Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = perfluorochemicals

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 942 KiB  
Review
Progress in Development of Functional Biological and Synthetic Blood Products to Augment Transfusable Blood Supply in Operational Medicine
by Armando Estrada, Orion Furmanski, George J. Klarmann, Nathan Scheidt and Vincent B. Ho
Bioengineering 2025, 12(3), 256; https://doi.org/10.3390/bioengineering12030256 - 4 Mar 2025
Viewed by 1908
Abstract
A reliable, accessible, and high-quality blood supply is critical for the sustainment of any healthcare system. World events such as the COVID-19 pandemic have proven that maintaining the supply of blood presents a logistical challenge. The current blood supply is overseen by extensive [...] Read more.
A reliable, accessible, and high-quality blood supply is critical for the sustainment of any healthcare system. World events such as the COVID-19 pandemic have proven that maintaining the supply of blood presents a logistical challenge. The current blood supply is overseen by extensive donor programs around the world. In the United States, as in other countries, the need for blood has increased, with a decline in blood donations and increasing exclusions for blood donor qualification. While there is a need to improve blood donation participation, there is also need for new alternatives to traditional donation to ensure readiness to treat hemorrhagic shock common in the setting of trauma, as often occurs during a natural disaster or conflict. These operational medicine scenarios require significant blood availability which may tax the current blood supply chain. Aside from a walking blood bank (WBB) model for blood collection in suboptimal conditions, researchers have proposed alternatives for blood that include the manufacturing of blood from stem cell sources. Other alternatives include synthetic liquids that can carry oxygen such as Perfluoro-Chemicals (PFCs) and hemoglobin-based oxygen-carrying systems (HBCOs). Here, we review some of these alternatives to the traditional donor blood model. Researchers now have the technology that makes it feasible to develop blood alternatives that one day may supplement and help alleviate the limitations in blood supply. Full article
(This article belongs to the Section Biomedical Engineering and Biomaterials)
Show Figures

Figure 1

17 pages, 5234 KiB  
Article
Analysis of Binding Modes between Three Perfluorosulfonates and GPER Based on Computational Simulation and Multiple Spectral Methods
by Wenhui Liang, Yanting Chen, Yuchen Wei, Zeyu Song, Cancan Li, Yanhong Zheng and Zhongsheng Yi
Toxics 2024, 12(5), 315; https://doi.org/10.3390/toxics12050315 - 26 Apr 2024
Cited by 2 | Viewed by 1960
Abstract
Perfluorinated compounds (PFCs) belong to a significant category of global environmental pollutants. Investigating the toxicological effects of PFCs within biological systems is of critical significance in various disciplines such as life sciences, environmental science, chemistry, and ecotoxicology. In this study, under simulated human [...] Read more.
Perfluorinated compounds (PFCs) belong to a significant category of global environmental pollutants. Investigating the toxicological effects of PFCs within biological systems is of critical significance in various disciplines such as life sciences, environmental science, chemistry, and ecotoxicology. In this study, under simulated human physiological conditions (pH = 7.4), a combination of multiple spectroscopic techniques and computational simulations was employed to investigate the impact of perfluorinated compounds (PFCs) on the G protein-coupled estrogen receptor (GPER). Additionally, the research focused on exploring the binding modes and toxicological mechanisms between PFCs and GPER at the molecular level. All three perfluorinated sulfonic acids (PFSAs) can induce quenching of GPER fluorescence through static quenching and non-radiative energy transfer. Steady-state fluorescence calculations at different temperatures revealed apparent binding constants in the order of 106, confirming a strong binding affinity between the three PFSAs and GPER. Molecular docking studies indicated that the binding sites of PFSAs are located within the largest hydrophobic cavity in the head region of GPER, where they can engage in hydrogen bonding and hydrophobic interactions with amino acid residues within the cavity. Fourier transform infrared spectroscopy, three-dimensional fluorescence, and molecular dynamics simulations collectively indicate that proteins become more stable upon binding with small molecules. There is an overall increase in hydrophobicity, and alterations in the secondary structure of the protein are observed. This study deepens the comprehension of the effects of PFCs on the endocrine system, aiding in evaluating their potential impact on human health. It provides a basis for policy-making and environmental management while also offering insights for developing new pollution monitoring methods and drug therapies. Full article
Show Figures

