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Abstract: Oxidative stress is the imbalance between the production of reactive oxygen species
(ROS) and antioxidants in a cell. In the heart, oxidative stress may deteriorate calcium handling,
cause arrhythmia, and enhance maladaptive cardiac remodeling by the induction of hypertrophic
and apoptotic signaling pathways. Consequently, dysregulated ROS production and oxidative
stress have been implicated in numerous cardiac diseases, including heart failure, cardiac ischemia–
reperfusion injury, cardiac hypertrophy, and diabetic cardiomyopathy. Lipid droplets (LDs) are
conserved intracellular organelles that enable the safe and stable storage of neutral lipids within
the cytosol. LDs are coated with proteins, perilipins (Plins) being one of the most abundant. In this
review, we will discuss the interplay between oxidative stress and Plins. Indeed, LDs and Plins
are increasingly being recognized for playing a critical role beyond energy metabolism and lipid
handling. Numerous reports suggest that an essential purpose of LD biogenesis is to alleviate cellular
stress, such as oxidative stress. Given the yet unmet suitability of ROS as targets for the intervention
of cardiovascular disease, the endogenous antioxidant capacity of Plins may be beneficial.

Keywords: lipid droplets (LDs); perilipins (Plins); oxidative stress; reactive oxygen species (ROS);
cardiovascular disease

1. Introduction

Myocardial disease remains the leading cause of death and disability worldwide.
Despite advances in medical and interventional therapy for myocardial pathologies such
as ischemia, valvular heart disease, or hypertension, many surviving patients still develop
heart failure. In addition, recent studies show that the incidence of heart failure is increasing
in the younger population in parallel with the increasing prevalence of diabetes and
obesity [1–3].

Oxidative stress is a common denominator in the pathogenesis of myocardial disease.
Oxidative stress is the imbalance between the production of reactive oxygen species (ROS)
and antioxidants in a cell. In patients with myocardial disease, oxidative stress occurs in
the myocardium and is associated with left ventricular dysfunction [4–6]. Within the heart,
oxidative stress can impair calcium handling, cause arrhythmia, and enhance maladaptive
cardiac remodeling by the induction of hypertrophy and apoptosis [7].

Currently, emerging evidence indicates that lipid droplets (LDs) play a critical role
in the cellular response to oxidative stress. In this review, we focus on the role of the
LD proteins perilipins (Plins) and their role in oxidative stress. We will also discuss
the implications of Plins and oxidative stress in cardiovascular disease. For a schematic
summary, please see Figure 1.
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In most cell types, and especially in cardiomyocytes, the mitochondrial electron 

transport chain is the main endosource of ROS production [23]. A fraction of the electrons 

running through the electron transport chain in the mitochondrial inner membrane are 
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Figure 1. Schematic illustration of the interplay between oxidative stress and perilipins (Plins). The
effect of each plin on oxidative stress is shown in thick orange lines, and the effect of oxidative stress
on perilipin levels and location is shown in thin arrows. Studied organs and cells as well as references
(Plin1: [8–10]; Plin2: [11–14]; Plin3: [15]; Plin4: [16]; Plin5: [17–21]) are highlighted in grey for each
perilipin. Grey dotted arrows highlight the current gap in knowledge.

1.1. ROS within the Heart

Oxidative stress occurs when there is an excessive production of ROS in relation to
antioxidant defense. ROS are oxygen-containing reactive species and comprise oxygen free
radicals (e.g., superoxide anion radical O2

•−, hydroxyl radicals, and peroxyl radicals) as
well as non-radicals (e.g., hydrogen peroxide H2O2, hypochlorous acid, and ozone) [22].

