The Groundwater Management in the Mexico Megacity Peri-Urban Interface
Abstract
:1. Introduction
The Northern Zone of Mexico City
2. Materials and Methods
2.1. Conceptual Model: Boundaries and Description
- The baseline year 2013 was selected, as it is an average year according to C.O.N.A.G.U.A.’s rainfall data and McKee standardized index methodology [24], and because most data are available. For calibration, minor 2014 data were included.
- The area is considered a watershed and divided into four hydrographic sub-basins, three highly urbanized in the Mexico State (Tepotzotlán, Cuautitlán, Texcoco-Zumpango) and the greatest with more extensive agricultural land use in Tezontepec in the Hildago State. The boundaries were defined according to the topographic national data [25]. See Figure 2.
- Each sub-basin has a primary tributary river where the runoff flows mixed with local wastewater.
- Rainfall is the primary water source, producing the runoff and infiltration that recharges the aquifer.
- The Texcoco aquifer does not contribute to another horizontal flow because of its reported huge water table reduction [26].
- The main water outflows are evapotranspiration and groundwater pumping from the aquifer to supply urban, service, and industry demands. The locally produced wastewater is discharged into the Great Drain Channel and flows out of the Valley. The Great Drain Channel and the West Interceptor Tunnel cross the area without providing water, but the first receives the local sewage and enables its outflow from the model.
- The aquifer supplies the Chiconautla irrigation district.
- The reference evapotranspiration is calculated by the Penman–Monteith method [28].
- The model only includes the population in the northern portion of the Texcoco- Zumpango sub-basin that the Cuautitlán-Pachuca aquifer supplies since the other part is provided by the Mexico City aquifer [31].
- The model does not consider illegal extractions since no official reports of their volumes exist.
- Each sub-basin has a different average annual rainfall and mean annual temperature. Figure S1 in the Supplementary Materials shows maps with the distribution values.
2.2. Mathematical Model and Sub-Basins Definition
2.2.1. Data for Water Balance Calculation: Baseline Year 2013
2.2.2. Environmental Variables and Statistical Analyses
2.3. Validation of the Mathematical Model
2.4. Steady-State and Transient Conditions Scenarios
3. Results and Discussion
3.1. Model Validation
3.2. Baseline Hydric Balance
3.3. Steady-State and Transient Conditions Scenarios
3.3.1. Steady-State Scenarios (Inertial)
3.3.2. Transient Conditions Scenarios
3.4. Scenarios Comparison
3.5. Limitations and Future Perspectives
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Title | Citation | Field |
---|---|---|
Differences in ozone photochemical characteristics between the megacity Nanjing and its suburban surroundings, Yangtze River Delta, China | [49] | Air |
Seismic hazard assessment in the megacity of Blida (Algeria) and its surrounding regions using a parametric-historic procedure | [50] | Air |
Anthropogenic inputs from a coastal megacity are linked to greenhouse gas concentrations in the surrounding estuary | [51] | Air |
Differences in ozone photochemical characteristics between the megacity Tianjin and its rural surroundings | [52] | Air |
Assessment of ambient aerosol sources in two important Atlantic Rain Forest hotspots in the surroundings of a megacity | [53] | Air |
Introduction to the special issue “In-depth study of air pollution sources and processes within Beijing and its surrounding region (APHH-Beijing).” | [54] | Air |
Exploring the variation of black and brown carbon during COVID-19 lockdown in megacity Wuhan and its surrounding cities, China | [55] | Air |
The impact of circulation patterns on regional transport pathways and air quality over Beijing and its surroundings | [56] | Air |
Formation of secondary organic aerosol in the Paris pollution plume and its impact on surrounding regions | [57] | Air |
The water–energy nexus of megacities extends beyond geographic boundaries: a case of Beijing | [11] | Water |
From the core to the periphery: conflicts and cooperation over land and water in peri-urban Gurgaon, India | [12] | Water |
Impact of continuous Jakarta megacity urban expansion on the formation of the Jakarta–Bandung conurbation over the rice farm regions | [7] | Water/Soil |
The food–water quality nexus in peri-urban aquacultures downstream of Bangkok, Thailand | [58] | Water/Soil |
Megacity wastewater poured into a nearby basin: looking for sustainable scenarios in a case study | [15] | Water/Soil |
Analyzing the effects of different scenarios on the surrounding environment in a high-density city | [59] | Soil |
Impacts of urban expansion on relatively smaller surrounding cities during heat waves | [60] | Soil |
References
- IPCC. Climate Change AR6, 2021: The Physical Science Basis. Working Group I Contribution to the IPCC Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Farrokhzadeh, S.; Monfared, S.; Azizyan, G.; AS, S.; Ertsen, M.; Abraham, E. Sustainable water resources management in an arid area using a coupled optimization simulation modeling. Water 2020, 12, 885. [Google Scholar] [CrossRef]
- United Nations (Ed.) Resolution adopted by the General Assembly on 6 July 2017. Work of the Statistical Commission pertaining to the 2030 Agenda for Sustainable Development. In A/RES/71/313; United Nations: New York, NY, USA, 2016; Available online: https://www.un.org/en/development/desa/population/migration/generalassembly/docs/globalcompact/A_RES_71_313.pdf (accessed on 6 September 2023).
