Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (52)

Search Parameters:
Keywords = perilipins (Plins)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1832 KiB  
Brief Report
HIV Protein TAT Dysregulates Multiple Pathways in Human iPSCs-Derived Microglia
by Liam Liyang Guo, Robert Jiang, Yan Cheng, Brooke Russell, Sanders Y. Yan and Ming-Lei Guo
Life 2025, 15(7), 1082; https://doi.org/10.3390/life15071082 - 9 Jul 2025
Viewed by 493
Abstract
In the era of combined antiretroviral therapy, around 50% of chronic HIV (+) individuals show varying degrees of memory and cognitive deficiency (NeuroHIV), a phenomenon of accelerated brain aging. HIV protein transactivator of transcription (TAT) has been well-accepted as a risk factor contributing [...] Read more.
In the era of combined antiretroviral therapy, around 50% of chronic HIV (+) individuals show varying degrees of memory and cognitive deficiency (NeuroHIV), a phenomenon of accelerated brain aging. HIV protein transactivator of transcription (TAT) has been well-accepted as a risk factor contributing to NeuroHIV through dysregulating microglia (Mg) functions. Previous studies have demonstrated that HIV-TAT can affect lipid metabolism, immune responses, autophagy, and senescence in rodent Mg. However, due to the significant species differences between rodent and human Mg (hMg), it is essential to take caution when interpreting the results obtained from rodent models into human conditions. For the unanswered questions, we generated hMg from human inducible pluripotent stem cells (iPSCs) and exposed them to HIV-TAT. The results obtained from Flow analysis and immunostaining experiments reveal that TAT can induce LD accumulation and increase perilipin-2 (Plin2) levels in hMg. Meanwhile, HIV-TAT can upregulate autophagosome formation and p53 levels. Through human immune array assay, we showed that TAT can increase the expression of multiple pro-inflammatory mediators, cytokines, and chemokines in hMg. Extensive bioinformatic analysis shows that HIV-TAT can affect multiple neuroimmune signaling pathways and indicates that microRNAs (miRNAs) are coherently involved in such dysregulation. Overall, our findings provide direct evidence showing that HIV-TAT can affect lipid metabolism, autophagy, senescence signaling, and multiple neuroimmune-related pathways in hMg and indicate the roles of novel miRNAs on NeuroHIV pathogenesis, which deserves further investigations. Full article
(This article belongs to the Section Medical Research)
Show Figures

Figure 1

30 pages, 1774 KiB  
Review
Omics Approaches to Study Perilipins and Their Significant Biological Role in Cardiometabolic Disorders
by Erica Gianazza, Giulia G. Papaianni, Lisa Brocca, Cristina Banfi and Alice Mallia
Int. J. Mol. Sci. 2025, 26(2), 557; https://doi.org/10.3390/ijms26020557 - 10 Jan 2025
Cited by 1 | Viewed by 1850
Abstract
Lipid droplets (LDs), highly dynamic cellular organelles specialized in lipid storage and maintenance of lipid homeostasis, contain several proteins on their surface, among which the perilipin (Plin) family stands out as the most abundant group of LD-binding proteins. They play a pivotal role [...] Read more.
Lipid droplets (LDs), highly dynamic cellular organelles specialized in lipid storage and maintenance of lipid homeostasis, contain several proteins on their surface, among which the perilipin (Plin) family stands out as the most abundant group of LD-binding proteins. They play a pivotal role in influencing the behavior and functionality of LDs, regulating lipase activity, and preserving a balance between lipid synthesis and degradation, which is crucial in the development of obesity and abnormal accumulation of fat in non-adipose tissues, causing negative adverse biological effects, such as insulin resistance, mitochondrial dysfunction, and inflammation. The expression levels of Plins are often associated with various diseases, such as hepatic steatosis and atherosclerotic plaque formation. Thus, it becomes of interest to investigate the Plin roles by using appropriate “omics” approaches that may provide additional insight into the mechanisms through which these proteins contribute to cellular and tissue homeostasis. This review is intended to give an overview of the most significant omics studies focused on the characterization of Plin proteins and the identification of their potential targets involved in the development and progression of cardiovascular and cardiometabolic complications, as well as their interactors that could be useful for more efficient therapeutic and preventive approaches for patients. Full article
Show Figures