Figure 1

19 pages, 1440 KiB  
Review
Comparison between Chemical and Biological Degradation Processes for Perfluorooctanoic Acid
by Xuhan Shu, Rama Pulicharla, Pratik Kumar and Satinder Kaur Brar
Soil Syst. 2023, 7(4), 91; https://doi.org/10.3390/soilsystems7040091 - 20 Oct 2023
Cited by 5 | Viewed by 4171
Abstract
Perfluorooctanoic acid (PFOA) is a perfluoro compound that contains an eight-carbon perfluoroalkyl chain followed by a carboxylic acid function group. The C-F bound possesses a strong bond energy of approximately 485 kJ/mol, rendering PFOA thermally and chemically stable. It has found applications in [...] Read more.
Perfluorooctanoic acid (PFOA) is a perfluoro compound that contains an eight-carbon perfluoroalkyl chain followed by a carboxylic acid function group. The C-F bound possesses a strong bond energy of approximately 485 kJ/mol, rendering PFOA thermally and chemically stable. It has found applications in water-resistant coating and is produced either by degrading other long-chain perfluorinated carboxylic acids or fluorotelomer alcohol. PFOA is challenging to further degrade during water treatment processes, leading to its accumulation in natural systems and causing contamination. Research has been conducted to develop several methods for its removal from the water system, but only a few of these methods effectively degrade PFOA. This review compares the most common chemical degradation methods such as photochemical, electrochemical, and sonochemical methods, to the cutting-edge biodegradation method. The chemical degradation and biodegradation methods both involve the stepwise degradation of PFOA, with the latter capable of occurring both aerobically and anaerobically. However, the degradation efficiency of the biological process is lower when compared to the chemical process, and further research is needed to explore the biological degradation aspect. Full article
Show Figures

Graphical abstract

29 pages, 2006 KiB  
Review
Pets, Genuine Tools of Environmental Pollutant Detection
by Cristina Hegedus, Luisa Andronie, Paul Uiuiu, Eugen Jurco, Eva Andrea Lazar and Silvana Popescu
Animals 2023, 13(18), 2923; https://doi.org/10.3390/ani13182923 - 14 Sep 2023
Cited by 8 | Viewed by 4838
Abstract
In a shared environment, our companion animals became unintended sentinels for pollutant exposure consequences, developing even earlier similar conditions to humans. This review focused on the human–pet cohabitation in an environment we all share. Alongside other species, canine and feline companions are veritable [...] Read more.
In a shared environment, our companion animals became unintended sentinels for pollutant exposure consequences, developing even earlier similar conditions to humans. This review focused on the human–pet cohabitation in an environment we all share. Alongside other species, canine and feline companions are veritable models in human medical research. The latency period for showing chronic exposure effects to pollutants is just a few years in them, compared to considerably more, decades in humans. Comparing the serum values of people and their companion animals can, for example, indicate the degree of poisonous lead load we are exposed to and of other substances as well. We can find 2.4 times higher perfluorochemicals from stain- and grease-proof coatings in canine companions, 23 times higher values of flame retardants in cats, and 5 times more mercury compared to the average levels tested in humans. All these represent early warning signals. Taking these into account, together with the animal welfare orientation of today’s society, finding non-invasive methods to detect the degree of environmental pollution in our animals becomes paramount, alongside the need to raise awareness of the risks carried by certain chemicals we knowingly use. Full article
Show Figures