- Macrotrends, Largest World Cities by Population. 2024 Metro Area Rankings. Macrotrends. Available online: https://www.macrotrends.net/global-metrics/cities/largest-cities-by-population (accessed on 20 September 2023).
- UN-Habitat. World Cities Report 2020: The Value of Sustainable Urbanization; United Nations Human Settlements Programme, Ed.; UN Habitat: Nairobi, Kenya, 2020; p. 418. Available online: https://unhabitat.org/sites/default/files/2020/10/wcr_2020_report.pdf (accessed on 8 September 2023).
- United Nations. World Urbanization Prospects 2018; Department of Economic and Social Affairs Population Dynamics, Ed.; United Nations: New York, NY, USA, 2018; Available online: https://population.un.org/wup/ (accessed on 6 September 2023).
- Rustiadi, E.; Pravitasari, A.E.; Setiawan, Y.; Mulya, S.P.; Pribadi, D.O.; Tsutsumida, N. Impact of continuous Jakarta megacity urban expansion on the formation of the Jakarta-Bandung conurbation over the rice farm regions. Cities 2021, 111, 103000. [Google Scholar] [CrossRef]
- Li, D.; Ma, J.; Cheng, T.; van Genderen, J.L.; Shao, Z. Challenges and opportunities for the development of MEGACITIES. Int. J. Digit. Earth 2019, 12, 1382–1395. [Google Scholar] [CrossRef]
- Siebert, S.; Narayanagowda Ganeshaiah, K.; Buerkert, A. Water use in human civilizations: An interdisciplinary analysis of a perpetual social-ecological challenge. Front. Agric. Sci. Eng. 2021, 8, 512–524. [Google Scholar] [CrossRef]
- Ray, B.; Shaw, R. Water Stress in the Megacity of Kolkata, India, and Its Implications for Urban Resilience. In Urban Disasters and Resilience in Asia; Shaw, R., Attaur, R., Surjan, A., Parvin, G., Eds.; Butterworth-Heinemann: Oxford, UK, 2016; pp. 317–336. [Google Scholar]
- Liu, J.; Li, X.; Yang, H.; Han, G.; Liu, J.; Ch, Z.; Zheng, Y. The Water-Energy Nexus of Megacities Extends Beyond Geographic Boundaries: A Case of Beijing. Environ. Eng. Sci. 2019, 36, 778–788. [Google Scholar] [CrossRef]
- Vij, S.; Narain, V.; Karpouzoglou, T.; Mishra, P. From the core to the periphery: Conflicts and cooperation over land and water in periurban Gurgaon, India. Land Use Policy 2018, 76, 382–390. [Google Scholar] [CrossRef]
- Balha, A.; Vishwakarma, B.D.; Pandey, S.; Singh, C.K. Predicting the impact of urbanization on water resources in megacity Delhi. Remote Sens. Appl. Soc. Environ. 2020, 20, 100361. [Google Scholar] [CrossRef]
- García-Ayllón, S. Rapid development as a factor of imbalance in urban growth of cities in Latin America: A perspective based on territorial indicators. Habitat Int. 2016, 58, 127–142. [Google Scholar] [CrossRef]
- Chamizo-Checa, S.; Otazo-Sánchez, E.; Gordillo-Martínez, A.; Suárez-Sánchez, J.; González-Ramírez, C.; Muñoz-Nava, H. Megacity Wastewater Poured into A Nearby Basin: Looking for Sustainable Scenarios in A Case Study. Water 2020, 12, 824. [Google Scholar] [CrossRef]
- FENANMM [Dataset] Panorama de los Municipios en México. Available online: http://www.fenamm.org.mx/site/index.php?option=com_content&view=article&id=2689:gpm-panorama-de-los-municipios&catid=2 (accessed on 15 March 2023).