Figure 1

9 pages, 610 KiB  
Article
Association of Umbilical Cord Perilipin 2 Levels with Neonatal Anthropometric Measurements in Infants of Diabetic Mothers
by Kiymet Celik, Nurten Ozkan Zarif, Ikbal Ozen Kucukcetin, Sema Arayici, Zeynep Kihtir, Hale Unver Tuhan and Hakan Ongun
Children 2024, 11(7), 771; https://doi.org/10.3390/children11070771 - 25 Jun 2024
Viewed by 1481
Abstract
Background: Perilipin 2 (PLIN2) is a protein that contributes to the formation and stability of lipid droplets. It has been associated with the development of several diseases, particularly related to glucose and lipid metabolism. In infants of diabetic mother (IDM), fetal hyperinsulinaemia leads [...] Read more.
Background: Perilipin 2 (PLIN2) is a protein that contributes to the formation and stability of lipid droplets. It has been associated with the development of several diseases, particularly related to glucose and lipid metabolism. In infants of diabetic mother (IDM), fetal hyperinsulinaemia leads to increased adipose tissue and macrosomia. The aim of this study was to investigate the relationship between PLIN2 levels and anthropometric measurements in the IDM and to investigate the relationship between PLIN2 levels and IGF-1, IGF-2 and leptin levels. Methods: The study group consisted of IDMs, while the control group consisted of infants born to non-diabetic mother, matched for gestational week and gender. Cord blood samples were collected from all patients to determine PLIN2, IGF-1, IGF-2 and leptin levels. Anthropometric measurements were taken for all patients at birth. Results: There were no differences between the groups in birth weight, birth length, head circumference and body mass index (BMI), but middle arm circumference, triceps, biceps, subscapular and suprailiac skinfold thickness were significantly higher in the IDM. While PLIN2, IGF-1, IGF-2 and leptin levels were similar between groups, there was a strong correlation between PLIN2 levels and IGF-2 and leptin levels. Conclusions: Even if IDMs were not macrosomic, the presence of high subcutaneous adipose tissue was not associated with PLIN2. Full article
(This article belongs to the Section Pediatric Endocrinology & Diabetes)
Show Figures

Figure 1

17 pages, 7022 KiB  
Article
Calmodulin Contributes to Lipolysis and Inflammatory Responses in Clinical Ketosis Cows through the TLR4/IKK/NF-κB Pathway
by Jinshui Chang, Zhijie Wang, Yu Hao, Yuxi Song and Cheng Xia
Animals 2024, 14(11), 1678; https://doi.org/10.3390/ani14111678 - 4 Jun 2024
Cited by 1 | Viewed by 1590
Abstract
Clinical ketosis is a detrimental metabolic disease in dairy cows, often accompanied by severe lipolysis and inflammation in adipose tissue. Our previous study suggested a 2.401-fold upregulation in the calmodulin (CaM) level in the adipose tissue of cows with clinical ketosis. Therefore, we [...] Read more.
Clinical ketosis is a detrimental metabolic disease in dairy cows, often accompanied by severe lipolysis and inflammation in adipose tissue. Our previous study suggested a 2.401-fold upregulation in the calmodulin (CaM) level in the adipose tissue of cows with clinical ketosis. Therefore, we hypothesized that CaM may regulate lipolysis and inflammatory responses in cows with clinical ketosis. To verify the hypothesis, we conducted a thorough veterinary assessment of clinical symptoms and serum β-hydroxybutyrate (BHB) concentration. Subsequently, we collected subcutaneous adipose tissue samples from six healthy and six clinically ketotic Holstein cows at 17 ± 4 days postpartum. Commercial kits were used to test the abundance of BHB, non-esterified fatty acid (NEFA), the liver function index (LFI), interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α (TNF-α). We found that cows with clinical ketosis exhibited higher levels of BHB, NEFA, LFI, IL-6, IL-1β, TNF-α, and lower glucose levels than healthy cows. Furthermore, the abundance of CaM, toll-like receptor 4 (TLR4), inhibitor of nuclear factor κB kinase subunit β (IKK), phosphorylated nuclear factor κB p65/nuclear factor κB p65 (p-NF-κB p65/NF-κB p65), adipose triacylglycerol lipase (ATGL), and phosphorylated hormone-sensitive lipase/hormone-sensitive lipase (p-HSL/HSL) was increased, while that of perilipin-1 (PLIN1) was decreased in the adipose tissue of cows with clinical ketosis. To investigate the mechanism underlying the responses, we isolated the primary bovine adipocytes from the adipose tissue of healthy cows and induced the inflammatory response mediated by TLR4/IKK/NF-κB p65 with lipopolysaccharide (LPS). Additionally, we treated the primary bovine adipocytes with CaM overexpression adenovirus and CaM small interfering RNA. In vitro, LPS upregulated the abundance of TLR4, IKK, p-NF-κB p65, ATGL, p-HSL/HSL, and CaM and downregulated PLIN1. Furthermore, CaM silencing downregulated the abundance of LPS-activated p-HSL/HSL, TLR4, IKK, and p-NF-κB p65 and upregulated PLIN1 in bovine adipocytes, except for ATGL. However, CaM overexpression upregulated the abundance of LPS-activated p-HSL/HSL, TLR4, IKK, and p-NF-κB p65 and downregulated PLIN1 expression in bovine adipocytes. These data suggest that CaM promotes lipolysis in adipocytes through HSL and PINL1 while activating the TLR4/IKK/NF-κB inflammatory pathway to stimulate an inflammatory response. There is a positive feedback loop between CaM, lipolysis, and inflammation. Inhibiting CaM may act as an adaptive mechanism to alleviate metabolic dysregulation in adipose tissue, thereby relieving lipolysis and inflammatory responses. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