Figure 1

15 pages, 3677 KiB  
Article
Double Filtration Plasmapheresis with Polyvinyl Alcohol-Based Membrane Lowers Serum Inflammation and Toxins in Patients with Hyperlipidemia
by Wen-Sheng Liu, Chien-Hung Lin, Ching-Yao Tsai, Hsiang-Tsui Wang, Szu-Yuan Li, Tsung-Yun Liu, Ann Charis Tan, Han-Hsing Tsou, Kuo-Hsien Tseng and Chih-Ching Lin
Bioengineering 2023, 10(1), 89; https://doi.org/10.3390/bioengineering10010089 - 9 Jan 2023
Cited by 4 | Viewed by 3320
Abstract
Hyperlipidemia is increasing in prevalence and is highly correlated with cardiovascular disease (CVD). Lipid-lowering medications prevent CVD but may not be suitable when the side effects are intolerable or hypercholesterolemia is too severe. Double-filtration plasmapheresis (DF) has shown its therapeutic effect on hyperlipidemia, [...] Read more.
Hyperlipidemia is increasing in prevalence and is highly correlated with cardiovascular disease (CVD). Lipid-lowering medications prevent CVD but may not be suitable when the side effects are intolerable or hypercholesterolemia is too severe. Double-filtration plasmapheresis (DF) has shown its therapeutic effect on hyperlipidemia, but its side effects are not yet known. We enrolled 45 adults with hyperlipidemia in our study. The sera before and two weeks after DF were evaluated, and we also analyzed perfluorochemicals to see if DF could remove these lipophilic toxins. After DF, all lipid profile components (total cholesterol, triglycerides, high-density lipoprotein [HDL], and low-density lipoprotein [LDL]) had significantly decreased. Leukocyte counts increased while platelet levels decreased, which may have been caused by the puncture wound from DF and consumption of platelets during the process. As for uremic toxins and inflammation, levels of C-reactive protein, uric acid, and alanine transaminase (ALT) all decreased, which may be related to the removal of serum perfluorooctane sulfonate (PFOS) and improvement of renal function. The total cholesterol/HDL ratio and triglycerides were significantly higher in the diabetes mellitus (DM) group at baseline but did not significantly differ after DF. In conclusion, DF showed potential for improving inflammation and removing serum lipids and PFOS in adults with hyperlipidemia. Full article
Show Figures

Graphical abstract

10 pages, 1246 KiB  
Article
Perfluorooctanesulfonate Can Cause Negative Bias in Creatinine Measurement in Hemodialysis Patients Using Polysulfone Dialysis Membranes
by Wen-Sheng Liu, Chien-Hung Lin, Szu-Yuan Li, Chih-Ching Lin, Tsung-Yun Liu, Ann Charis Tan, Han-Hsing Tsou, Hsiang-Lin Chan and Yen-Ting Lai
Membranes 2022, 12(8), 778; https://doi.org/10.3390/membranes12080778 - 13 Aug 2022
Cited by 1 | Viewed by 1845
Abstract
Serum creatinine is an important clinical marker for renal clearance. However, two conventional methods (Jaffe and enzymatic) are prone to interferences with organic compounds as compared to the standard method (isotope dilution–liquid chromatography–mass spectrometry) and can cause a significant negative bias. Perfluorooctanesulfonate (PFOS) [...] Read more.
Serum creatinine is an important clinical marker for renal clearance. However, two conventional methods (Jaffe and enzymatic) are prone to interferences with organic compounds as compared to the standard method (isotope dilution–liquid chromatography–mass spectrometry) and can cause a significant negative bias. Perfluorooctanesulfonate (PFOS) and perfluorooctanoic acid (PFOA) are two common perfluorochemicals (PFCs) that can easily be accumulated in humans. We aimed to verify whether this bias is the result of an accumulation of PFCs. The serum creatinine values of 124 hemodialysis patients were analyzed using the three methods. We also aimed to evaluate which biochemical parameters will influence the difference between the conventional methods and the standard method. We found that a significant underestimation occurred when using the conventional methods. Albumin is an independent factor associated with negative bias, but it loses this correlation after dialysis, likely due to the removal of protein-bound uremic toxins. PFOS can cause negative bias when using the enzymatic method. Furthermore, this linear correlation is more significant in patients who used polysulfone-based dialysis membranes, possibly due to the better clearance of other uremic toxins. The serum creatinine of uremic patients can be significantly underestimated when using conventional methods. PFCs, as well the type of dialysis membrane being used, can be influencing factors. Full article
(This article belongs to the Special Issue Membranes in Renal Replacement Therapy)
Show Figures

