect in Deep Fascia Ultrasonography: The Impact of Probe Angulation on Echogenicity and Thickness Assessments
by Carmelo Pirri, Nina Pirri, Diego Guidolin, Enrico De Rose, Veronica Macchi, Andrea Porzionato, Raffaele De Caro and Carla Stecco
Life 2025, 15(5), 822; https://doi.org/10.3390/life15050822 - 21 May 2025
Viewed by 504
Abstract
This study investigates the influence of probe angulation on echogenicity and thickness measurements of the deep fascia, addressing methodological challenges in musculoskeletal ultrasound examination. The anisotropic nature of connective tissues can lead to distortions, affecting US imaging accuracy and diagnostic reliability. Echogenicity and [...] Read more.
This study investigates the influence of probe angulation on echogenicity and thickness measurements of the deep fascia, addressing methodological challenges in musculoskeletal ultrasound examination. The anisotropic nature of connective tissues can lead to distortions, affecting US imaging accuracy and diagnostic reliability. Echogenicity and thickness variations were analyzed across different probe inclinations in both transverse and longitudinal orientations. Measurements at 0° were compared with −5° and +5° angles to assess their impact on imaging consistency due to 3D-printed support. Echogenicity differed significantly with probe angulation, in particular in transverse scan at 0°, which showed substantial variation at −5° (mean diff. = 55.14, p < 0.0001) and +5° (mean diff. = 43.75, p = 0.0024). Thickness measurements also varied, reinforcing that non-perpendicular probe angulation introduces distortions. The same results were reported for longitudinal scans. These findings highlight the need for the use of standardized scanning protocols to improve reliability. The protean nature of deep fascia anisotropy, highly sensitive to minimal changes in probe orientation, necessitates precise and consistent imaging to accurately reveal its structural organization. Optimizing probe orientation is essential for advancing fascial US diagnostics. Full article
Show Figures

Figure 1

14 pages, 4786 KiB  
Article
The Anisotropic Osteoinductive Capacity of a Nickel–Titanium Alloy Fabricated Through Laser Powder Bed Fusion
by Yu Sun, Zhenglei Yu, Qingping Liu, Luquan Ren, Xin Zhao and Jincheng Wang
Int. J. Mol. Sci. 2025, 26(10), 4640; https://doi.org/10.3390/ijms26104640 - 13 May 2025
Viewed by 362
Abstract
A novel parameter optimization method for additively manufacturing nickel–titanium (NiTi) alloys using laser powder bed fusion (LBPF) was developed. Compared with the conventional NiTi alloy and the previously reported LPBF-NiTi alloy, the LBPF-NiTi alloy prepared with these parameters exhibits excellent tensile properties and [...] Read more.
A novel parameter optimization method for additively manufacturing nickel–titanium (NiTi) alloys using laser powder bed fusion (LBPF) was developed. Compared with the conventional NiTi alloy and the previously reported LPBF-NiTi alloy, the LBPF-NiTi alloy prepared with these parameters exhibits excellent tensile properties and an anisotropic microstructure. Since distinct regions of orthopedic implants have specific functional requirements, we investigated the anisotropy of this LPBF-NiTi in terms of its osteoinductive capacity to determine the appropriate building direction for prosthesis fabrication. The biosafety of the transverse (XY-NiTi) and longitudinal (XZ-NiTi) planes was assessed through cytotoxicity assays. Comparative analyses of the biological activities of these planes were conducted by evaluating the adherent cell counts, the adhesion morphology, and the expression of osteogenic-related genes and factors in adherent cells. Compared with XZ-NiTi, XY-NiTi exhibited superior cell adhesion properties. Additionally, the expression levels of osteogenic markers (RUNX2, ALP, OPG, and OCN) were significantly greater in bone marrow mesenchymal cells (BMMCs) adhered to XY-NiTi than in those adhered to XZ-NiTi. These results indicate a greater osteogenic potential in the XY-NiTi group. XY-NiTi was more advantageous as an implant–bone contact surface. Building implant products in the direction perpendicular to the load-bearing axis enhances biofixation; thus, this is the preferred orientation for manufacturing orthopedic implants. Full article
Show Figures