29 pages, 7644 KiB  
Article
The Role of Neutral Sphingomyelinase-2 (NSM2) in the Control of Neutral Lipid Storage in T Cells
by Rebekka Schempp, Janna Eilts, Marie Schöl, Maria Fernanda Grijalva Yépez, Agnes Fekete, Dominik Wigger, Fabian Schumacher, Burkhard Kleuser, Marco van Ham, Lothar Jänsch, Markus Sauer and Elita Avota
Int. J. Mol. Sci. 2024, 25(6), 3247; https://doi.org/10.3390/ijms25063247 - 13 Mar 2024
Cited by 2 | Viewed by 3029
Abstract
The accumulation of lipid droplets (LDs) and ceramides (Cer) is linked to non-alcoholic fatty liver disease (NAFLD), regularly co-existing with type 2 diabetes and decreased immune function. Chronic inflammation and increased disease severity in viral infections are the hallmarks of the obesity-related immunopathology. [...] Read more.
The accumulation of lipid droplets (LDs) and ceramides (Cer) is linked to non-alcoholic fatty liver disease (NAFLD), regularly co-existing with type 2 diabetes and decreased immune function. Chronic inflammation and increased disease severity in viral infections are the hallmarks of the obesity-related immunopathology. The upregulation of neutral sphingomyelinase-2 (NSM2) has shown to be associated with the pathology of obesity in tissues. Nevertheless, the role of sphingolipids and specifically of NSM2 in the regulation of immune cell response to a fatty acid (FA) rich environment is poorly studied. Here, we identified the presence of the LD marker protein perilipin 3 (PLIN3) in the intracellular nano-environment of NSM2 using the ascorbate peroxidase APEX2-catalyzed proximity-dependent biotin labeling method. In line with this, super-resolution structured illumination microscopy (SIM) shows NSM2 and PLIN3 co-localization in LD organelles in the presence of increased extracellular concentrations of oleic acid (OA). Furthermore, the association of enzymatically active NSM2 with isolated LDs correlates with increased Cer levels in these lipid storage organelles. NSM2 enzymatic activity is not required for NSM2 association with LDs, but negatively affects the LD numbers and cellular accumulation of long-chain unsaturated triacylglycerol (TAG) species. Concurrently, NSM2 expression promotes mitochondrial respiration and fatty acid oxidation (FAO) in response to increased OA levels, thereby shifting cells to a high energetic state. Importantly, endogenous NSM2 activity is crucial for primary human CD4+ T cell survival and proliferation in a FA rich environment. To conclude, our study shows a novel NSM2 intracellular localization to LDs and the role of enzymatically active NSM2 in metabolic response to enhanced FA concentrations in T cells. Full article
Show Figures

