Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (41)

Search Parameters:
Keywords = peri-urban water resources

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 3620 KiB  
Review
Expansion of Lifestyle Blocks in Peri-Urban New Zealand: A Review of the Implications for Environmental Management and Landscape Design
by Han Xie, Diane Pearson, Sarah J. McLaren and David Horne
Land 2025, 14(7), 1447; https://doi.org/10.3390/land14071447 - 11 Jul 2025
Viewed by 389
Abstract
Lifestyle blocks (LBs) are small rural holdings primarily used for residential and recreational purposes rather than commercial farming. Despite the rapid expansion of LBs over the last 25 years, which has been driven by lifestyle amenity preference and land subdivision incentives, their environmental [...] Read more.
Lifestyle blocks (LBs) are small rural holdings primarily used for residential and recreational purposes rather than commercial farming. Despite the rapid expansion of LBs over the last 25 years, which has been driven by lifestyle amenity preference and land subdivision incentives, their environmental performance remains understudied. This is the case even though their proliferation is leading to an irreversible loss of highly productive soils and accelerating land fragmentation in peri-urban areas. Through undertaking a systematic literature review of relevant studies on LBs in New Zealand and comparable international contexts, this paper aims to quantify existing knowledge and suggest future research needs and management strategies. It focuses on the environmental implications of LB activities in relation to water consumption, food production, energy use, and biodiversity protection. The results indicate that variation in land use practices and environmental awareness among LB owners leads to differing environmental outcomes. LBs offer opportunities for biodiversity conservation and small-scale food production through sustainable practices, while also presenting environmental challenges related to resource consumption, greenhouse gas (GHG) emissions, and loss of productive land for commercial agriculture. Targeted landscape design could help mitigate the environmental pressures associated with these properties while enhancing their potential to deliver ecological and sustainability benefits. The review highlights the need for further evaluation of the environmental sustainability of LBs and emphasises the importance of property design and adaptable planning policies and strategies that balance environmental sustainability, land productivity, and lifestyle owners’ aspirations. It underscores the potential for LBs to contribute positively to environmental management while addressing associated challenges, providing valuable insights for ecological conservation and sustainable land use planning. Full article
Show Figures

Figure 1

34 pages, 7396 KiB  
Article
Sustainable Groundwater Management in the Coastal Aquifer of the Témara Plain, Morocco: A GIS-Based Hydrochemical and Pollution Risk Assessment
by Abdessamia El Alaoui, Imane Haidara, Nawal Bouya, Bennacer Moussaid, Khadeijah Yahya Faqeih, Somayah Moshrif Alamri, Eman Rafi Alamery, Afaf Rafi AlAmri, Youness Moussaid and Mohamed Ait Haddou
Sustainability 2025, 17(12), 5392; https://doi.org/10.3390/su17125392 - 11 Jun 2025
Viewed by 815
Abstract
Morocco’s Témara Plain relies heavily on its aquifer system as a critical resource for drinking water, irrigation, and industrial activities. However, this essential groundwater reserve is increasingly threatened by over-extraction, seawater intrusion, and complex hydrogeochemical processes driven by the region’s geological characteristics and [...] Read more.
Morocco’s Témara Plain relies heavily on its aquifer system as a critical resource for drinking water, irrigation, and industrial activities. However, this essential groundwater reserve is increasingly threatened by over-extraction, seawater intrusion, and complex hydrogeochemical processes driven by the region’s geological characteristics and anthropogenic pressures. This study aims to assess groundwater quality and its vulnerability to pollution risks and map the spatial distribution of key hydrochemical processes through an integrated approach combining Geographic Information System (GIS) techniques and multivariate statistical analysis, as well as applying the DRASTIC model to evaluate water vulnerability. A total of fifty-eight groundwater samples were collected across the plain and analyzed for major ions to identify dominant hydrochemical facies. Spatial interpolation using Inverse Distance Weighting (IDW) within GIS revealed distinct patterns of sodium chloride (Na-Cl) facies near the coastal areas with chloride concentrations exceeding the World Health Organization (WHO) drinking water guideline of 250 mg/L—indicative of seawater intrusion. In addition to marine intrusion, agricultural pollution constitutes a major diffuse pressure across the aquifer. Shallow groundwater zones in agricultural areas show heightened vulnerability to salinization and nitrate contamination, with nitrate concentrations reaching up to 152.3 mg/L, far surpassing the WHO limit of 45 mg/L. Furthermore, other anthropogenic pollution sources—such as wastewater discharges from septic tanks in peri-urban zones lacking proper sanitation infrastructure and potential leachate infiltration from informal waste disposal sites—intensify stress on the aquifer. Principal Component Analysis (PCA) identified three key factors influencing groundwater quality: natural mineralization due to carbonate rock dissolution, agricultural inputs, and salinization driven by seawater intrusion. Additionally, The DRASTIC model was used within the GIS environment to create a vulnerability map based on seven key parameters. The map revealed that low-lying coastal areas are most vulnerable to contamination. Full article
(This article belongs to the Section Pollution Prevention, Mitigation and Sustainability)
Show Figures