- Ríos-Sánchez, K.I.; Otazo, S.E.M.; Marmolejo, S.Y.; González, R.C.A.; Hernández, F.M.d.l.L. Expansión urbana descontrolada: ¿Qué pasará con el agua? Pädi Boletín Científico Cienc. Básicas E Ing. ICBI 2021, 8, 54–59. [Google Scholar] [CrossRef]
- Hernández-Flores, M.D.L.L.; Otazo-Sánchez, E.M.; Galeana-Pizaña, M.; Roldán-Cruz, E.I.; Razo-Zárate, R.; González-Ramírez, C.A.; Galindo-Castillo, E.; Gordillo-Martínez, A.J. Urban driving forces and megacity expansion threats. Study case in the Mexico City periphery. Habitat Int. 2017, 64, 109–122. [Google Scholar] [CrossRef]
- FIDEPAR 127 Desarrollos Industriales del Estado de Mexico por Municipio 2024. Available online: https://fidepar.edomex.gob.mx/desarrollos_industriales (accessed on 15 March 2023).
- SEDATU. Programa Territorial Operativo de la Zona Norte del Valle de México con Énfasis en el Proyecto Aeroportuario de Santa Lucía; Ciudad de México. 2020, p. 488. Available online: https://www.gob.mx/sedatu/documentos/programa-territorial-operativo-de-la-zona-norte-del-valle-de-mexico-con-enfasis-en-el-proyecto-aeroportuario-de-santa-lucia?idiom=es (accessed on 2 December 2023).
- Galindo-Castillo, E.; Marín-Celestino, A.E.; Otazo-Sánchez, E.M.; Gordillo-Martínez, A.J.; González-Ramírez, C.A.; Cabrera-Cruz, R.B. Modeling the groundwater response to megacity expansion demand and climate change. Case study: The Cuautitlán–Pachuca aquifer, in the Northeast of Mexico City. Environ. Earth Sci. 2017, 76, 510. [Google Scholar] [CrossRef]
- Galindo Castillo, E.; Otazo Sanchez, E.; Reyes, L.R.; Gutiérrez, S.; Martínez, A.; Ramírez, C. Balance hídrico en el acuífero Cuautitlán—Pachuca, México: Proyecciones para 2021. GeoFocus. Rev. Int. Cienc. Tecnol. Inf. Geográfica 2010, 10, 65–90. [Google Scholar]
- Huizar-Alvarez, R.; Hernández, G.; Carrillo-Martinez, M.; Carrillo-Rivera, J.; Hergt, T.; Angeles, G. Geologic structure and groundwater flow in the Pachuca-Zumpango sub-basin, central Mexico. Environ. Geol. 2003, 43, 385–399. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kliest, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference of Applied Climatology, Boston, MA, USA, 17–22 January 1993; American Meteorological Society, Ed.; pp. 179–184. [Google Scholar]
- INEGI. Continuo de Elevaciones Mexicano (CEM); Sistema Nacional de Información Estadistica y Geográfica: Aguascalientes, México, 2013; Available online: https://www.inegi.org.mx/app/geo2/elevacionesmex/ (accessed on 7 February 2022).
- CONAGUA. Actualización de la Disponibilidad Media Anual de Agua en el Acuífero Cuautitlán-Pachuca (1508), Estado de México; Subdirección General Técnica, Ed.; Gerencia de Aguas Subterraneas: Ciudad de México, Mexico, 2024; Available online: https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/edomex/DR_1508.pdf (accessed on 15 April 2024).