Graphical abstract

14 pages, 811 KiB  
Review
Role of Perilipins in Oxidative Stress—Implications for Cardiovascular Disease
by Mathieu Cinato, Linda Andersson, Azra Miljanovic, Marion Laudette, Oksana Kunduzova, Jan Borén and Malin C. Levin
Antioxidants 2024, 13(2), 209; https://doi.org/10.3390/antiox13020209 - 7 Feb 2024
Cited by 17 | Viewed by 3413
Abstract
Oxidative stress is the imbalance between the production of reactive oxygen species (ROS) and antioxidants in a cell. In the heart, oxidative stress may deteriorate calcium handling, cause arrhythmia, and enhance maladaptive cardiac remodeling by the induction of hypertrophic and apoptotic signaling pathways. [...] Read more.
Oxidative stress is the imbalance between the production of reactive oxygen species (ROS) and antioxidants in a cell. In the heart, oxidative stress may deteriorate calcium handling, cause arrhythmia, and enhance maladaptive cardiac remodeling by the induction of hypertrophic and apoptotic signaling pathways. Consequently, dysregulated ROS production and oxidative stress have been implicated in numerous cardiac diseases, including heart failure, cardiac ischemia–reperfusion injury, cardiac hypertrophy, and diabetic cardiomyopathy. Lipid droplets (LDs) are conserved intracellular organelles that enable the safe and stable storage of neutral lipids within the cytosol. LDs are coated with proteins, perilipins (Plins) being one of the most abundant. In this review, we will discuss the interplay between oxidative stress and Plins. Indeed, LDs and Plins are increasingly being recognized for playing a critical role beyond energy metabolism and lipid handling. Numerous reports suggest that an essential purpose of LD biogenesis is to alleviate cellular stress, such as oxidative stress. Given the yet unmet suitability of ROS as targets for the intervention of cardiovascular disease, the endogenous antioxidant capacity of Plins may be beneficial. Full article
Show Figures

Figure 1

11 pages, 3571 KiB  
Article
Perilipin1 Expression as a Prognostic Factor in Patients with Squamous Cell Carcinoma of the Lung
by Min Hye Kim, Jeong Hee Lee, Jong Sil Lee, Dong Chul Kim, Jung Wook Yang, Hyo Jung An, Ji Min Na, Wook Jae Jung and Dae Hyun Song
Diagnostics 2023, 13(22), 3475; https://doi.org/10.3390/diagnostics13223475 - 19 Nov 2023
Cited by 3 | Viewed by 1756
Abstract
Perilipin (PLIN) is a major structural protein located on the surface of lipid droplets. PLIN plays an important role in human metabolism and is associated with metabolic diseases, such as obesity, diabetes, hypertension, and endocrine disorders. The dysregulation of lipid metabolism is one [...] Read more.
Perilipin (PLIN) is a major structural protein located on the surface of lipid droplets. PLIN plays an important role in human metabolism and is associated with metabolic diseases, such as obesity, diabetes, hypertension, and endocrine disorders. The dysregulation of lipid metabolism is one of the most prominent metabolic changes observed in cancers. Therefore, the PLIN protein family has recently attracted attention owing to its role in lipid metabolism and cancer. To date, no studies have addressed the association between the prognosis of lung cancer and PLIN1 expression. For the first time, we found that high PLIN1 expression was significantly correlated with worse disease-free survival (DFS) in lung squamous cell carcinoma (SCC). We examined PLIN1 expression by the immunohistochemical analysis of surgical lung SCC specimens obtained from 94 patients. We analyzed the correlation between PLIN1 expression, clinicopathological data, and patient survival, using a chi-squared test, Kaplan–Meier analysis with log-rank tests, and the multivariate Cox proportional hazards regression test. High PLIN1 expression was significantly correlated with lower DFS in the Kaplan–Meier analysis and the multivariate Cox proportional hazards regression model. High PLIN1 expression was significantly correlated with worse prognosis in lung SCC. Full article
(This article belongs to the Special Issue Diagnosis and Management of Lung Cancer)
Show Figures