Figure 1

15 pages, 2038 KiB  
Article
Oxygen Transfer Effects in a Two-Phase System of an Aqueous Phase and Liquid Perfluorochemical Subjected to Continuous Wave-Assisted Agitation in Disposable Bioreactor
by Kamil Wierzchowski, Paweł Sobieszuk and Maciej Pilarek
Energies 2021, 14(14), 4381; https://doi.org/10.3390/en14144381 - 20 Jul 2021
Cited by 1 | Viewed by 2189
Abstract
Systems of two immiscible liquid phases—aqueous phase (i.e., distilled water (dH2O) or phosphate-buffered saline (PBS)) and liquid perfluorochemical (i.e., perfluorodecalin (PFD))—were subjected to wave-assisted agitation, i.e., oscillatory rocked, in a disposable bag-like container in a ReadyToProcess WAVETM25 bioreactor, to [...] Read more.
Systems of two immiscible liquid phases—aqueous phase (i.e., distilled water (dH2O) or phosphate-buffered saline (PBS)) and liquid perfluorochemical (i.e., perfluorodecalin (PFD))—were subjected to wave-assisted agitation, i.e., oscillatory rocked, in a disposable bag-like container in a ReadyToProcess WAVETM25 bioreactor, to recognize oxygen transfer effects and effectivity of the surface aeration. According to the DoE methodology, values of the volumetric liquid-side mass transfer (kLa) coefficient for dH2O, PBS, dH2O-PFD, and PBS-PFD systems were determined for the whole range of operating parameters of the WAVE 25 bioreactor. A significantly higher maximal value of kLa was found for waving dH2O than for dH2O-PFD (i.e., 0.00460 s−1 vs. 0.00331 s−1, respectively) compared to more equal maximal values of kLa reached for PBS and PBS-PFD (0.00355 s−1 vs. 0.00341 s−1, respectively). The interface development factor (f) depended on the interfacial area a, and the enhancement factor (EPFD), depending on kLa, was introduced to quantitatively identify the mass transfer effects in the systems of waving two immiscible liquids. The phase of PFD was identified as the reservoir of oxygen. Dimensional correlations were proposed for the prediction of the kLa coefficient, in addition to the f and EPFD factors. The presented correlations, and the set of kLa values, can be directly applied to predict oxygen transfer effects reached under continuous oscillatory rocked systems containing aqueous phase and liquid perfluorochemical. Full article
(This article belongs to the Special Issue Multiphase Flows)
Show Figures

Figure 1

16 pages, 4352 KiB  
Article
Prenatal Exposure to Endocrine-Disrupting Chemicals and Subsequent Brain Structure Changes Revealed by Voxel-Based Morphometry and Generalized Q-Sampling MRI
by Chao-Yu Shen, Jun-Cheng Weng, Jeng-Dau Tsai, Pen-Hua Su, Ming-Chih Chou and Shu-Li Wang
Int. J. Environ. Res. Public Health 2021, 18(9), 4798; https://doi.org/10.3390/ijerph18094798 - 30 Apr 2021
Cited by 14 | Viewed by 3188
Abstract
Previous studies have indicated that prenatal exposure to endocrine-disrupting chemicals (EDCs) can cause adverse neuropsychiatric disorders in children and adolescents. This study aimed to determine the association between the concentrations of prenatal EDCs and brain structure changes in teenagers by using MRI. We [...] Read more.
Previous studies have indicated that prenatal exposure to endocrine-disrupting chemicals (EDCs) can cause adverse neuropsychiatric disorders in children and adolescents. This study aimed to determine the association between the concentrations of prenatal EDCs and brain structure changes in teenagers by using MRI. We recruited 49 mother–child pairs during the third trimester of pregnancy, and collected and examined the concentration of EDCs—including phthalate esters, perfluorochemicals (PFCs), and heavy metals (lead, arsenic, cadmium, and mercury)—in maternal urine and/or serum. MRI voxel-based morphometry (VBM) and generalized q-sampling imaging (GQI) mapping—including generalized fractional anisotropy (GFA), normalized quantitative anisotropy (NQA), and the isotropic value of the orientation distribution function (ISO)—were obtained in teenagers 13–16 years of age in order to find the association between maternal EDC concentrations and possible brain structure alterations in the teenagers’ brains. We found that there are several specific vulnerable brain areas/structures associated with prenatal exposure to EDCs, including decreased focal brain volume, primarily in the frontal lobe; high frontoparietal lobe, temporooccipital lobe and cerebellum; and white matter structural alterations, which showed a negative association with GFA/NQA and a positive association with ISO, primarily in the corpus callosum, external and internal capsules, corona radiata, superior fronto-occipital fasciculus, and superior longitudinal fasciculus. Prenatal exposure to EDCs may be associated with specific brain structure alterations in teenagers. Full article
(This article belongs to the Section Environmental Health)
Show Figures