In most cell types, and especially in cardiomyocytes, the mitochondrial electron
transport chain is the main endosource of ROS production [23]. A fraction of the electrons
running through the electron transport chain in the mitochondrial inner membrane are
partially reduced to O2

•− and are rapidly dismutated to H2O2 by superoxide dismutase
(SOD) and then further reduced to H2O by antioxidative enzymes (gluthatione peroxidase,
peroxiredoxin, and catalase). In addition to mitochondria, ROS can also be generated by
cytosolic sources. One of the most important sources of cytosolic ROS are the NADPH
oxidases (NOX) enzymes [24]. NOX proteins produce O2

•− through NADPH electron
exchange, and NOX-dependent ROS production regulates many metabolic processes and
has been implicated in cardiovascular disease [25]. Furthermore, cytosolic ROS are also
produced by xanthine oxidase, nitric oxide synthase, monoamine oxidase, cyclooxygenases,
and cytochrome P450 enzymes [26].

The tight equilibrium between ROS production and neutralization is ensured either
by the regulation of the expression/activity of enzymes producing free radicals or by
the endogenous antioxidant system. The latter comprises antioxidant enzymes, such as
SOD, catalase, or glutathione peroxidase, as well as small molecules, such as hydrophilic
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antioxidants and lipophilic radical antioxidants [27]. To protect itself from oxidative
stress, the cell can activate the antioxidant response element found within the promoter
region of many cytoprotective antioxidants [28]. The antioxidant response element is
transcriptionally activated through nuclear translocation/accumulation and the binding of
its transcription factor, Nrf2 (NF-E2-related), and thus it is responsible for the regulation of
a large panel of antioxidant enzymes [29].

Under physiological conditions, ROS regulate many cellular processes when present
at low concentrations, including gene expression, energetic production, substrate oxidation,
hormone production, and cellular defenses [30]. Elevated ROS levels overpassing the
antioxidant defense can also be beneficial in certain situations (i.e., antimicrobial defense,
exercise adaptation). However, excessive ROS production leading to oxidative stress is
mainly toxic, resulting in damaged cell constituents and impaired cellular function. In the
heart, multiple studies have shown that ROS impair a broad range of cellular functions,
including mitochondrial function and biogenesis, mitochondrial permeability transition
pore opening, energy metabolism, calcium handling, excitation–contraction coupling,
cardiac fibroblast activation, and cell death [31–36]. Additionally, oxidative stress due to
a reduction in the antioxidant defense has also been identified as a contributing factor to
cardiomyocyte dysfunction [26].

Certainly, dysregulated ROS production and oxidative stress trigger maladaptive
cardiac remodeling in numerous cardiac diseases, including cardiac ischemia–reperfusion
injury, arrhythmia, hypertrophy, and diabetic cardiomyopathy potentially progressing to
heart failure [26,37,38].

1.2. Cardiac Dysfunction Promotes Metabolic Abnormalities

In cardiomyocytes, lipid homeostasis depends on a dynamic balance between fatty acid
uptake from the surroundings and consumption by mitochondrial β-oxidation. Cardiac
dysfunction and remodeling are known to promote metabolic abnormalities [39]. The
heart has a very high energy demand and must maintain a continuous production of ATP
to sustain contractile function. The healthy heart is metabolically flexible and can easily
switch between different energy substrates, such as fatty acids and glucose. However, the
failing heart loses this flexibility, resulting in a decreased ability to produce energy through
ATP and other high-energy phosphate compounds [40–42], by up to 40% [43]. The energy
deficit in the failing heart is associated with profound metabolic reprogramming, including
an increased uptake of lipids and glucose and a subsequent accumulation of lipids [44]. It is
well known that neutral lipids (triglycerides and cholesteryl esters) accumulate in LDs in the
diseased heart [45]. In addition, we and others have shown that other lipid intermediates
(potentially lipotoxic and/or bioactive lipids) also accumulate in the remodeling heart in
response to a pathological insult [46–50]. In response to metabolic reprogramming, the
abnormal accumulation of myocardial LDs may impact the redox state of the heart.

1.3. LDs and Plins in the Heart

LDs are conserved intracellular organelles found in almost all cell types [51,52].
This dynamic organelle consists of a core of neutral lipids such as cholesterol esters and
triglycerides [53]. LDs store lipids that can be used as metabolic fuel and for membrane
components, posttranslational protein modifications, and signaling molecules within the
cell [52,54]. They can vary in size from 100 nm up to 100 µm in white adipose tissue (WAT),
filling up the entire adipocyte [52,55]. The membrane that surrounds the core consists of
phospholipids, cholesterol, and proteins with different functions [51,54–57].