Figure 1

14 pages, 2962 KiB  
Article
Myocardial Fibrosis and Steatosis in Patients with Aortic Stenosis: Roles of Myostatin and Ceramides
by Elena Zoico, Anna Giani, Tanaz Saatchi, Vanni Rizzatti, Gloria Mazzali, Francesco Fantin, Giovanni Benfari, Francesco Onorati, Silvia Urbani and Mauro Zamboni
Int. J. Mol. Sci. 2023, 24(21), 15508; https://doi.org/10.3390/ijms242115508 - 24 Oct 2023
Cited by 2 | Viewed by 1931
Abstract
Aortic stenosis (AS) involves progressive valve obstruction and a remodeling response of the left ventriculum (LV) with systolic and diastolic dysfunction. The roles of interstitial fibrosis and myocardial steatosis in LV dysfunction in AS have not been completely characterized. We enrolled 31 patients [...] Read more.
Aortic stenosis (AS) involves progressive valve obstruction and a remodeling response of the left ventriculum (LV) with systolic and diastolic dysfunction. The roles of interstitial fibrosis and myocardial steatosis in LV dysfunction in AS have not been completely characterized. We enrolled 31 patients (19 women and 12 men) with severe AS undergoing elective aortic valve replacement. The subjects were clinically evaluated, and transthoracic echocardiography was performed pre-surgery. LV septal biopsies were obtained to assess fibrosis and apoptosis and fat deposition in myocytes (perilipin 5 (PLIN5)), or in the form of adipocytes within the heart (perilipin 1 (PLIN1)), the presence of ceramides and myostatin were assessed via immunohistochemistry. After BMI adjustment, we found a positive association between fibrosis and apoptotic cardiomyocytes, as well as fibrosis and the area covered by PLIN5. Apoptosis and PLIN5 were also significantly interrelated. LV fibrosis increased with a higher medium gradient (MG) and peak gradient (PG). Ceramides and myostatin levels were higher in patients within the higher MG and PG tertiles. In the linear regression analysis, increased fibrosis correlated with increased apoptosis and myostatin, independent from confounding factors. After adjustment for age and BMI, we found a positive relationship between PLIN5 and E/A and a negative correlation between septal S’, global longitudinal strain (GLS), and fibrosis. Myostatin was inversely correlated with GLS and ejection fraction. Fibrosis and myocardial steatosis altogether contribute to ventricular dysfunction in severe AS. The association of myostatin and fibrosis with systolic dysfunction, as well as between myocardial steatosis and diastolic dysfunction, highlights potential therapeutic targets. Full article
Show Figures

Graphical abstract

10 pages, 2368 KiB  
Article
Differences in Milk Proteomic Profiles between Estrous and Non-Estrous Dairy Cows
by Chao Du, Liangkang Nan, Chunfang Li, Chu Chu, Haitong Wang, Yikai Fan, Yabin Ma and Shujun Zhang
Animals 2023, 13(18), 2892; https://doi.org/10.3390/ani13182892 - 12 Sep 2023
Viewed by 1684
Abstract
Efficient reproductive management of dairy cows depends primarily upon accurate estrus identification. However, the currently available estrus detection methods, such as visual observation, are poor. Hence, there is an urgent need to discover novel biomarkers in non-invasive bodily fluids such as milk to [...] Read more.
Efficient reproductive management of dairy cows depends primarily upon accurate estrus identification. However, the currently available estrus detection methods, such as visual observation, are poor. Hence, there is an urgent need to discover novel biomarkers in non-invasive bodily fluids such as milk to reliably detect estrus status. Proteomics is an emerging and promising tool to identify biomarkers. In this study, the proteomics approach was performed on milk sampled from estrus and non-estrus dairy cows to identify potential biomarkers of estrus. Dairy cows were synchronized and timed for artificial insemination, and the cows with insemination leading to conception were considered to be in estrus at the day of insemination (day 0). Milk samples of day 0 (estrus group) and day −3 (non-estrus group) from dairy cows confirming to be pregnant were collected for proteomic analysis using the tandem mass tags (TMT) proteomics approach. A total of 89 differentially expressed proteins were identified, of which 33 were upregulated and 56 were downregulated in the estrus milk compared with the non-estrus milk. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that acetyl coenzyme A carboxylase α (ACACA), apolipoprotein B (APOB), NAD(P)H steroid dehydrogenase-like (NSDHL), perilipin 2 (PLIN2), and paraoxonase 1 (PON1) participated in lipid binding, lipid storage, lipid localization, and lipid metabolic process, as well as fatty acid binding, fatty acid biosynthesis, and fatty acid metabolism, and these processes are well documented to be related to estrus regulation. These milk proteins are proposed as possible biomarkers of estrus in dairy cows. Further validation studies are required in a large population to determine their potential as estrus biomarkers. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