Figure 1

47 pages, 10515 KiB  
Review
Soilless Agricultural Systems: Opportunities, Challenges, and Applications for Enhancing Horticultural Resilience to Climate Change and Urbanization
by Imran Ali Lakhiar, Haofang Yan, Tabinda Naz Syed, Chuan Zhang, Sher Ali Shaikh, Md. Rakibuzzaman and Rahim Bux Vistro
Horticulturae 2025, 11(6), 568; https://doi.org/10.3390/horticulturae11060568 - 22 May 2025
Cited by 2 | Viewed by 2119
Abstract
Rapid urbanization, climate variability, and land degradation are increasingly challenging traditional open-field farming systems. Soilless farming (SLF) has emerged as a complementary approach to enhance horticultural resilience in space-constrained and climate-stressed environments. This review critically evaluates the role of SLF within the broader [...] Read more.
Rapid urbanization, climate variability, and land degradation are increasingly challenging traditional open-field farming systems. Soilless farming (SLF) has emerged as a complementary approach to enhance horticultural resilience in space-constrained and climate-stressed environments. This review critically evaluates the role of SLF within the broader framework of climate-smart agriculture (C-SA), with a particular focus on its applications in urban and peri-urban settings. Drawing on a systematic review of the existing literature, the study explores how SLF technologies contribute to efficient resource use, localized food production, and environmental sustainability. By decoupling crop cultivation from soil, SLF enables precise control over nutrient delivery and water use in enclosed environments, such as vertical farms, greenhouses, and container-based units. These systems offer notable advantages regarding water conservation, increased yield per unit area, and adaptability to non-arable or degraded land, making them particularly relevant for high-density cities, arid zones, and climate-sensitive regions. SLF systems are categorized into substrate-based (e.g., coco peat and rock wool) and water-based systems (e.g., hydroponics, aquaponics, and aeroponics), each with distinct design requirements, nutrient management strategies, and crop compatibility. Emerging technologies—including artificial intelligence, the Internet of Things, and automation—further enhance SLF system efficiency through real-time data monitoring and precision control. Despite these advancements, challenges remain. High setup costs, energy demands, and the need for technical expertise continue to limit large-scale adoption. While SLF is not a replacement for traditional agriculture, it offers a strategic supplement to bolster localized food systems and address climate-related risks in horticultural production. Urban horticulture is no longer a peripheral activity; it is becoming an integral element of sustainable urban development. SLF should be embedded within broader resilience strategies, tailored to specific socioeconomic and environmental contexts. Full article
(This article belongs to the Special Issue Soilless Culture and Hydroponics in Closed Systems)
Show Figures