- CONAGUA. Actualización de la Disponibilidad Media Anual de Agua en el Acuífero Apan (1320), Estado de Hidalgo; Subdirección General Técnica, Ed.; Gerencia de Aguas Subterráneas: Ciudad de México, Mexico, 2024; Available online: https://sigagis.conagua.gob.mx/gas1/Edos_Acuiferos_18/hidalgo/DR_1320.pdf (accessed on 15 April 2024).
- Zotarelli, L.; Dukes, M.D.; Romero, C.C.; Migliaccio, K.W.; Morgan, K.T. Step by Step Calculation of the Penman-Monteith Evapotranspiration (FAO-56 Method); University of Florida, Ed.; Agricultural and Biological Engineering Department, UF/IFAS Extension: Gainesville, FL, USA, 2018; p. 10. Available online: http://edis.ifas.ufl.edu/pdffiles/ae/ae45900.pdf (accessed on 23 October 2022).
- CAEM. Evaluación Manejo Eficiente y Sustentable del Agua; Comisión de agua del Estado de México, Ed.; EDOMEX: Mexico, 2018; p. 58. Available online: https://agua.edomex.gob.mx/programa-anual-evaluaciones (accessed on 23 August 2022).
- CAASIM. Programa Institucional de desarrollo de la Comisión de Agua y Alcantarillado de Sistemas Lntermunicipales; Comisión de Agua y Alcantarillado de Sistemas lntermunicipales, Ed.; CAASIM: Pachuca, Hidalgo, 2020; Available online: http://planestataldedesarrollo.hidalgo.gob.mx/pdf/Institucionales/30_CAASIM/PID_CAASIM.pdf (accessed on 5 October 2023).
- CONAGUA. Registro Público de Derechos de Agua (REPDA). Mexico. 2014. Available online: https://app.conagua.gob.mx/ConsultaRepda.aspx (accessed on 10 August 2022).
- IMTA. Plan Estratégico Para la Recuperación Ambiental de la Laguna de Zumpango. Diagnóstico e Identificación de Retos y Problemas Estrategias, Objetivos, Acciones y Proyectos Prioritarios; Fundación Gonzalo Río Arronte, Ed.; Estado de México: Mexico City, Mexico, 2012; p. 151. Available online: https://agua.org.mx/wp-content/uploads/2014/05/Plan_laguna_de_Zumpango_pdf (accessed on 22 March 2023).
- Hernández-Espinosa, A.K.; Otazo-Sánchez, E.M.; Román-Gutiérrez, A.D.; Romo-Gómez, C. El Sistema de drenaje de la Ciudad de México. Pädi Boletín Científico Cienc. Básicas E Ing. ICBI 2021, 9, 24–30. [Google Scholar] [CrossRef]
- SEI (Ed.) Water Evaluation and Planning; Stockholm Environmental Institute: Somerville, MA, USA, 2024; Available online: https://www.sei.org/projects-and-tools/tools/weap/ (accessed on 23 January 2022).
- INEGI. Red Hidrográfica. Escala 1:50,000. Edición 2.0; Sistema Nacional de Información Estadistica y Geográfica; Aguascalientes: Mexico; Available online: https://www.inegi.org.mx/temas/hidrografia/#Mapa (accessed on 6 February 2022).
- INEGI. Conjunto de Datos Vectoriales de uso del Suelo y Vegetación Escala 1:250,000 Serie V Conjunto Nacional; Sistema Nacional de Información Estadistica y Geográfica: Aguascalientes, Mexico, 2013. [Google Scholar]
- CICESE. Climate Statistics Reports for Mexico; CICESE: Ensenada, CA, USA, 2022; Available online: https://www.cicese.edu.mx/cicese2/welcome/eng (accessed on 10 January 2023).
- Fiallos, G. La Correlación de Pearson y el proceso de regresión por el Método de Mínimos Cuadrados. Cienc. Lat. Rev. Científica Multidiscip. 2021, 5, 2491–2509. [Google Scholar] [CrossRef]
- Makridakis, S.; Hibon, M. Accuracy of forecasting: An empirical investigation. J. R. Stat. Soc. Ser. A 1979, 142, 97–125. [Google Scholar] [CrossRef]
- Torres-Degró, A. Tasas de crecimiento poblacional (r): Una mirada desde el modelo lineal, geométrico y exponencial. CIDE Digit. 2011, 2, 143–162. Available online: https://rcm1.rcm.upr.edu/demografia/wp-content/uploads/sites/30/2020/04/CIDEvo2no1-A_Torres-Degro-Tasa_crecimiento_poblacional.pdf (accessed on 18 May 2023).