24 pages, 2108 KiB  
Review
Challenges in Pharmacological Intervention in Perilipins (PLINs) to Modulate Lipid Droplet Dynamics in Obesity and Cancer
by Victória Bombarda-Rocha, Dany Silva, Allal Badr-Eddine, Patrícia Nogueira, Jorge Gonçalves and Paula Fresco
Cancers 2023, 15(15), 4013; https://doi.org/10.3390/cancers15154013 - 7 Aug 2023
Cited by 15 | Viewed by 6173
Abstract
Perilipins (PLINs) are the most abundant proteins in lipid droplets (LD). These LD-associated proteins are responsible for upgrading LD from inert lipid storage structures to fully functional organelles, fundamentally integrated in the lipid metabolism. There are five distinct perilipins (PLIN1–5), each with specific [...] Read more.
Perilipins (PLINs) are the most abundant proteins in lipid droplets (LD). These LD-associated proteins are responsible for upgrading LD from inert lipid storage structures to fully functional organelles, fundamentally integrated in the lipid metabolism. There are five distinct perilipins (PLIN1–5), each with specific expression patterns and metabolic activation, but all capable of regulating the activity of lipases on LD. This plurality creates a complex orchestrated mechanism that is directly related to the healthy balance between lipogenesis and lipolysis. Given the essential role of PLINs in the modulation of the lipid metabolism, these proteins can become interesting targets for the treatment of lipid-associated diseases. Since reprogrammed lipid metabolism is a recognized cancer hallmark, and obesity is a known risk factor for cancer and other comorbidities, the modulation of PLINs could either improve existing treatments or create new opportunities for the treatment of these diseases. Even though PLINs have not been, so far, directly considered for pharmacological interventions, there are many established drugs that can modulate PLINs activity. Therefore, the aim of this study is to assess the involvement of PLINs in diseases related to lipid metabolism dysregulation and whether PLINs can be viewed as potential therapeutic targets for cancer and obesity. Full article
(This article belongs to the Section Cancer Pathophysiology)
Show Figures

Figure 1

17 pages, 13840 KiB  
Article
Lipid-Independent Regulation of PLIN5 via IL-6 through the JAK/STAT3 Axis in Hep3B Cells
by Marinela Krizanac, Paola Berenice Mass Sanchez, Sarah K. Schröder, Ralf Weiskirchen and Anastasia Asimakopoulos
Int. J. Mol. Sci. 2023, 24(8), 7219; https://doi.org/10.3390/ijms24087219 - 13 Apr 2023
Cited by 6 | Viewed by 3660
Abstract
Perilipin 5 (PLIN5) is a lipid droplet coat protein that is highly expressed in oxidative tissues such as those of muscles, the heart and the liver. PLIN5 expression is regulated by a family of peroxisome proliferator-activated receptors (PPARs) and modulated by the cellular [...] Read more.
Perilipin 5 (PLIN5) is a lipid droplet coat protein that is highly expressed in oxidative tissues such as those of muscles, the heart and the liver. PLIN5 expression is regulated by a family of peroxisome proliferator-activated receptors (PPARs) and modulated by the cellular lipid status. So far, research has focused on the role of PLIN5 in the context of non-alcoholic fatty liver disease (NAFLD) and specifically in lipid droplet formation and lipolysis, where PLIN5 serves as a regulator of lipid metabolism. In addition, there are only limited studies connecting PLIN5 to hepatocellular carcinoma (HCC), where PLIN5 expression is proven to be upregulated in hepatic tissue. Considering that HCC development is highly driven by cytokines present throughout NAFLD development and in the tumor microenvironment, we here explore the possible regulation of PLIN5 by cytokines known to be involved in HCC and NAFLD progression. We demonstrate that PLIN5 expression is strongly induced by interleukin-6 (IL-6) in a dose- and time-dependent manner in Hep3B cells. Moreover, IL-6-dependent PLIN5 upregulation is mediated by the JAK/STAT3 signaling pathway, which can be blocked by transforming growth factor-β (TGF-β) and tumor necrosis factor-α (TNF-α). Furthermore, IL-6-mediated PLIN5 upregulation changes when IL-6 trans-signaling is stimulated through the addition of soluble IL-6R. In sum, this study sheds light on lipid-independent regulation of PLIN5 expression in the liver, making PLIN5 a crucial target for NAFLD-induced HCC. Full article
Show Figures