Figure 1

22 pages, 3617 KiB  
Review
Groundwater Vulnerability in the Kou Sub-Basin, Burkina Faso: A Critical Review of Hydrogeological Knowledge
by Tani Fatimata Andréa Coulidiati, Angelbert Chabi Biaou, Moussa Diagne Faye, Roland Yonaba, Elie Serge Gaëtan Sauret, Nestor Fiacre Compaoré and Mahamadou Koïta
Water 2025, 17(9), 1317; https://doi.org/10.3390/w17091317 - 28 Apr 2025
Cited by 1 | Viewed by 1371
Abstract
Groundwater resources in the Kou sub-basin of southwestern Burkina Faso play a critical role in supporting domestic water supply, agriculture, and industry in and around Bobo-Dioulasso, the second-largest city in Burkina Faso. This study synthesizes over three decades of research on groundwater vulnerability, [...] Read more.
Groundwater resources in the Kou sub-basin of southwestern Burkina Faso play a critical role in supporting domestic water supply, agriculture, and industry in and around Bobo-Dioulasso, the second-largest city in Burkina Faso. This study synthesizes over three decades of research on groundwater vulnerability, recharge mechanisms, hydrochemistry, and residence time across the region’s sedimentary aquifers. The Kou basin hosts a complex stratified system of confined and unconfined aquifers, where hydrochemical analyses reveal predominantly Ca–Mg–HCO3 facies, alongside local nitrate (0–860 mg/L), iron (0–2 mg/L) and potassium (<6.5 mg/L–190 mg/L) contamination. Vulnerability assessments—using parametric (DRASTIC, GOD, APSU) and numerical (MODFLOW/MT3D) models—consistently indicate moderate to high vulnerability, especially in alluvial and urban/peri-urban areas. Isotopic results show a deep recharge for a residence time greater than 50 years with deep groundwater dating from 25,000 to 42,000 years. Isotopic data confirm a vertically stratified system, with deep aquifers holding fossil water and shallow units showing recent recharge. Recharge estimates vary significantly (0–354 mm/year) depending on methodology, reflecting uncertainties in climatic, geological, and anthropogenic parameters. This review highlights major methodological limitations, including inconsistent data quality, limited spatial coverage, and insufficient integration of socio-economic drivers. To ensure long-term sustainability, future work must prioritize high-resolution hydrogeological mapping, multi-method recharge modeling, dynamic vulnerability assessments, and strengthened groundwater governance. This synthesis provides a critical foundation for improving water resource management in one of Burkina Faso’s most strategic aquifer systems. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

24 pages, 1733 KiB  
Article
Urban FEW Nexus Model for the Otun River Watershed
by Camilo Torres, Margaret W. Gitau, Jaime Lara-Borrero, Diego Paredes-Cuervo and Bassel Daher
Water 2024, 16(23), 3405; https://doi.org/10.3390/w16233405 - 27 Nov 2024
Viewed by 1090
Abstract
The food–energy–water (FEW) nexus has emerged as an alternative for managing resources in the food, energy, and water systems. However, there are limited case studies applying this approach in the Latin American and Caribbean region. This region stands to benefit significantly from the [...] Read more.
The food–energy–water (FEW) nexus has emerged as an alternative for managing resources in the food, energy, and water systems. However, there are limited case studies applying this approach in the Latin American and Caribbean region. This region stands to benefit significantly from the FEW nexus approach due to its heavy reliance on hydropower for electricity generation and unevenly distributed and poorly managed water resources. In this study, an urban FEW nexus framework was used in the Otun River Watershed (ORW) to evaluate changes in food, energy, and water demand for four scenarios. Additionally, regional climate models (RCMs) were used to forecast water availability in the ORW from 2030–2039. The results show that water demand could increase by 16% and energy demand will increase by roughly 15% for scenario 2, while water demand in scenario 3 will likely remain unchanged in relation to the current conditions (base scenario). Enhancing water resources management in the ORW will involve a variety of measures, including: implementing practices to reduce water losses in distribution systems, developing green infrastructure and decentralized wastewater systems, and embracing urban and peri-urban farming. Successful application of urban FEW nexus solutions requires involvement from stakeholders across the food, energy, and water systems. Full article
Show Figures