Figure 1

11 pages, 1700 KiB  
Article
Compact Modeling and Exploration of the Light Metal Insertion Effect for a Voltage-Controlled Spin–Orbit Torque Magnetic Tunnel Junction
by Weixiang Li, Jiaqi Lu, Chengzhi Wang and Dongsheng Wang
Electronics 2025, 14(7), 1272; https://doi.org/10.3390/electronics14071272 - 24 Mar 2025
Viewed by 409
Abstract
Magnetic random-access memory, recognized as a breakthrough in spintronics, demonstrates substantial potential for next-generation nonvolatile memory and logic devices due to its unique magnetization-switching mechanism. However, realizing reliable perpendicular magnetization switching via spin–orbit torque necessitates an externally applied in-plane magnetic bias, a requirement [...] Read more.
Magnetic random-access memory, recognized as a breakthrough in spintronics, demonstrates substantial potential for next-generation nonvolatile memory and logic devices due to its unique magnetization-switching mechanism. However, realizing reliable perpendicular magnetization switching via spin–orbit torque necessitates an externally applied in-plane magnetic bias, a requirement that complicates integration in high-density device architectures. This study proposes a novel device architecture where geometric asymmetry engineering in an interlayer design generates an intrinsic equivalent in-plane magnetic field. By strategically introducing a non-symmetrical spacer between the heavy metal and ferromagnetic layers, we establish deterministic magnetization reversal while eliminating external field dependency. Furthermore, the energy barrier during magnetization switching is dynamically adjusted by applying a voltage across a perpendicular-anisotropy magnetic tunnel junction, leveraging the voltage-controlled magnetic anisotropy effect. We established a physics-driven compact model to assess the design and performance of voltage-controlled spin–orbit torque magnetic tunnel junction (VCSOT-MTJ) devices. Simulations reveal that the introduction of a minimally asymmetric light metal layer effectively resolves the issue of incomplete switching in field-free spin-orbit torque systems. Full article
Show Figures

Figure 1

29 pages, 719 KiB  
Article
State Transitions and Hysteresis in a Transverse Magnetic Island Chain
by Gary M. Wysin
Magnetism 2025, 5(1), 9; https://doi.org/10.3390/magnetism5010009 - 12 Mar 2025
Viewed by 1236
Abstract
A chain of dipole-coupled elongated magnetic islands whose long axes are oriented perpendicular to the chain is studied for its magnetization properties. With a magnetic field applied perpendicular to the chain, the competition between dipolar energy, shape anisotropy, and field energy leads to [...] Read more.
A chain of dipole-coupled elongated magnetic islands whose long axes are oriented perpendicular to the chain is studied for its magnetization properties. With a magnetic field applied perpendicular to the chain, the competition between dipolar energy, shape anisotropy, and field energy leads to three types of uniform states with distinct magnetizations: (1) oblique to the chain, (2) perpendicular to the chain, and (3) zero due to having alternating dipoles. The response of these states to a slowly varying field is analyzed, focusing on their stability limits and related oscillation modes, and the dependencies on the dipolar and anisotropy constants. Based on identifiable transitions among the three states and their instability points, the theoretically predicted zero-temperature magnetization curves show significant dependence on the anisotropy. The model suggests a path for designing advanced materials with desired magnetic properties. Different geometries and magnetic media for the islands are considered. Full article
Show Figures