Proteomic studies have identified more than 200 proteins that are associated with
LDs [51,58]. The proteins that coat the LDs can vary between droplets within the cell,
between metabolic conditions, and between cell types, and the limited capacity for proteins
to bind to LDs further regulates this [52,54,59]. One of the major LD protein families are the
Plins [59,60]. To date, five different Plins have been identified in mammals, Plins1–5 [58].
Plins sequester lipids by protecting LDs from lipases. Plin2 and Plin3 are ubiquitously
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expressed in many tissues and cells, whereas Plin1, 4, and 5 have more specialized tissue
expression [54].

Within the heart, LD storage is normally low, with small and few LDs. However,
abundant and enlarged LDs are found in the hearts of patients with diabetes, obesity, and
metabolic syndrome, as well as with cardiovascular disease [61]. In the heart, four Plins
are present (Plin2, Plin3, Plin4, and Plin5). However, Plin2 and Plin5 are by far the most
abundant LD proteins in cardiomyocytes [60,62,63].

1.4. LDs and Oxidative Stress

Emerging evidence indicates that LDs, in addition to mere energy metabolism and
lipid handling, play important roles in the cellular stress response [64,65]. Numerous
reports suggest that an essential purpose of LD biogenesis is to relieve cellular lipotoxic
stress, as well as oxidative stress.

Oxidative stress resulting from the overproduction of ROS often correlates with the
increased biogenesis of LDs. The causal mechanisms are still not clarified, but potential
mechanisms may be the activation of lipogenesis mediated by sterol regulatory element-
binding protein (SREBP) as well as altered phospholipid turnover [66,67]. In addition,
previous studies have shown that a reduction in a cell’s ability to form LDs may result
in severe oxidative stress. Cheng et al. reported that the inhibition of DGAT1 (a major
triglycerides-synthesizing enzyme; diacylglycerol-acyltransferase 1) disrupted LD accu-
mulation and led to an increased flux of FAs to mitochondria, resulting in mitochondrial
damage, oxidative stress, and apoptosis [68]. Furthermore, Bailey et al. described the
antioxidant role of LDs, which limit ROS production from the peroxidation of polyunsatu-
rated FAs in the neuroblasts of drosophila. Their results clearly indicate that LDs comprise
a multifunctional organelle that controls energy metabolism, signaling molecules, and
intracellular lipotoxicity [66].

The physical association between mitochondria and LDs is a growing research area.
Accumulating reports show that this inter-organelle association crucially defines a metaboli-
cally distinct subset of mitochondria called peridroplet mitochondria [69]. Beyond the mere
bioenergetics, peridroplet mitochondria show a distinct proteome and cristae organization
as well as dynamics with reduced fusion and motility [69,70]. Although the mechanisms
remain unclear, this interaction may have important implications in the antioxidative prop-
erties of LDs. In response to ROS, Tan et al. described the increased incidence of these
contact sites in line with increased Plin5 expression through JNK-p38-ATF signaling. In this
context, Plin5 could regulate the expression levels of mitochondrial cytochrome c oxidases
and alleviate ROS production [17]. In addition, emerging evidence suggests that LDs are re-
quired for the autophagic processes [71]. Mitophagy is a selective degradation pathway for
defective mitochondria in the lysosomes [72]. Yet incompletely understood, the importance
of DGAT1-dependent LD biosynthesis in mitophagy may provide additional evidence on
LD-dependent ROS and cell stress management [73,74].