Figure 1

23 pages, 9305 KiB  
Article
Community-Based Resilience Analysis (CoBRA) to Hazard Disruption: Case Study of a Peri-Urban Agricultural Community in Thailand
by Alisa Sahavacharin, Fa Likitswat, Kim N. Irvine and Lihoun Teang
Land 2024, 13(9), 1363; https://doi.org/10.3390/land13091363 - 26 Aug 2024
Cited by 1 | Viewed by 3165
Abstract
The expansion of cities and land use changes have led to the emergence of peri-urban areas representing a transition between fully urbanized and agricultural regions in Southeast Asia. Peri-urban communities provide essential ecosystem services but are vulnerable to climate-related disruptions and socioeconomic challenges. [...] Read more.
The expansion of cities and land use changes have led to the emergence of peri-urban areas representing a transition between fully urbanized and agricultural regions in Southeast Asia. Peri-urban communities provide essential ecosystem services but are vulnerable to climate-related disruptions and socioeconomic challenges. Utilizing their unique characteristics, peri-urban communities can contribute to sustainable development and resilience. This study assesses the potential of peri-urban areas to meet future challenges for sustainable development in a changing world, focusing on the local pandan farming community of Pathum Thani, approximately 53 km north of Bangkok, using the Community-Based Resilience Analysis (CoBRA) approach. A formally established group of peri-urban farming households identified COVID-19, water quality, and solid waste as their primary disruptive challenges. The community identified economic stability and resources (land ownership, financial security, and government support), community and social support (collaborative community, and healthcare facilities), an environmental dimension (sufficient food and clean water), and an information dimension (news and knowledge update) as key community resilience characteristics, which highlight their comprehensive approach to hazard resilience. The study concludes that the community was moderately resilient to hazards and COVID-19 was the primary disrupting event over the past 10 years. To address future challenges in peri-urban agriculture, it is suggested to focus on enhancing economic diversification, strengthening social networks and support systems, implementing sustainable land management practices, and promoting access to timely and accurate information. Additionally, investing in infrastructure for water management and waste recycling, supporting small-scale farming initiatives, and fostering collaboration between farmers and local authorities can contribute to building resilience in peri-urban agricultural communities. Full article
(This article belongs to the Special Issue Sustainability and Peri-Urban Agriculture II)
Show Figures

Figure 1

15 pages, 3812 KiB  
Article
The Groundwater Management in the Mexico Megacity Peri-Urban Interface
by Karen Ivon Ríos-Sánchez, Silvia Chamizo-Checa, Eric Galindo-Castillo, Otilio Arturo Acevedo-Sandoval, César Abelardo González-Ramírez, María de la Luz Hernández-Flores and Elena María Otazo-Sánchez
Sustainability 2024, 16(11), 4801; https://doi.org/10.3390/su16114801 - 5 Jun 2024
Cited by 3 | Viewed by 2795
Abstract
Megacities boost peri-urban socioeconomic development but fulfill their high natural resource demands by overexploitation, yielding irreversible environmental damage in surroundings that turn into sacrifice zones. This study reports the effects on the Cuautitlán-Pachuca Valley, the Mexico City main expansion zone at the northeast [...] Read more.
Megacities boost peri-urban socioeconomic development but fulfill their high natural resource demands by overexploitation, yielding irreversible environmental damage in surroundings that turn into sacrifice zones. This study reports the effects on the Cuautitlán-Pachuca Valley, the Mexico City main expansion zone at the northeast of the metropolitan area on the Central Mexico plateau, the trend scenarios from 2020 to 2050, and the actions to mitigate the growing water demand that will worsen its aquifer overexploitation. We designed a conceptual archetype to apply the Water Evaluation and Planning System (W.E.A.P.) mathematical model calibrated with 2013–2014 data to calculate groundwater volume demand in future scenarios. The demand output for the international airport and agriculture was less than 5%. The local climate change effect up to 2050 will slightly reduce the infiltration. The most crucial water demand increase (195% in 2050) is due to the population and industrial growth of the Mexico City northern municipalities (89% of the total groundwater extraction volume), and the aquifer will have a notable −2192.3 hm3 accumulated deficit in 2050, while urban sprawl will decrease water infiltration by 2.3%. Mitigation scenarios such as rainwater harvesting may reduce the urban water supply only by 9%, and a leak cutback will do so by 24%, which is still insufficient to achieve sustainable water management in the future. These outcomes emphasize the need to consider other actions, such as importing water from near aquifers and treating wastewater reuse to meet the future water demand. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