Figure 1

12 pages, 1538 KiB  
Article
Properties of a Static Dipolar Impurity in a 2D Dipolar BEC
by Neelam Shukla and Jeremy R. Armstrong
Atoms 2025, 13(3), 24; https://doi.org/10.3390/atoms13030024 - 10 Mar 2025
Viewed by 975
Abstract
We study a system of ultra-cold dipolar Bose gas atoms confined in a two-dimensional (2D) harmonic trap with a dipolar impurity implanted at the center of the trap. Due to recent experimental progress in dipolar condensates, we focused on calculating properties of dipolar [...] Read more.
We study a system of ultra-cold dipolar Bose gas atoms confined in a two-dimensional (2D) harmonic trap with a dipolar impurity implanted at the center of the trap. Due to recent experimental progress in dipolar condensates, we focused on calculating properties of dipolar impurity systems that might guide experimentalists if they choose to study impurities in dipolar gases. We used the Gross–Pitaevskii formalism solved numerically via the split-step Crank–Nicolson method. We chose parameters of the background gas to be consistent with dysprosium (Dy), one of the strongest magnetic dipoles and of current experimental interest, and used chromium (Cr), erbium (Er), terbium (Tb), and Dy for the impurity. The dipole moments were aligned by an external field along what was chosen to be the z-axis, and we studied 2D confinements that were perpendicular or parallel to the external field. We show density contour plots for the two confinements, 1D cross-sections of the densities, calculated self-energies of the impurities while varying both number of atoms in the condensate and the symmetry of the trap. We also calculated the time evolution of the density of an initially pure system where an impurity is introduced. Our results show that while the self-energy increases in magnitude with increasing number of particles, it is reduced when the trap anisotropy follows the natural anisotropy of the gas, i.e., elongated along the z-axis in the case of parallel confinement. This work builds upon work conducted in Bose gases with zero-range interactions and demonstrates some of the features that could be found when exploring dipolar impurities in 2D Bose gases. Full article
(This article belongs to the Section Cold Atoms, Quantum Gases and Bose-Einstein Condensation)
Show Figures

Figure 1

9 pages, 2404 KiB  
Article
PLD Growth of Ferrimagnetic Tm3Fe5O12 Thin Film with Perpendicular Magnetic Anisotropy on GGG
by Zezhong Li, Xin Wang, Yinan Xiao, Yuxiao Zou, Donghui Wang, Huaiwen Yang, Hui Zhang, Yunliang Li and Ying Liu
Crystals 2025, 15(3), 234; https://doi.org/10.3390/cryst15030234 - 28 Feb 2025
Viewed by 637
Abstract
Thulium Iron Garnet (TIG), as an emerging hotspot in rare-earth iron garnet systems, possesses a large magnetostriction constant (λ111) and a low damping coefficient. Therefore, it is possible to induce perpendicular magnetic anisotropy (PMA) through stress, which makes it more desirable [...] Read more.
Thulium Iron Garnet (TIG), as an emerging hotspot in rare-earth iron garnet systems, possesses a large magnetostriction constant (λ111) and a low damping coefficient. Therefore, it is possible to induce perpendicular magnetic anisotropy (PMA) through stress, which makes it more desirable for interfacial magnetic proximity or spin–orbit torque effects than Yttrium Iron Garnet (YIG). For achieving a high-quality TIG thin film and regulating its properties accordingly, understanding the effect of growth parameters on the film properties is essential. Using the Pulsed Laser Deposition (PLD) technique, we prepared TIG film on a Gadolinium Gallium Garnet (GGG) substrate. The correlations of its structural properties to the growth conditions are systematically studied, including the oxygen pressure and laser energy. With the annealing, a ferrimagnetic TIG thin film with PMA is successfully obtained. Our work provides a platform for achieving high-quality TIG thin films by experimentally regulating the growth factors. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