- INEGI. Encuesta Intercensal 2015; Sistema Nacional de Información Estadistica y Geográfica: Mexico, 2015; Available online: https://www.inegi.org.mx/contenidos/programas/intercensal/2015/doc/eic_2015_presentacion.pdf (accessed on 16 May 2023).
- INEGI. Principales Resultados del Censo de Población y Vivienda 2010, 2011st ed.; Sistema Nacional de Información Estadistica y Geográfica: Mexico, 2011; Available online: https://www.inegi.org.mx/app/biblioteca/ficha.html?upc=702825002042 (accessed on 16 May 2023).
- INECC. Municipios Vulnerables al Cambio Climático con base en los resultados del Atlas Nacional de Vulnerabilidad al Cambio Climático. In Atlas Nacional de Vulnerabilidad al Cambio Climático. México; González Terrazas, D., Vermonden Thibodeau, A., Gress Carrasco, F., Eds.; SEMARNAT: Mexico City, Mexico, 2021; p. 60. Available online: https://atlasvulnerabilidad.inecc.gob.mx/ (accessed on 13 January 2023).
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- UNAM. Manifestación de Impacto Ambiental Modalidad Regional, del Proyecto “Construcción de un Aeropuerto Mixto Civil/Militar con Capacidad Internacional en la Base Aérea Militar no. 1 (Santa Lucía, Estado de México), su Interconexión con el Aeropuerto Internacional de la Ciudad de México y Reubicación de Instalaciones Militares”. Instituto de Ingeniería, Ed.; 2019, p. 906. Available online: https://www.gob.mx/aifa/documentos/manifestacion-de-impacto-ambiental-mia-modalidad-regional-del-proyecto-de-la-construccion-de-un-aeropuerto-mixto-civil-militar (accessed on 11 January 2024).
- SICT. Datos Historicos del Consumo de Agua del Aeropuerto Benito Juarez de la Ciudad de México; Gerencia de Recursos Materiales, Ed.; Secretaria de Comunicaciones y Transporte: Mexico City, Mexico, 2022; Available online: https://www.aicm.com.mx/estadisticas-del-aicm/17-09-2013 (accessed on 31 January 2024).
- Kim, J.; Humphrey, D.; Hofman, J. Evaluation of harvesting urban water resources for sustainable water management: Case study in Filton Airfield, UK. J. Environ. Manag. 2022, 322, 116049. [Google Scholar] [CrossRef]
- van Dijk, S.; Lounsbury, A.; Hoekstra, A.; Wang, R. Strategic design and finance of rainwater harvesting to costeffectively meet large-scale urban water infrastructure needs. Water Res. 2020, 184, 116063. [Google Scholar] [CrossRef]
- An, J.L.; Zou, J.N.; Wang, J.X.; Lin, X.; Zhu, B. Differences in ozone photochemical characteristics between the megacity Nanjing and its suburban surroundings, Yangtze River Delta, China. Environ. Sci. Pollut. Res. 2015, 22, 19607–19617. [Google Scholar] [CrossRef]
- Bellalem, F.; Talbi, A.; Djellit, H.; Ymmel, H.; Mobarki, M. Seismic hazard assessment in the megacity of Blida (Algeria) and its surrounding regions using parametric-historic procedure. J. Seismol. 2018, 22, 897–908. [Google Scholar] [CrossRef]
- Brigham, B.A.; Bird, J.A.; Juhl, A.R.; Zappa, C.J.; Montero, A.D.; O'Mullan, G.D. Anthropogenic inputs from a coastal megacity are linked to greenhouse gas concentrations in the surrounding estuary. Limnol. Oceanogr. 2019, 64, 2497–2511. [Google Scholar] [CrossRef]