26 pages, 14395 KiB  
Article
Spatial–Temporal Pattern Analysis and Development Forecasting of Carbon Stock Based on Land Use Change Simulation: A Case Study of the Xiamen–Zhangzhou–Quanzhou Urban Agglomeration, China
by Suiping Zeng, Xinyao Liu, Jian Tian and Jian Zeng
Land 2024, 13(4), 476; https://doi.org/10.3390/land13040476 - 7 Apr 2024
Cited by 4 | Viewed by 1992
Abstract
The spatial–temporal distribution and evolution characteristics of carbon stock under the influence of land use changes are crucial to the scientific management of environmental resources and the optimization of land spatial layout. Taking the Xiamen–Zhangzhou–Quanzhou urban agglomeration in the southeastern coastal region of [...] Read more.
The spatial–temporal distribution and evolution characteristics of carbon stock under the influence of land use changes are crucial to the scientific management of environmental resources and the optimization of land spatial layout. Taking the Xiamen–Zhangzhou–Quanzhou urban agglomeration in the southeastern coastal region of China as an example, based on seven land use types from 1990 to 2020, including cultivated land, woodland, and construction land, we quantitatively investigate the spatial–temporal patterns of carbon stock development and the spatial correlation of carbon stock distribution. Additionally, two scenarios for the development of urban and ecological priorities in 2060 are established to investigate the effects of land use changes on carbon stock. The results indicate that (1) the research area has formed a land use spatial pattern centered around urban construction in the eastern bay area, with the western forest area and coastal forest belt serving as ecological barriers. Carbon stock is influenced by land use type, and the distribution of total carbon stock exhibits a spatial aggregation phenomenon characterized by “low in the southeast, high in the north, and medium in the center”. (2) Distance of trunk and secondary roads, elevation, slope, watershed borders, population size, and gross domestic product (GDP) factors are the main drivers of the growth of land use types. The primary causes of the reduction in carbon stock are the widespread conversion of cultivated land, woodland, and grassland into construction land, as well as water and unused land. (3) In 2060, there will be a decrease of 41,712,443.35 Mg in the urban priority development scenario compared to 2020, and a decrease of 29,577,580.48 Mg in the ecological priority development scenario. The estimated carbon stock under the two scenarios varies by 12,134,862.88 Mg. The average carbon storage of Zhangpu County, Quangang County, and Jimei County is expected to rise by one level under the ecological protection scenario, indicating that the vast forest area can become a potential area to maintain carbon stock. It is crucial to encourage the coordinated development of peri-urban agroforestry and ecological barriers, as well as to establish a harmonious spatial pattern of land use and carbon stock at the scale of urban agglomerations. Full article
Show Figures

Figure 1

17 pages, 5477 KiB  
Article
The Contribution of Open Source Software in Identifying Environmental Crimes Caused by Illicit Waste Management in Urban Areas
by Carmine Massarelli and Vito Felice Uricchio
Urban Sci. 2024, 8(1), 21; https://doi.org/10.3390/urbansci8010021 - 19 Mar 2024
Cited by 5 | Viewed by 2879
Abstract
This study focuses on the analysis, implementation and integration of techniques and methods, also based on mathematical algorithms and artificial intelligence (AI), to acquire knowledge of some phenomena that produce pollution with an impact on environmental health, and which start from illicit practices [...] Read more.
This study focuses on the analysis, implementation and integration of techniques and methods, also based on mathematical algorithms and artificial intelligence (AI), to acquire knowledge of some phenomena that produce pollution with an impact on environmental health, and which start from illicit practices that occur in urban areas. In many urban areas (or agroecosystems), the practice of illegal waste disposing by commercial activities, by abandoning it in the countryside rather than spending economic resources to ensure correct disposal, is widespread. This causes an accumulation of waste in these areas (which can also be protected natural areas), which are then also set on fire to reduce their volume. Obviously, the repercussions of such actions are many. The burning of waste releases contaminants into the environment such as dioxins, polychlorinated biphenyls and furans, and deposits other elements on the soil, such as heavy metals, which, by leaching and percolating, contaminate water resources such as rivers and aquifers. The main objective is the design and implementation of monitoring programs against specific illicit activities that take into account territorial peculiarities. This advanced approach leverages AI and GIS environments to interpret environmental states, providing an understanding of ongoing phenomena. The methodology used is based on the implementation of mathematical and AI algorithms, integrated into a GIS environment to address even large-scale environmental issues, improving the spatial and temporal precision of the analyses and allowing the customization of monitoring programs in urban and peri-urban environments based on territorial characteristics. The results of the application of the methodology show the percentages of the different types of waste found in the agroecosystems of the study area and the degree of concentration, allowing the identification of similar areas with greater criticality. Subsequently, through network and nearest neighbour analysis, it is possible to start targeted checks. Full article
Show Figures