Lastly, LDs have been found to play a key role in driving inflammation by modulating
immune cell function. They can provide energy and structural components to produce
inflammatory mediators such as prostaglandins, leukotrienes, and cytokines [75]. LDs
also interact with the inflammasome, a multiprotein complex that activates the proin-
flammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18) in response to a
multitude of pathogen-associated molecular patterns and host-derived signals, including
ROS [76]. Among all the described inflammasomes, the nucleotide-binding oligomerization
domain-like receptor pyrin domain-containing 3 (NLRP3) inflammasome has been the most
investigated due to its implication in a wide array of inflammatory human diseases [77]. In-
terestingly, NLRP3 affects mitochondrial ROS production by regulating LD formation [78].
NLRP3 activation was also found to be responsible for TREM1-mediated neuroinflamma-
tion and ROS production in microglial cells [79]. In this context, TREM1 colocalized with
Plin2-positive LDs accumulated through impaired lipophagy. The LDs would thus act as a
shield to this pro-oxidant factor. However, the nature of the interaction and how it affects
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the function of TREM1 remain to be determined. TREM1 plays a key role in oxidative stress,
and its inhibition has been suggested as an anti-atherosclerotic therapy [80]. In line with a
maladaptive lipid-handling profile, macrophages transitioning to an inflammatory state in
human atherosclerosis display high levels of both TREM1 and Plin2 [81]. The activation of
the NLRP3 inflammasome is an interesting focus for many cardiovascular injuries [82–84]
and, in particular, in non-immune cardiac cells (i.e., cardiomyocytes and cardiac fibrob-
lasts) [85,86]. The mechanisms underlying the role of the cardiac inflammasome in relation
to lipid accumulation and oxidative stress in metabolic cardiac disease remain unknown. It
may provide a better understanding of the key mediators and mechanisms underlying the
switch between adaptive and maladaptive LD storage.

2. Plins in the Context of Oxidative Stress and Cardiac Dysfunction
2.1. Plin1

Plin1 is preferentially expressed in adipocytes and steroidogenic cells where it acts as a
barrier to prevent LD triglycerides from hydrolysis by lipase [87]. From the current knowl-
edge, the role of Plin1 on cardiac oxidative stress is thus limited to a perturbed metabolic
crosstalk between adipose tissue and the myocardium. Indeed, an increased supply of free
fatty acids to cardiomyocytes in Plin1-knockout mice results in the accumulation of ROS
species and the induction of oxidative stress. This is suggested to be the result of an im-
balanced superoxide generation and the reduced ability of antioxidants to detoxify excess
ROS [8]. More recently, a dual role of Plin1 has been described in modulating the immune
deficiency signaling in the fat body of the fruit fly, Drosophila melanogaster. Plin1 was shown
to be downregulated in the early stages of the immune response, leading to the formation
of large LDs and thereby taking part in an antioxidative function, efficiently eliminating
ROS accumulation after bacterial infection [9]. However, in accordance with a recent report
on mice, the prolonged downregulation of Plin1 during persistent immune hyperactivation
in Drosophila was critical in promoting large LD-higher rate of Bmm/ATGL-mediated
lipolysis leading to excessive lipotoxicity [10].

2.2. Plin2

Plin2 is an LD-associated protein abundantly expressed in nonadipose tissues. It is
constitutively associated with intracellular LDs. Plin2 is linked to LD storage in ectopic
tissues, and its increased expression is associated with numerous metabolic diseases (insulin
resistance, type 2 diabetes, and cardiovascular diseases) in humans as well as in animal
models [88]. Global Plin2-knockout mice display reduced liver triglycerides levels and
are resistant to diet-induced obesity [89]. Roberts et al. performed an impressive CRISPR-
Cas9 screen to identify the regulators of Plin2 expression and stability. They identified
canonical genes that control lipid metabolism as well as genes involved in ubiquitination,
transcription, and mitochondrial function [90]. In addition, the expression of Plin2 has
been shown to be upregulated in the context of oxidative stress. Jin et al. have shown that
ROS can induce LD accumulation in hepatocytes by inducing the expression of Plin2 [11].
The endogenous upregulation of Plin2 can alleviate UVA-induced oxidative stress in
dermal fibroblasts [12]. Ramosaj et al. elegantly showed that in neural progenitor/stem
cells, Plin2-induced LDs generated elevated ROS production but that the higher ROS
levels did not result in increased lipid peroxidation [13]. In breast cancer, upregulation of
Plin2 and the promotion of lipid storage mediates the adaptation to oxidative stress [14].
An accumulation of LDs, accompanied by an increased expression of Plin2, was also
observed in stress-activated microglia [91]. However, in this case, elevated Plin2 levels
were supporting oxidative stress in the rostral ventrolateral medulla of stressed rats through
phospholipid biosynthesis and metabolism dysregulation. In addition, Plin2 was found
to play a crucial role in cerebral ischemia–reperfusion by impacting proinflammatory
cytokines and the NLRP3 inflammasome [92].