14 pages, 3637 KiB  
Article
Conducting Rubber Anisotropy of Electrophysical and Mechanical Properties
by Stanislav Makhno, Xianpeng Wan, Oksana Lisova, Petro Gorbyk, Dongxing Wang, Hao Tang, Yuli Shi, Mykola Kartel, Kateryna Ivanenko, Sergii Hozhdzinskyi, Galyna Zaitseva, Maksym Stetsenko and Yurii Sementsov
Polymers 2025, 17(4), 492; https://doi.org/10.3390/polym17040492 - 14 Feb 2025
Viewed by 918
Abstract
The aim of this work was to determine the anisotropy of the electrophysical and mechanical properties of rubber reinforced with a hybrid filler CNTs&CB (carbon nanotubes and carbon black) as a function of CNT content and the technological parameters of the production process. [...] Read more.
The aim of this work was to determine the anisotropy of the electrophysical and mechanical properties of rubber reinforced with a hybrid filler CNTs&CB (carbon nanotubes and carbon black) as a function of CNT content and the technological parameters of the production process. A significant difference in electrical conductivity (σ) and dielectric permittivity (ε) in three perpendicular directions was found for CNT concentrations ranging from 0 to 0.007 in volume fraction. The highest values of σ and ε were observed in the calendering direction, with slightly lower values in the perpendicular direction. This effect was attributed to the orientation of polymer molecules and CNTs along the direction of movement during calendering, as well as the disruption of the cluster structure in the transverse direction. Although the calculated percolation threshold values of the investigated system differed slightly, a correlation was observed between the mechanical and electrophysical properties of CNTs&CB rubber. This correlation enables rubber products to be designed with optimal properties tailored to the desired direction. Full article
(This article belongs to the Special Issue Polymer Composites: Structure, Properties and Processing, 2nd Edition)
Show Figures

Figure 1

17 pages, 4647 KiB  
Article
Nanoscale Organic Contaminant Detection at the Surface Using Nonlinear Bond Model
by Hendradi Hardhienata, Muhammad Ahyad, Fasya Nabilah, Husin Alatas, Faridah Handayasari, Agus Kartono, Tony Sumaryada and Muhammad D. Birowosuto
Surfaces 2025, 8(1), 11; https://doi.org/10.3390/surfaces8010011 - 2 Feb 2025
Viewed by 1358
Abstract
Environmental pollution from organic dyes such as malachite green and rhodamine B poses significant threats to ecosystems and human health due to their toxic properties. The rapid detection of these contaminants with high sensitivity and selectivity is crucial and can be effectively achieved [...] Read more.
Environmental pollution from organic dyes such as malachite green and rhodamine B poses significant threats to ecosystems and human health due to their toxic properties. The rapid detection of these contaminants with high sensitivity and selectivity is crucial and can be effectively achieved using nonlinear optical methods. In this study, we combine the Simplified Bond Hyperpolarizability Model (SBHM) and molecular docking (MD) simulations to investigate the Second-Harmonic Generation (SHG) intensity of organic dyes on a silicon (Si(001)) substrate for nanoscale pollutant detection. Our simulations show good agreement with rotational anisotropy (RA) SHG intensity experimental data across all polarization angles, with a total error estimate of 3%. We find for the first time that the SBHM not only identifies the different organic pollutant dyes on the surface, as in conventional SHG detection, but can also determine their relative orientation and different concentrations on the surface. Meanwhile, MD simulations reveal that rhodamine B shows a strong adsorption affinity of 10.4kcal/mol to a single-layer graphene oxide (GO) substrate, primarily through π-π stacking interactions (36 instances) and by adopting a perpendicular molecular orientation. These characteristics significantly enhance SHG sensitivity. A nonlinear susceptibility analysis reveals good agreement between the SBHM and group theory. The susceptibility tensors confirm that the dominant contributions to the SHG signal arise from both the molecular structure and the surface interactions. This underscores the potential of GO-coated silicon substrates for detecting trace levels of organic pollutants with interaction distances ranging from 3.75Å to 5.81Å. This approach offers valuable applications in environmental monitoring, combining the sensitivity of SHG with the adsorption properties of GO for nanoscale detection. Full article
(This article belongs to the Collection Featured Articles for Surfaces)
Show Figures