Figure 1

11 pages, 1350 KiB  
Communication
Probiotic Bifidobacterium breve MCC1274 Protects against Oxidative Stress and Neuronal Lipid Droplet Formation via PLIN4 Gene Regulation
by François Bernier, Tatsuya Kuhara and Jinzhong Xiao
Microorganisms 2023, 11(3), 791; https://doi.org/10.3390/microorganisms11030791 - 20 Mar 2023
Cited by 15 | Viewed by 5720
Abstract
Consumption of Bifidobacterium breve MCC1274 has been shown to improve memory and prevent brain atrophy in populations with mild cognitive impairment (MCI). Preclinical in vivo studies using Alzheimer’s disease (AD) models indicate that this probiotic protects against brain inflammation. There is growing evidence [...] Read more.
Consumption of Bifidobacterium breve MCC1274 has been shown to improve memory and prevent brain atrophy in populations with mild cognitive impairment (MCI). Preclinical in vivo studies using Alzheimer’s disease (AD) models indicate that this probiotic protects against brain inflammation. There is growing evidence that lipid droplets are associated with brain inflammation, and lipid-associated proteins called perilipins could play an important role in neurodegenerative diseases such as dementia. In this study, we found that B. breve MCC1274 cell extracts significantly decreased the expression of perilipin 4 (PLIN4), which encodes a lipid droplet docking protein whose expression is known to be increased during inflammation in SH-SY5Y cells. Niacin, an MCC1274 cell extract component, increased PLIN4 expression by itself. Moreover, MCC1274 cell extracts and niacin blocked the PLIN4 induction caused by oxidative stress in SH-SY5Y cells, reduced lipid droplet formation, and prevented IL-6 cytokine production. These results offer a possible explanation for the effect of this strain on brain inflammation. Full article
(This article belongs to the Special Issue Effects of Probiotics on Health)
Show Figures

Figure 1

12 pages, 2896 KiB  
Article
Inhibitory Effects of Loganin on Adipogenesis In Vitro and In Vivo
by Hyoju Jeon, Chang-Gun Lee, Hyesoo Jeong, Seong-Hoon Yun, Jeonghyun Kim, Laxmi Prasad Uprety, Kang-Il Oh, Shivani Singh, Jisu Yoo, Eunkuk Park and Seon-Yong Jeong
Int. J. Mol. Sci. 2023, 24(5), 4752; https://doi.org/10.3390/ijms24054752 - 1 Mar 2023
Cited by 6 | Viewed by 3519
Abstract
Obesity is characterized by the excessive accumulation of mature adipocytes that store surplus energy in the form of lipids. In this study, we investigated the inhibitory effects of loganin on adipogenesis in mouse preadipocyte 3T3-L1 cells and primary cultured adipose-derived stem cells (ADSCs) [...] Read more.
Obesity is characterized by the excessive accumulation of mature adipocytes that store surplus energy in the form of lipids. In this study, we investigated the inhibitory effects of loganin on adipogenesis in mouse preadipocyte 3T3-L1 cells and primary cultured adipose-derived stem cells (ADSCs) in vitro and in mice with ovariectomy (OVX)- and high-fat diet (HFD)-induced obesity in vivo. For an in vitro study, loganin was co-incubated during adipogenesis in both 3T3-L1 cells and ADSCs, lipid droplets were evaluated by oil red O staining, and adipogenesis-related factors were assessed by qRT-PCR. For in vivo studies, mouse models of OVX- and HFD-induced obesity were orally administered with loganin, body weight was measured, and hepatic steatosis and development of excessive fat were evaluated by histological analysis. Loganin treatment reduced adipocyte differentiation by accumulating lipid droplets through the downregulation of adipogenesis-related factors, including peroxisome proliferator-activated receptor γ (Pparg), CCAAT/enhancer-binding protein α (Cebpa), perilipin 2 (Plin2), fatty acid synthase (Fasn), and sterol regulatory element binding transcription protein 1 (Srebp1). Loganin administration prevented weight gain in mouse models of obesity induced by OVX and HFD. Further, loganin inhibited metabolic abnormalities, such as hepatic steatosis and adipocyte enlargement, and increased the serum levels of leptin and insulin in both OVX- and HFD-induced obesity models. These results suggest that loganin is a potential candidate for preventing and treating obesity. Full article
Show Figures