Figure 1

15 pages, 2313 KiB  
Article
Urbanisation in Sub-Saharan Cities and the Implications for Urban Agriculture: Evidence-Based Remote Sensing from Niamey, Niger
by Ibrahim Abdoul Nasser and Elhadi Adam
Urban Sci. 2024, 8(1), 5; https://doi.org/10.3390/urbansci8010005 - 4 Jan 2024
Cited by 4 | Viewed by 3738
Abstract
Urbanisation is the process whereby cities are transformed into large sprawling areas. Urbanisation combined with a continuous increase in population makes food security crucial for sustainable development. Urbanisation poses a threat to agricultural land use within built-up and peri-urban areas. It has resulted [...] Read more.
Urbanisation is the process whereby cities are transformed into large sprawling areas. Urbanisation combined with a continuous increase in population makes food security crucial for sustainable development. Urbanisation poses a threat to agricultural land use within built-up and peri-urban areas. It has resulted in the rapid disappearance and/or total change of agricultural farmland in urban and peri-urban areas. To monitor the changes in agricultural farmland, an understanding of changes in the urban landscape is becoming increasingly important. In this study, multi-temporal Landsat imagery were used to analyse the impact of urbanisation on urban agriculture in the city of Niamey. Changes in the urban landscape were determined using the support vector machine (machine learning) algorithm. Results of this study showed a decrease in land with crops from 3428 ha to 648 ha and an increase in built-up areas from 1352 ha to 11,596 ha between 1975 and 2020. Urbanisation and population growth are the main drivers of urban landscape change in Niamey. There was also a decrease in bare land, rock and vegetation classes, while a small increase in rice and water body classes, comparing the 1975 and 2020 values. This study demonstrates the importance of remote sensing in showing the implications of urbanisation on urban agriculture. These results can assist city planners and resource managers in decision-making and adoption of sustainable mitigation measures which are crucial for urban development. Full article
Show Figures

Figure 1

25 pages, 9023 KiB  
Article
Model-Based Approach for Treated Wastewater Reuse Strategies Focusing on Water and Its Nitrogen Content “A Case Study for Olive Growing Farms in Peri-Urban Areas of Sousse, Tunisia”
by Mohamed Kefi, Nesrine Kalboussi, Alain Rapaport, Jérôme Harmand and Hakim Gabtni
Water 2023, 15(4), 755; https://doi.org/10.3390/w15040755 - 14 Feb 2023
Cited by 10 | Viewed by 3700
Abstract
One of Tunisia’s main challenges is to conserve and protect water resources for current and future generations. Using non-conventional water in agriculture, such as treated wastewater, can be a sustainable water-saving solution. Therefore, the objectives of this study are (i) to analyze the [...] Read more.
One of Tunisia’s main challenges is to conserve and protect water resources for current and future generations. Using non-conventional water in agriculture, such as treated wastewater, can be a sustainable water-saving solution. Therefore, the objectives of this study are (i) to analyze the value chain of treated wastewater for olive growing farms production and (ii) to apply mathematical modeling to maximize the olive production in optimizing irrigation distribution and nitrogen amendment in olive growing farms. The work is carried out in a peri-urban irrigated perimeter of Msaken, Sousse, which is mainly occupied by olive trees and irrigated by treated wastewater. A SWOT analysis is also applied to identify the strengths and weaknesses of reuse in this study area. Moreover, mathematical models are used to determine the optimal schedule for fertigation with treated wastewater. In this process, data on rainfall, soil, water quality and olive production were collected from local farmers, local decision makers, field and laboratory experiments. SWOT results determine farmers’ perceptions of reusing treated wastewater for irrigation. The viability analysis, in terms of soil humidity and nitrogen, shows that the nitrogen stress is not a limiting factor for olive biomass production, but water stress is. This analysis provides numerical values for the maximum irrigation rate and total amount of irrigation water to ensure maximum olive production. It was found that the maximum irrigation could be 5.77 m3/day/ha and the total annual water requirement is 1240 m3/ha. Modeling appears to be an important tool to help local decision makers and to support and encourage local farmers to reuse treated wastewater under safe conditions and without environmental risks. Full article
(This article belongs to the Special Issue Waste Water Used for Green Production in Cities)
Show Figures