Figure 1

18 pages, 13825 KiB  
Article
Effect of Load Vector Orientation on Uniaxial Compressive Strength of 3D Photoresin
by Evgenii Kozhevnikov, Mikhail Turbakov, Evgenii Riabokon, Zakhar Ivanov, Andrei Golosov, Arina Panteleeva and Yan Savitsky
J. Manuf. Mater. Process. 2025, 9(1), 23; https://doi.org/10.3390/jmmp9010023 - 14 Jan 2025
Cited by 1 | Viewed by 1012
Abstract
Rapid prototyping has a wide range of applications across various fields, both in industry and for private use. It enables the production of individual parts in a short time, independent of supply chains, which is particularly important in remote locations. Among all 3D [...] Read more.
Rapid prototyping has a wide range of applications across various fields, both in industry and for private use. It enables the production of individual parts in a short time, independent of supply chains, which is particularly important in remote locations. Among all 3D printing technologies, stereolithography using photo resins is the most accessible and offers the highest printing quality. However, the strength properties of parts made from photo resins remain a critical concern. In this study, we conducted experimental research to investigate the effect of load vector orientation under uniaxial compression on the elastic and mechanical properties of 3D-printed cylindrical samples. The results revealed that samples with layers oriented at 60° to the load vector exhibited the highest strength, while those with layers at 30° to the load vector showed the lowest strength. Samples with layers aligned parallel or perpendicular to the load vector demonstrated similar strength properties. Under quasi-elastic loading, samples with layers parallel to the load vector exhibited the highest Young’s modulus and the lowest Poisson’s ratio. Conversely, samples with layers oriented at 30° to the load vector displayed the highest Poisson’s ratio. Microstructural analysis revealed that the anisotropy in the mechanical properties of the 3D-printed samples is attributed to the layered, heterogeneous structure of the photoresin, which exhibits varying degrees of polymerization along the printing axes. The upper part of each layer, with a lower degree of polymerization, contributes to the ductile behavior of the samples under shear stresses. In contrast, the lower part of the layer, with a higher degree of polymerization, leads to brittle behavior in the samples. Full article
Show Figures

Figure 1

28 pages, 7321 KiB  
Article
Experimental Study on the Stress Sensitivity Characteristics of Wave Velocities and Anisotropy in Coal-Bearing Reservoir Rocks
by Zehua Zhang, Xiaokai Xu, Kuo Jian, Liangwei Xu, Jian Li, Dongyuan Zhao, Zhengzheng Xue and Yue Xin
Processes 2024, 12(12), 2819; https://doi.org/10.3390/pr12122819 - 9 Dec 2024
Viewed by 910
Abstract
As the effective stress in coal-bearing reservoirs changes, the elastic wave velocities, stress sensitivity, and anisotropic characteristics of coal rocks exhibit certain variations. Therefore, this study selected samples from the same area (sandstone, mudstone, and anthracite) and conducted experiments on their transverse wave [...] Read more.
As the effective stress in coal-bearing reservoirs changes, the elastic wave velocities, stress sensitivity, and anisotropic characteristics of coal rocks exhibit certain variations. Therefore, this study selected samples from the same area (sandstone, mudstone, and anthracite) and conducted experiments on their transverse wave velocities (Vs) and longitudinal wave velocities (Vp) and wave velocity ratios in three directions (one perpendicular and two parallel to the layering), using the RTR-2000 testing system under loading pressure conditions. The results indicate that the longitudinal and transverse wave velocities of the coal rock samples show a phase-wise increase with rising pressure. The wave velocities and wave velocity ratios of sandstone, mudstone, and anthracite demonstrate certain anisotropic characteristics, with an overall trend of decreasing anisotropy strength that stabilizes over time. The anisotropic characteristics of the longitudinal wave velocities in sandstone and mudstone are stronger than those of the transverse wave velocities, whereas in anthracite, the anisotropic characteristics of the transverse wave velocities are stronger than those of the longitudinal wave velocities. Thus, it can be concluded that Vp is a sensitive parameter for detecting the anisotropic characteristics of sandstone and mudstone, while Vs serves as a sensitive parameter for detecting the anisotropic characteristics of anthracite. Full article
Show Figures

Figure 1

Back to TopTop