Figure 1

15 pages, 2590 KiB  
Article
Effects of PLIN1 Gene Knockout on the Proliferation, Apoptosis, Differentiation and Lipolysis of Chicken Preadipocytes
by Guiying Zhai, Yongjia Pang, Yichong Zou, Xinyu Wang, Jie Liu, Qi Zhang, Zhiping Cao, Ning Wang, Hui Li and Yuxiang Wang
Animals 2023, 13(1), 92; https://doi.org/10.3390/ani13010092 - 26 Dec 2022
Cited by 8 | Viewed by 2416
Abstract
Perilipin 1 (PLIN1) is one of the most abundant lipid droplet-related proteins on the surface of adipocytes. Our previous results showed that PLIN1 plays an important role in chicken lipid metabolism. To further reveal the role of PLIN1 in the growth and development [...] Read more.
Perilipin 1 (PLIN1) is one of the most abundant lipid droplet-related proteins on the surface of adipocytes. Our previous results showed that PLIN1 plays an important role in chicken lipid metabolism. To further reveal the role of PLIN1 in the growth and development of adipocytes, a chicken preadipocyte line with a PLIN1 gene knockout was established by the CRISPR/Cas9 gene editing technique, and the effects of the PLIN1 gene on the proliferation, apoptosis, differentiation and lipolysis of chicken preadipocytes were detected. The results showed that the CRISPR/Cas9 system effectively mediated knockout of the PLIN1 gene. After the deletion of PLIN1, the differentiation ability and early apoptotic activity of chicken preadipocytes decreased, and their proliferation ability increased. Moreover, knockout of PLIN1 promoted chicken preadipocyte lipolysis under basal conditions and inhibited chicken preadipocyte lipolysis under hormone stimulation. Taken together, our results inferred that PLIN1 plays a regulatory role in the process of proliferation, apoptosis, differentiation and lipolysis of chicken preadipocytes. Full article
Show Figures

Figure 1

11 pages, 2625 KiB  
Brief Report
RETRACTED: Hepatic PLIN5 Deficiency Impairs Lipogenesis through Mitochondrial Dysfunction
by Enxiang Zhang
Int. J. Mol. Sci. 2022, 23(24), 15598; https://doi.org/10.3390/ijms232415598 - 9 Dec 2022
Cited by 3 | Viewed by 2330 | Retraction
Abstract
Regulation of lipid droplets (LDs) metabolism is the core of controlling intracellular fatty acids (FAs) fluxes, and perilipin 5 (PLIN5) plays a key role in this process. Our previous studies have found that hepatic PLIN5 deficiency reduces LDs accumulation, but the trafficking of [...] Read more.
Regulation of lipid droplets (LDs) metabolism is the core of controlling intracellular fatty acids (FAs) fluxes, and perilipin 5 (PLIN5) plays a key role in this process. Our previous studies have found that hepatic PLIN5 deficiency reduces LDs accumulation, but the trafficking of FAs produced from this pathway and the interaction between mitochondria and LDs in this process are largely unknown. Here, we found that the deficiency of PLIN5 decreases LDs accumulation by increasing FAs efflux. In addition, the decreased lipogenesis of PLIN5-deficient hepatocytes is accompanied by mitochondrial dysfunction, suggesting that PLIN5 plays an important role in mediating the interaction between LDs and mitochondria. Importantly, PLIN5 ablation negates oxidative capacity differences of peri-droplet and cytosolic mitochondria. In summary, these data indicate that PLIN5 plays a vital role in maintaining mitochondrial-mediated lipogenesis, which provides an important new perspective on the regulation of liver lipid storage and the relationship between PLIN5 and mitochondria. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

Back to TopTop