Graphical abstract

11 pages, 1776 KiB  
Article
Spatiotemporal Effect of Land Use on Water Quality in a Peri-Urban Watershed in a Brazilian Metropolitan Region: An Approach Considering GEP-Based Artificial Intelligence
by Adriano Bressane, Anna Isabel Silva Loureiro, Raissa Caroline Gomes, Admilson Irio Ribeiro, Regina Marcia Longo and Rogério Galante Negri
Pollutants 2023, 3(1), 1-11; https://doi.org/10.3390/pollutants3010001 - 20 Dec 2022
Cited by 3 | Viewed by 2101
Abstract
The suppression of natural spaces due to urban sprawl and increases in built and agricultural environments has affected water resource quality, especially in areas with high population densities. Considering the advances in the Brazilian environmental legal framework, the present study aimed to verify [...] Read more.
The suppression of natural spaces due to urban sprawl and increases in built and agricultural environments has affected water resource quality, especially in areas with high population densities. Considering the advances in the Brazilian environmental legal framework, the present study aimed to verify whether land use has still affected water quality through a case study of a peri-urban watershed in a Brazilian metropolitan region. Analyses of physical–chemical indicators, collected at several sample points with various land-use parameters at different seasons of the year, were carried out based on an approach combining variance analysis and genetic programming. As a result, some statistically significant spatiotemporal effects on water quality associated with the land use, such as urban areas and thermotolerant coliform (R = −0.82, p < 0.01), mixed vegetation and dissolved oxygen (R = 0.80, p < 0.001), agriculture/pasture and biochemical oxygen demand (R = 0.40, p < 0.001), and sugarcane and turbidity (R = 0.65, p < 0.001), were verified. In turn, gene expression programming allowed for the computing of the importance of land-use typologies based on their capability to explain the variances of the water quality parameter. In conclusion, in spite of the advances in the Brazilian law, land use has still significantly affected water quality. Public policies and decisions are required to ensure effective compliance with legal guidelines. Full article
(This article belongs to the Section Urban Pollution)
Show Figures

Figure 1

18 pages, 993 KiB  
Article
The Role of Spatial Information in Peri-Urban Ecosystem Service Valuation and Policy Investment Preferences
by Matthew R. Sloggy, Francisco J. Escobedo and José J. Sánchez
Land 2022, 11(8), 1267; https://doi.org/10.3390/land11081267 - 7 Aug 2022
Cited by 5 | Viewed by 2642
Abstract
The supply of ecosystem services and the benefits that peri-urban areas provide to society are increasingly being modeled and studied using various ecological, environmental, social, and economic approaches. Nevertheless, the different types and levels of demand, preferences, or values for ecosystem services that [...] Read more.
The supply of ecosystem services and the benefits that peri-urban areas provide to society are increasingly being modeled and studied using various ecological, environmental, social, and economic approaches. Nevertheless, the different types and levels of demand, preferences, or values for ecosystem services that different human beneficiaries have, often require information and econometric methods to account for human awareness or knowledge of the spatial underpinnings behind these processes, services, and benefits. Specifically, spatial information regarding the location of an ecosystem, its functions, and its services can play an important role in the value and support for policies affecting conservation of peri-urban ecosystems such as payments for ecosystem service (PES) programs. Such PES programs are policy instruments that promote the use of ecosystem services for resources management and conservation objectives. Therefore, to better address this understudied aspect in the landscape ecology and peri-urban ecosystem services modeling literature, we used an online, interactive, spatially explicit survey (n = 2359) in Bogotá, Colombia to evaluate the role of spatial information on investment and policy preferences for such programs. Using an econometric approach to account for respondents’ spatial literacy (i.e., spatial information) of peri-urban ecosystem services, we analyzed how knowledge of space affected an individual’s choices related to ecosystem services and the economic value of environmental and conservation policies. We found that, as spatial literacy increased, respondents were more likely to prefer that government invest in regulating ecosystem services, specifically water resources, and less likely to prefer investing in other ecosystem services. Although spatial literacy did not necessarily affect respondent’s actual willingness to pay (WTP) for these policies in the form of monthly monetary payments, it did influence the types of programs respondents cared about and the magnitude of resources they were willing to invest. Our findings suggested that increasing spatial literacy would change preferences for government spending but not an individuals’ WTP in contexts such as peri-urban areas and PES programs. Results could be used by landscape ecologists, conservation biologists, natural resource scientists, and environmental/ecological economists to better understand and design more efficient education, conservation, and management strategies to increase public engagement in peri-urban contexts. Full article
(This article belongs to the Special Issue Ecosystem Services and Biodiversity of Peri-Urban Landscapes)
Show Figures