Plin2 is highly expressed in the heart. In mouse heart, Plin2 is upregulated during
fasting-induced steatosis [93]. Plin2-knockout mice had increased myocardial triglyceride
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levels and an increased myocardial abundance of Plin3 and Plin5 compared with littermate
mice. We showed that the increased triglyceride accumulation in Plin2-deficient hearts
was caused by reduced lipophagy. Thus, our results suggest that Plin2 is important for
the proper hydrolysis of LDs. Western blots showed that the fusion marker mitofusin2
was significantly upregulated in Plin2-deficient hearts, but the fission marker Drp1 was
not affected. The expression of mitochondrial proteins OXPHOS proteins complex IV and
complex I were reduced in Plin2-deficient hearts. However, basal and maximal mitochon-
drial respiration was not affected by the lack of Plin2 [63]. Thus, mitochondrial function is
intact in Plin2−/− cardiomyocytes, and the increased triglyceride accumulation in Plin2−/−

cardiomyocytes is not due to differences in respiration.
Ueno et al. investigated the pathophysiological role of myocardial Plin2 by gen-

erating a transgenic mouse model with cardiomyocyte-specific overexpression of Plin2.
Plin2-overexpressing hearts displayed massive triglyceride accumulation but preserved
myocardial morphology and cardiac function in young mice [94]. In another overexpres-
sion model, Sato et al. found that Plin2-induced cardiac steatosis resulted in deteriorated
gap junctions in the intercalated discs, impaired conduction propagation, and a higher
incidence of atrial fibrillation in aged mice [95].

2.3. Plin3

Plin3 is ubiquitously distributed among tissues [96,97]. Plin3 binds to newly synthe-
sized LDs but is replaced by other Plins, such as Plin2 and Plin5, when the LD matures [98].
Plin3 has the ability to move on and off the LD and is stable in the cytoplasm [96]. The
depletion of hepatic Plin3 by antisense oligos suppresses hepatic steatosis and improves
glucose homeostasis in mice [99]. In response to oxidative stress-induced apoptosis, Plin3
has been shown to be recruited to the mitochondria where it can protect mitochondrial
membrane activity without affecting ROS generation [15].

2.4. Plin4

Plin4 is the least studied member of the Plin family, and knowledge about its regula-
tion and function is still scarce. Plin4 is mainly found in preadipocytes and in membranes
of newly synthesized LDs [100]. Pourteymour et al. have also shown that Plin4 is ex-
pressed in human skeletal muscle [101]. Indeed, genetic variation in the PLIN4 gene was
recently identified in an Italian cohort, resulting in the accumulation of Plin4 within muscle
fibers, disrupted fiber organization, and reduced muscle contractility [102,103]. Recently,
the increased expression of Plin4 during chemically induced oxidative stress has been
reported [16].

2.5. Plin5

Plin5 is highly expressed in oxidative tissue [62] and the most studied member of the
Plin family in the context of oxidative stress [104]. Cellular ROS levels have been shown
to promote Plin5 expression in hepatic cells [17]. Furthermore, a recent report highlighted
Plin5 as being the only Plin with a reduced expression on LDs from LPS-treated livers,
suggesting that the ROS burden could also affect its location/function [105]. However, even
if reports accumulate about the role of Plin5 in reducing oxidative damage, the knowledge
about its regulation in cells facing an oxidative burden is still scarce. Zhu et al. showed
that Plin5 regulates protection against oxidative damage by mediating the Nrf-antioxidant
response element signaling pathway in pancreatic β-cells [18].