- Han, S.Q.; Zhang, M.; Zhao, C.S.; Lu, X.Q.; Ran, L.; Han, M.; Li, P.Y.; Li, X.J. Differences in ozone photochemical characteristics between the megacity Tianjin and its rural surroundings. Atmos. Environ. 2013, 79, 209–216. [Google Scholar] [CrossRef]
- Mateus, V.L.; Gioda, A.; Marinho, H.R.; Rocha, R.C.C.; Valles, T.V.; Prohmann, A.C.I.; dos Santos, L.C.; Oliveira, T.B.; Melo, F.M.; Saint'Pierre, T.D.; et al. Assessment of ambient aerosol sources in two important Atlantic Rain Forest hotspots in the surroundings of a megacity. Urban For. Urban Green. 2020, 56, 126858. [Google Scholar] [CrossRef]
- Shi, Z.; Vu, T.; Kotthaus, S.; Harrison, R.; Grimmond, S.; Yue, S.; Zhu, T.; Zhu, J.; Han, Y.; Demuzere, M.; et al. Introduction to the special issue “In-depth study of air pollution sources and processes within Beijing and its surrounding region (APHH-Beijing)”. Atmos. Chem. Phys. 2019, 19, 7519–7546. [Google Scholar] [CrossRef]
- Wang, Q.L.; Wang, L.L.; Tao, M.H.; Chen, N.; Lei, Y.L.; Sun, Y.; Xin, J.Y.; Li, T.T.; Zhou, J.X.; Liu, J.D.; et al. Exploring the variation of black and brown carbon during COVID-19 lockdown in megacity Wuhan and its surrounding cities, China. Sci. Total Environ. 2021, 791, 148226. [Google Scholar] [CrossRef]
- Zhang, J.P.; Zhu, T.; Zhang, Q.H.; Li, C.C.; Shu, H.L.; Ying, Y.; Dai, Z.P.; Wang, X.; Liu, X.Y.; Liang, A.M.; et al. The impact of circulation patterns on regional transport pathways and air quality over Beijing and its surroundings. Atmos. Chem. Phys. 2012, 12, 5031–5053. [Google Scholar] [CrossRef]
- Zhang, Q.J.; Beekmann, M.; Freney, E.; Sellegri, K.; Pichon, J.M.; Schwarzenboeck, A.; Colomb, A.; Bourrianne, T.; Michoud, V.; Borbon, A. Formation of secondary organic aerosol in the Paris pollution plume and its impact on surrounding regions. Atmos. Chem. Phys. 2015, 15, 13973–13992. [Google Scholar] [CrossRef]
- Mrozik, W.; Vinitnantharat, S.; Thongsamer, T.; Pansuk, N.; Pattanachan, P.; Thayanukul, P.; Acharya, K.; Baluja, M.Q.; Hazlerigg, C.; Robson, A.F.; et al. The food-water quality nexus in periurban aquacultures downstream of Bangkok, Thailand. Sci. Total Environ. 2019, 695, 133923. [Google Scholar] [CrossRef]
- Guo, J.; Sun, B.X.; Qin, Z.; Wong, M.S.; Wong, S.W.; Yeung, C.W.; Wang, H.; Abba, S.; Shen, G.Q. Analysing the effects for different scenarios on surrounding environment in a high-density city. Cities 2020, 99, 102585. [Google Scholar] [CrossRef]
- Huang, B.; Ni, G.H.; Grimmond, C.S.B. Impacts of Urban Expansion on Relatively Smaller Surrounding Cities during Heat Waves. Atmosphere 2019, 10, 364. [Google Scholar] [CrossRef]
Sub-Basin | Area | Surface Water | Groundwater | ||||
---|---|---|---|---|---|---|---|
Agric. & | ID * | Agric. & | Ind. # | Urban | Services | ||
Tezontepec | 2062.2 | 8.0 | 2.0 | 1.3 | 128.8 | 0.2 | |
Tx. Zumpango | 1109.6 | 32.0 | 16.2 | 43.3 | 9.1 | 878.6 | 13.0 |
Tepotzotlán | 420.0 | 28.1 | 0.8 | 8.4 | 2.7 | 138.0 | 5.0 |
Cuautitlán | 384.9 | 45.2 | 5.9 | 8.6 | 46.8 | 6.0 | |
Total Valley | 3976.7 | 113.3 | 17.0 | 59.6 | 21.7 | 1192.2 | 24.2 |