Figure 1

22 pages, 4979 KiB  
Article
Food, Energy and Water Nexus: An Urban Living Laboratory Development for Sustainable Systems Transition
by Maria Ester Soares Dal Poz, Paulo Sergio de Arruda Ignácio, Aníbal Azevedo, Erika Cristina Francisco, Alessandro Luis Piolli, Gabriel Gheorghiu da Silva and Thaís Pereira Ribeiro
Sustainability 2022, 14(12), 7163; https://doi.org/10.3390/su14127163 - 10 Jun 2022
Cited by 9 | Viewed by 3746
Abstract
From a climate change perspective, the governance of natural common-pool resources—the commons—is a key point in the challenge of transitioning to sustainability. This paper presents the main strategic advances of the São Paulo Urban Living Laboratory (ULL) regarding Food, Energy and Water [...] Read more.
From a climate change perspective, the governance of natural common-pool resources—the commons—is a key point in the challenge of transitioning to sustainability. This paper presents the main strategic advances of the São Paulo Urban Living Laboratory (ULL) regarding Food, Energy and Water (FEW Nexus) analysis and modelling at the border of a high biodiverse forest in a peri-urban region in southeast Brazil. It is a replicable and scalable method concerning FEW governance. The FEW Nexus is an analytical guide to actions that will enable a colossal set of innovative processes that the transition to sustainability presupposes. Sustainable governance of the FEW dimensions, seen as an innovation-based process, is approached by a decision making tool to understand the past and future dynamics of the system. The governance framework is based on a multi-criteria and multi-attribute set of sustainability-relevant factors used as indicators to model complex system dynamics (SD) and the stakeholders’ future expectations through a Delphi approach. Based on the three main dimensions of the Ecosystem Services Approach—Physical and Material Conditions, Attributes of Communities, and Rules-in-Use—the tool comprises thirteen specific sustainability indicators such as water and carbon footprints, land use social development, payment for ecosystem services, and land use gain indices. Its development was designed to generate a long-term network of socioenvironmental stakeholders’ decision making processes and collective learning about a higher level of sustainable systems. System Dynamics modelling demonstrates the associations between sustainability indicators and the impacts of payment for ecosystem services on the land use social development index, or on the trophic state index. The Delphi foresight approach, using the Promethee-Gaia method, allows us to understand the positions of multiple agents regarding the transition process. In this context, decision making tools can be very useful and effective in answering the “how to” questions of ULLs and paving the way for transition, providing collective planning and decision support frameworks for sustainability transition management. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

29 pages, 4605 KiB  
Article
Investigation of Gender-Differentiated Impacts of Water Poverty on Different Livelihood Groups in Peri-Urban Areas around Dhaka, Bangladesh
by Lamiya Sharmeen Jaren, Rabeya Sultana Leya and M. Shahjahan Mondal
Water 2022, 14(7), 1167; https://doi.org/10.3390/w14071167 - 6 Apr 2022
Cited by 4 | Viewed by 6242
Abstract
The concept of water poverty integrates water stress, access to safe water and sanitation, socioeconomic capacity, water uses and environmental aspects. This study presents a new concept to demonstrate gender-differentiated impacts of water poverty for different livelihood groups in a peri-urban setting. The [...] Read more.
The concept of water poverty integrates water stress, access to safe water and sanitation, socioeconomic capacity, water uses and environmental aspects. This study presents a new concept to demonstrate gender-differentiated impacts of water poverty for different livelihood groups in a peri-urban setting. The objective is to identify how gender and livelihood groups are affected by dynamic water poverty. A few peri-urban areas around Dhaka city were selected as the study area, and male and female industrial workers, small-scale male and female farmers, and economically inactive women were the target groups. Data were collected through a questionnaire survey of 220 respondents and using a number of participatory appraisal tools, such as focus group discussions, and semi-structured and key-informant interviews. Water poverty was assessed by its five components: resource, access, capacity, use and environment. Peri-urban water poverty is found not only to be limited to scarcity, or physical availability, of water resources, but also to encompass political, social, economic and institutional dimensions. The study found that inadequate availability and quality of water, restricted access and use, poor socioeconomic capacity and fragile environment affected every livelihood group, but these factors eventually led to extreme impoverishment for adolescent girls, and physically challenged and elderly women. Suggestions are provided as to how gender issues of water can be balanced at different levels to make water management decisions gender-sensitive. Full article
(This article belongs to the Special Issue Advance in Water Management and Water Policy Research)
Show Figures

Figure 1

Back to TopTop