Plin5 is essential for maintaining LDs in oxidative tissues by antagonizing
lipases [60,106,107]. Plin5-knockout mice lack detectable LDs in cardiomyocytes and
have markedly reduced triglycerides accumulation in the heart [19,48]. Plin5-deficient
cardiomyocytes undergo a metabolic shift by decreasing the fatty acid uptake and instead
increasing the glucose uptake and are thereby able to maintain their energy metabolism.
Plin5-knockout mice maintain a close-to-normal heart function under baseline conditions.
However, during stress or myocardial ischemia, Plin5 deficiency results in myocardial
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reduced substrate availability, severely impaired cardiac function, and increased mortal-
ity [48]. Kuramoto et al. further showed that the production of ROS was increased in
the Plin5−/− mouse hearts, leading to a reduced heart function with age. This was, how-
ever, reduced by the administration of N-acetylcysteine, a precursor of an antioxidant,
glutathione. In addition, Plin5-deficient mice displayed aggravated cardiac hypertrophy
and elevated myocardial oxidative stress following transaortic constriction [108]. Thus,
LDs prevent excess ROS production by sequestering fatty acids from oxidation and hence
suppress oxidative burden to the heart [19]. Moreover, Zheng et al. have shown that Plin5
reduces oxidative stress following myocardial ischemia–reperfusion injury, through the
inhibition of the lipolysis of LDs [20]. The authors showed that Plin5 deficiency increased
the myocardial infarct area and reduced the heart function. Furthermore, Plin5-deficient
myocardium displayed damaged mitochondria, increased ROS and malondialdehyde
levels, and reduced SOD activity [20].

Plin5 provides a physical linkage to mitochondria by anchoring the mitochondria to
the LD by the C-terminal region of Plin5 [109]. A deficiency in Plin5 in cardiomyocytes
has also been shown to result in reduced mitochondrial function [110]. In mitochondria
isolated from Plin5-deficient hearts, the oxidative capacity was reduced. However, there
was no effect on the mitochondrial oxidative stress or the generation of ROS [110]. Miner
et al. recently showed that FATP4 is a mitochondrial interactor of Plin5, enabling fatty acid
channeling from LDs to mitochondria [111]. Kien et al. further investigated the impact of
LD–mitochondria coupling by comparing a truncated form of Plin5 (that lacked the ability
to couple to mitochondria) with wildtype Plin5. They found that efficient coupling between
Plin5 and mitochondria had no effect on fatty acid oxidation but significantly improved
the respiratory capacity of mitochondria [112]. Higher mitochondrial respiration may
involve the increased production of mitochondrial ROS without deleterious effects. In this
context, Plin5 overexpression may thus enhance ROS detoxification and/or improve their
usage towards beneficial pathways. Future studies of the mitochondrial interactors of Plin5
will improve the understanding of how Plin5 manages mitochondrial ROS production in
pathophysiological conditions.

Additional studies have suggested a role for Plin5 in atherosclerosis and oxidative
stress. Plin5 deficiency leads to accelerated atherosclerosis progression and oxidative stress
in ApoE−/− mice [113]. The inactivation of Plin5 in macrophages resulted in elevated
inflammation and oxidative stress [113]. Moreover, Plin5 also regulates vascular smooth
muscle cell proliferation by modulating ROS generation [21].

In humans, genetic variation in PLIN5 is associated with impaired cardiac function
after myocardial ischemia. Patients carrying the allele rs884164 are at higher risk of cardio-
vascular morbidity and mortality after myocardial ischemia [48].