Total surface water | Total groundwater | ||||||
130.3 | 1297.0 |
Component | P | Eto | I | R | GD | SD |
---|---|---|---|---|---|---|
Volume | 1021.1 | 190.9 | 373.4 | 456.8 | 1297.0 | 130.3 |
Scenarios | 2013 | 2030 | 2050 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sub-Basin | B.L. | B.A.U. | I.R. | C.C. | A.I.F.A. | R.H. | A.L. | B.A.U. | I.R. | C.C. | A.I.F.A. | R.H. | A.L. | |
Tezontepec | G.W.S. | 132 | 569 | 569 | 569 | 569 | 557 | 388 | 1317 | 1318 | 1318 | 1318 | 1201 | 827 |
S.W.S. | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | |
Texcoco-Zumpango | G.W.S. | 942 | 2106 | 2105 | 2105 | 2106 | 2063 | 2009 | 2985 | 2990 | 2990 | 2994 | 2736 | 2409 |
S.W.S. | 48 | 61 | 95 | 95 | 95 | 95 | 95 | 61 | 142 | 142 | 142 | 142 | 142 | |
Cuautitlán | G.W.S. | 67 | 132 | 139 | 139 | 139 | 137 | 133 | 161 | 179 | 179 | 179 | 167 | 145 |
S.W.S. | 43 | 43 | 43 | 43 | 43 | 43 | 43 | 43 | 43 | 43 | 43 | 43 | 43 | |
Tepotzotlán | G.W.S. | 154 | 383 | 387 | 387 | 387 | 380 | 369 | 618 | 633 | 633 | 633 | 580 | 509 |
S.W.S. | 29 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 29 | 29 | 29 | 29 | 29 | |
Valley | G.W.S. | 1296 | 3189 | 3199 | 3199 | 3201 | 3136 | 2899 | 5081 | 5119 | 5119 | 5123 | 4684 | 3890 |
S.W.S. | 128 | 142 | 175 | 175 | 175 | 175 | 175 | 142 | 222 | 222 | 222 | 222 | 222 |
Disturbance | Effect | 2030 | 2050 | Net Effect in 2050 * |
---|---|---|---|---|
Population | Increases demand | −1893 | −3785 | −3864.3 |
Urban sprawl | Decreases infiltration | −22.1 | −25.7 | |
Industries/Services | Increase demand | −10 | −38 | |
Climate change | Decreases infiltration | −1.9 | −11.6 | |
Airport | Increases demand | −2 | −4 | |
Rainwater harvesting | Decreases the demand | 65 | 439 | 1672 |
Repairing leaks | 302 | 1233 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ríos-Sánchez, K.I.; Chamizo-Checa, S.; Galindo-Castillo, E.; Acevedo-Sandoval, O.A.; González-Ramírez, C.A.; Hernández-Flores, M.d.l.L.; Otazo-Sánchez, E.M. The Groundwater Management in the Mexico Megacity Peri-Urban Interface. Sustainability 2024, 16, 4801. https://doi.org/10.3390/su16114801
Ríos-Sánchez KI, Chamizo-Checa S, Galindo-Castillo E, Acevedo-Sandoval OA, González-Ramírez CA, Hernández-Flores MdlL, Otazo-Sánchez EM. The Groundwater Management in the Mexico Megacity Peri-Urban Interface. Sustainability. 2024; 16(11):4801. https://doi.org/10.3390/su16114801
Chicago/Turabian StyleRíos-Sánchez, Karen Ivon, Silvia Chamizo-Checa, Eric Galindo-Castillo, Otilio Arturo Acevedo-Sandoval, César Abelardo González-Ramírez, María de la Luz Hernández-Flores, and Elena María Otazo-Sánchez. 2024. "The Groundwater Management in the Mexico Megacity Peri-Urban Interface" Sustainability 16, no. 11: 4801. https://doi.org/10.3390/su16114801
APA StyleRíos-Sánchez, K. I., Chamizo-Checa, S., Galindo-Castillo, E., Acevedo-Sandoval, O. A., González-Ramírez, C. A., Hernández-Flores, M. d. l. L., & Otazo-Sánchez, E. M. (2024). The Groundwater Management in the Mexico Megacity Peri-Urban Interface. Sustainability, 16(11), 4801. https://doi.org/10.3390/su16114801