Figure 1

12 pages, 762 KiB  
Review
Contaminants of Emerging Concern in African Wastewater Effluents: Occurrence, Impact and Removal Technologies
by Mohamed Chaker Necibi, Driss Dhiba and Souad El Hajjaji
Sustainability 2021, 13(3), 1125; https://doi.org/10.3390/su13031125 - 22 Jan 2021
Cited by 32 | Viewed by 5522
Abstract
Worldwide, the pollution of water bodies by contaminants of emerging concern (CECs) such as pharmaceuticals, endocrine disrupting compounds, flame retardants including brominated flame retardants (BFRs) and perfluorochemicals (PFCs), micro plastics, nanomaterials, and algal toxins, to name just a few, is creating a new [...] Read more.
Worldwide, the pollution of water bodies by contaminants of emerging concern (CECs) such as pharmaceuticals, endocrine disrupting compounds, flame retardants including brominated flame retardants (BFRs) and perfluorochemicals (PFCs), micro plastics, nanomaterials, and algal toxins, to name just a few, is creating a new set of challenges to the conventional wastewater treatment facilities, which demonstrate inefficiency in removing/degrading many CECs. As a consequence, environmentalists started to detect the presence of some of those contaminants at alarming levels in certain countries, with possible negative effects on aquatic species and often increased potential for human health risks through the exposure to the contaminated waters, or the reuse of treated wastewater in agriculture and household use. Such issues are more accentuated in the African continent due to various socio-economic problems giving rise to poor sanitation systems and serious shortages in wastewater treatment plants in many regions, making it difficult to tackle the problem of conventional pollutants, let alone to deal with the more challenging CECs. Thus, in order to effectively deal with this emerging environmental threat, African researchers are working to develop and optimize sound sampling and analytical procedures, risk assessment models, and efficient remediation technologies. In this review, related recent research efforts conducted in African universities and research institutions will be presented and discussed with respect to the occurrence and assessment of CECs in African wastewater effluents, the potential risks to aquatic ecosystems and humans, the tailored remediation techniques, along with some knowledge gaps and new research directions. Full article
(This article belongs to the Special Issue Removal of Emerging Pollutants from Wastewater Effluent)
Show Figures

Figure 1

12 pages, 2028 KiB  
Article
Dialysis Membranes Influence Perfluorochemical Concentrations and Liver Function in Patients on Hemodialysis
by Wen-Sheng Liu, Hsiang Lin Chan, Yen-Ting Lai, Chih-Ching Lin, Szu-Yuan Li, Chih-Kuang Liu, Han-Hsing Tsou and Tsung-Yun Liu
Int. J. Environ. Res. Public Health 2018, 15(11), 2574; https://doi.org/10.3390/ijerph15112574 - 17 Nov 2018
Cited by 12 | Viewed by 4354
Abstract
Introduction: Perfluoro-octanesulfonate (PFOS) and perfluoro-octanoic acid (PFOA) are two toxic perfluorochemicals (PFCs) commonly used as surfactants. PFCs are difficult to be eliminated from the body. We investigated the influence of different dialysis membranes on the concentrations of PFCs in patients under hemodialysis. [...] Read more.
Introduction: Perfluoro-octanesulfonate (PFOS) and perfluoro-octanoic acid (PFOA) are two toxic perfluorochemicals (PFCs) commonly used as surfactants. PFCs are difficult to be eliminated from the body. We investigated the influence of different dialysis membranes on the concentrations of PFCs in patients under hemodialysis. Method: We enrolled 98 patients. Of these, 58 patients used hydrophobic polysulfone (PS) dialysis membranes, and the other 40 had hydrophilic membranes made by poly-methyl methacrylate (PMMA) or cellulose triacetate (CTA). Liquid chromatography tandem mass spectrometry coupled was used with isotope dilution to quantify PFOA and PFOS. Results: The predialysis concentrations of PFOA and PFOS in patients with hydrophobic PS dialysis membranes were 0.50 and 15.77 ng/mL, respectively, lower than the concentrations of 0.81 and 22.70 ng/mL, respectively, in those who used hydrophilic membranes (such as CTA or PMMA). Older patients have higher PFOS and poorer body function, with lower Karnofsky Performance Status Scale (KPSS) scores. The demographic data of the two groups were similar. However, patients with hydrophobic PS dialysis membranes had lower predialysis aspartate transaminase (AST) (p = 0.036), lower glucose levels (p = 0.017), and better body function (nonsignificantly higher KPSS scores, p = 0.091) compared with patients who used other membranes. These differences may be associated with the effects of different membranes, because PFOA positively correlated with AST, while PFOS negatively correlated with body function. Conclusions: This is the first study comparing PFC levels in uremic patients with different dialysis membrane. PS membrane may provide better clearance of PFCs and may, therefore, be beneficial for patients. Full article
(This article belongs to the Special Issue Endocrine Disruptors Exposure on Human Health)
Show Figures

Graphical abstract

Back to TopTop