2.6. Transcriptional and Posttranslational Regulation of Plins in Response to ROS

While it is well recognized that oxidative stress leads to the increased expression of
Plins in various tissues, the mechanisms of the transcriptional and posttranslational regula-
tion of Plins by oxidative stress need further investigation. The PPAR family of transcription
factors is key for the regulation of most of mammalian Plins (i.e., Plin1–2 and 4–5) [114]. In
combination with specific transcriptional cofactors, such as PGC1 family members, the three
PPAR isoforms (α, β/δ, and γ) regulate the differential cell-specific activations of Plin1, 2, 4,
and 5 in different tissues. ROS levels can regulate transcriptional activity, including PPARγ
function [115,116]. With transcriptional regulation, the stability of Plins is the determining
factor for their tissue-specific expression levels and function. One of the most important
targets of redox-based modifications is the redox-sensitive thiols of cysteines [117]. The
C-terminus of Plin1 protein is a relatively conserved hydrophobic domain with five cysteine
residues that have been shown to be sulfhydrated, thereby stabilizing the protein [118]. The
recent development of a broad and quantitative analysis of the cysteine proteome in living
tissues [119] represents an exciting approach to better understand how persistent ROS
exposure could affect Plin stability and regulate their expression during oxidative stress.
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In addition, several reports show that posttranslational modifications of Plins are crucial
for their location and function [59,120,121]. Unbiased screening approaches could facilitate
more thorough investigations of the dynamic of oxidative stress-linked posttranslational
modifications of Plins. Studies of human single-nucleotide polymorphisms in combination
with genetically engineered mice would therefore help the understanding of the specific
role of each Plin in the management of cardiac oxidative stress.

3. Concluding Remarks and Perspectives

One of the limitations in studying the isoform-specific functions of Plins in ROS
management is the tight complexity in the regulation of Plins. It has been established
that most mouse-engineered models for one specific Plin result in consequent regulation
and compensation by other members of the family. For example, Plin3 and Plin5 are
increased in Plin2-knockout mice, suggesting that they may be able to compensate for
some Plin2 functions that are lost [63,122]. Above all, all Plins regulate LD turnover
and access to lipases [59], resulting in the dysregulation of metabolic by-products of
Plin-regulated lipolysis in genetically engineered models. Consequently, the feedback
regulation of non-targeted Plins may be promoted, complicating the interpretation of their
isoform-specific role.

Even though extensive experimental studies suggest that ROS are suitable targets
for the intervention of cardiovascular disease, clinical trials have unfortunately shown
negative results [123]. Contributing factors to the lack of clinical effects may be the different
primary pathophysiologic mechanisms depending on the etiology of the disease and
the large number of exogenous and endogenous antioxidant players, which implies a
high interpatient variability [124]. ROS generation and interactions with other signaling
molecules have been shown to occur in a compartmentalized manner, and thus there are
still opportunities for novel approaches, especially targeting the endogenous antioxidant
capacity. Preclinical models have provided strong evidence that LDs can function as ROS
scavengers; however, knowledge about the specific role of LD proteins such as Plins in this
context needs to be further investigated.

Specific modulation of Plin levels is challenging and limits the therapeutic options
for ROS mitigation. However, there are increasing reports showing that increased levels
of Plin2 or Plin5 reduce cellular oxidative damage. Therefore, testing the endogenous
antioxidant capacity of Plins to alleviate oxidative stress in heart failure appears to be an
exciting opportunity in ROS reduction during cardiovascular disease. The difficulties in
specifically modulating Plin levels represent the major limitation to success in this unmet
scientific challenge. However, a recent report showed that LDs can be released in the
extracellular space and exchanged between cells [125]. This raises the question of the
biological role of this mechanism and the potential role of LD proteins in extracellular
communication. This has huge potential for the use of LDs as extracellular vesicles as novel
drug delivery vehicles but most importantly as a therapy itself. In this context, promising
work from Zhao et al. validated that Plin-coated artificial LDs could be taken up by cells,
significantly reducing hydrogen peroxide-induced ROS and alleviating cellular lipotoxicity
caused by excess fatty acids [126].

Recently, we have shown that cardiac-specific Plin5 overexpression promotes
physiological-like hypertrophy with preserved/improved cardiac function [127]. This
study emphasized the therapeutic potential of the Plins to maintain cardiac physiology in
challenging settings. Contrary to maladaptive remodeling, physiological cardiac hyper-
trophy is considered harmless, completely reversible, and mostly occurs in response to
increased workload such as exercise. Mounting evidence supports the notion that ROS
as well as Plin levels are tightly regulated during exercise-induced adaptations [128–132].
Further investigations are needed to elucidate the interplay between Plins and ROS in the
context of exercise and physiological hypertrophy.
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